Überblick
In den letzten Jahren sind autonomes Fahren, auch als Robotaxis bezeichnet, zu einem der Trendthemen in der Automobilindustrie geworden. Der Automobil-, Transport- und Mobilitätsmarkt im weiteren Sinne durchläuft einen sozialen, technologischen und wirtschaftlichen Wandel, der die Art und Weise, wie Menschen und Produkte transportiert werden, grundlegend verändert. Angesichts des anhaltenden Bevölkerungswachstums, der Urbanisierung und der Umweltprobleme sind neue Formen der Mobilität von entscheidender Bedeutung, um die Bevölkerungszentren und die Wirtschaftstätigkeit von morgen zu unterstützen.
Laut Prognosezeitraum von 2022 bis 2029 wird für den Markt für autonome Luxusfahrzeuge ein deutliches Wachstum von 36,16 % erwartet. Der Bericht von Data Bridge Market Research bietet umfassende Analysen und Einblicke in den Markt und hebt die Faktoren hervor, die voraussichtlich in diesem Zeitraum einen großen Einfluss auf das Wachstum haben werden.
Auch Technologiegiganten, führende Softwareunternehmen und neue Mobilitäts-Startups stehen kurz davor, die Früchte einer völlig neuen Mobilitätsära der Zukunft zu ernten. Heutzutage wird das Auto zu einer Plattform, die verschiedene Funktionen erfüllt. Daher werden autonome Fahrzeuge im Vergleich zu herkömmlichen Autos zu viel stärker softwaregesteuerten Produkten. Ein autonomes Auto ist ein Fahrzeug, das seine Umgebung wahrnehmen und ohne menschliches Eingreifen fahren kann. Fortschritte in der Sensortechnologie, LiDAR und 4D-Radarbildgebung ebnen unter anderem den Weg für ein vollständig autonomes Fahrzeug. Diese Technologien werden verwendet, um bestimmte Daten in Echtzeit zu erfassen, die es dem Fahrzeug ermöglichen, zeitnahe Entscheidungen zu treffen.
Es ist nicht erforderlich, dass ein menschlicher Beifahrer zu jedem Zeitpunkt die Kontrolle über das Fahrzeug übernimmt oder anwesend ist. Traditionelle Hersteller und Zulieferer arbeiten mit Hochdruck daran, die Entwicklungszyklen kontinuierlich zu verkürzen und den unvermeidlichen Übergang in das neue Softwarezeitalter nachzuholen. Kollaborative, agile Arbeitsmodelle, die vorwiegend aus der Softwarebranche bekannt sind, und innovativere Ansätze des Kooperationsmanagements ebnen jedoch den Weg, diese Herausforderungen anzugehen und in Chancen umzuwandeln.
Was ist ein autonomes Fahrzeug?
Deep Learning ist der Kernaspekt des Automatisierungsteils autonomer Fahrzeuge. AVs können auf der Grundlage verschiedener Trainingsmodelle und Echtzeitdatenerfassung kalkulierte Entscheidungen treffen. Jüngste Entwicklungen im Bereich Deep Learning und künstliche Intelligenz haben es selbstfahrenden Autos ermöglicht, auf Hochrisikosituationen zu reagieren und wetterbedingte Probleme bei der Hindernisverfolgung zu bewältigen. Ein autonomes Auto oder fahrerloses Auto ist ein Fahrzeug, das eine Kombination aus Sensoren, Kameras, Radar und künstlicher Intelligenz (KI) verwendet, um ohne menschlichen Bediener zwischen Zielen zu fahren. Zu den Unternehmen, die autonome Autos entwickeln und/oder testen, gehören Audi, BMW, Ford, Google, General Motors, Tesla, Volkswagen und Volvo.
Weltweites Marktszenario für autonome Fahrzeuge
Das autonome Fahrzeug revolutioniert das Mobilitätserlebnis der Verbraucher auf der ganzen Welt. Dank des technologischen Fortschritts werden selbstfahrende Autos sicherer sein als von Menschen gesteuerte Fahrzeuge. In den USA kommen jedes Jahr 30.000 Menschen bei Autounfällen ums Leben, oft aufgrund von Müdigkeit, menschlichem Versagen und Trunkenheit am Steuer.
Heutzutage verfügen die meisten Autos über grundlegende ADAS-Funktionen (Advanced Driver Assistance Systems) und können ohne diese Verhaltensweisen funktionieren, wodurch möglicherweise Tausende von Leben gerettet werden. Die meisten selbstfahrenden Autos sind mit einem automatischen Notbremssystem ausgestattet, das erkennt, wenn sich das Auto einer Gefahr nähert, beispielsweise einem plötzlichen Stopp im Verkehr. Darüber hinaus können automatische Notbremssysteme so konfiguriert werden, dass sie Fußgänger, Radfahrer oder andere Fahrzeuge auf der Straße erkennen und darauf reagieren. Die ersten selbstfahrenden Autos wurden 2018 von Waymo auf den Markt gebracht, um Milliarden von Menschen eine sicherere, sauberere und bequemere Mobilität zu bieten. Waymos selbstfahrende Flotte von 600 Autos hat mehr autonome Meilen zurückgelegt als jeder Konkurrent. Tatsächlich hatte die Flotte im Oktober 2018 über 10 Millionen Meilen auf öffentlichen Straßen in 25 Städten zurückgelegt, wobei der Schwerpunkt auf den Straßen von Mountain View (CA), Austin (TX), Kirkland (WA) und Phoenix (AZ) lag. Im August 2018 gab das Fahrdienstunternehmen Lyft bekannt, dass seine Kunden über seine mobile App über 5.000 Fahrten mit selbstfahrenden Autos in Las Vegas bezahlt haben. Der Service wurde im Januar in Las Vegas mit 30 BMW-Autos eingeführt, aber das Unternehmen hatte damals 75 Autos in seiner Flotte.
Wichtige Strategien der Automobilhersteller
Automatisierungsgrad im selbstfahrenden Fahrzeug
Die Society of Automotive Engineers (SAE) definiert sechs Stufen der Fahrautomatisierung von 0 (vollständig manuell) bis 5 (vollständig autonom), die auch vom US-Verkehrsministerium übernommen wurden.
Level 0 (keine Fahrautomatisierung)
|
Das Fahrzeug ist nicht mit automatisierten Funktionen ausgestattet und der Fahrer hat die vollständige Kontrolle über das Fahrzeug
|
Level 1 (Fahrerassistenz)
|
Das Fahrzeug ist mit einer oder mehreren primären automatisierten Funktionen wie z. B. einer Geschwindigkeitsregelung ausgestattet, erfordert jedoch, dass der Fahrer alle anderen Aufgaben selbst ausführt
|
Level 2 (Teilautomatisiertes Fahren)
|
Fahrzeug mit zwei oder mehr Hauptfunktionen wie adaptiver Geschwindigkeitsregelung. Das Fahrzeug kann sowohl die Lenkung als auch die Beschleunigung/Verzögerung steuern. Hier ist die Automatisierung nicht mit dem autonomen Fahren vergleichbar, da ein Mensch auf dem Fahrersitz sitzt und jederzeit die Kontrolle über das Auto übernehmen kann. Sowohl Tesla Autopilot als auch Cadillac (General Motors) Super Cruise-Systeme erfüllen die Anforderungen der Stufe 2
|
Level 3 (Bedingte Fahrautomatisierung)
|
Das Fahrzeug ist mit Funktionen ausgestattet, die es dem Fahrer ermöglichen, je nach Verkehrs- und Umgebungsbedingungen auf kritische Sicherheitsfunktionen des Fahrzeugs zu verzichten. Angesichts der Einschränkungen automatisierter Funktionen wird vom Fahrer erwartet, dass er nach einer Übergangszeit die Kontrolle über das Fahrzeug übernimmt.
|
Level 4 (Hochautomatisiertes Fahren)
|
Fahrzeuge der Stufe 4 können im autonomen Fahrmodus betrieben werden. Der Hauptunterschied zwischen der Automatisierung der Stufen 3 und 4 besteht darin, dass Fahrzeuge der Stufe 4 eingreifen können, wenn etwas schief geht oder ein Systemausfall vorliegt.
Zum Beispiel,
|
Level 5 (Vollautomatisiertes Fahren)
|
Vollständig autonomes Fahrzeug, das die Straßenbedingungen überwacht und während der gesamten Fahrt sicherheitskritische Aufgaben mit oder ohne Fahrer ausführt.
|
Quelle: SEA
Die Schlüsseltechnologie selbstfahrender Autos oder autonomer Fahrzeuge
Automatische Steuerung, Architektur, künstliche Intelligenz, Computervision und viele andere Technologien sind in das selbstfahrende Auto integriert, das ein Produkt hochentwickelter Informatik, Mustererkennung und intelligenter Steuerungstechnologie ist.
Herausforderungen durch autonome Autos
Das größte Hindernis für autonome Fahrzeuge der Stufe 5 ist, dass die Technologie noch nicht weit genug fortgeschritten ist, um ein echtes autonomes Fahrzeug der Stufe 5 zu schaffen. Die Cruise-Testfahrzeuge von General Motors und die Nuro-Autos sind nur die ersten Schritte in der Entwicklung von Fahrzeugen der Stufe 5. Das Misstrauen der Öffentlichkeit gegenüber selbstfahrenden Fahrzeugen ist ein weiteres Hindernis, das autonome Fahrzeuge der Stufe 5 überwinden müssen. Die aktuellen Fahrzeuge der Stufe 3 waren in Unfälle verwickelt, was berechtigte Bedenken hinsichtlich der Sicherheit von Fahrzeugen der Stufe 5 aufwirft, da sie völlig autonom sind. Abgesehen davon sind bei der Entwicklung eines vollständig autonomen Systems für selbstfahrende Autos noch viele Herausforderungen zu bewältigen.
Selbstfahrende Autos haben Schwierigkeiten, ungewöhnliche Situationen zu interpretieren, wie etwa einen Verkehrspolizisten, der Fahrzeuge bei Rot durchwinkt. Einfache regelbasierte Programmierung wird nicht immer funktionieren, da es unmöglich ist, für jedes Szenario im Voraus zu programmieren. Daher hat die Idee eines „fahrerlosen oder autonomen“ Fahrzeugs auf der Straße Menschen aus allen Lebensbereichen fasziniert, da es bei selbstfahrenden Autos viele steuerungsbezogene Probleme gibt und viele bewegliche Faktoren während der Fahrt gleichzeitig verwaltet und reguliert werden müssen.
Länder, in denen autonome Fahrzeuge am weitesten verbreitet sind
Die kontinuierliche Weiterentwicklung der Automobiltechnologie, einschließlich Fahrerassistenztechnologien und automatisierter Fahrsysteme, soll noch mehr Sicherheitsvorteile bieten. Die Welt ist von autonomen Fahrzeugen erobert und ihre Entwicklung schreitet unglaublich voran. Während die Niederlande aufgrund ihrer hervorragenden Straßeninfrastruktur, einer äußerst unterstützenden Regierung und der begeisterten Einführung von Elektrofahrzeugen als aufstrebender Spitzenreiter in diesem Index zur Bereitschaft für autonome Fahrzeuge gelten, verdrängte Singapur die USA und belegte den zweiten Platz, was vor allem auf die Änderung der Straßenverkehrsordnung zurückzuführen ist, die es ermöglicht, selbstfahrende Fahrzeuge auf öffentlichen Straßen zu testen.
Tabelle 1: Index zur Bereitschaft für autonome Fahrzeuge
Land
|
Technologie- und Innovationsrang
|
Infrastruktur-Rang
|
Rangliste Politik & Gesetzgebung
|
Verbraucherakzeptanz
|
Gesamtrang
|
Die Niederlande
|
4
|
1
|
3
|
2
|
1
|
Singapur
|
8
|
2
|
1
|
1
|
2
|
UNS
|
1
|
7
|
10
|
4
|
3
|
Schweden
|
2
|
6
|
8
|
6
|
4
|
Vereinigtes Königreich
|
5
|
10
|
4
|
3
|
5
|
Deutschland
|
3
|
12
|
5
|
12
|
6
|
Kanada
|
6
|
11
|
7
|
7
|
7
|
Quelle: Geospatial Media and Communications
Vorteile autonomer Fahrzeuge
Tabelle 2: Potenzielle Vorteile und Kosten autonomer Fahrzeuge
Vorteile
|
Kosten/Probleme
|
Weniger Stress für den Fahrer und mehr
Produktivität
|
Erfordert zusätzliche Fahrzeugausstattung, Dienstleistungen und Gebühren
|
Reduziert die Kosten für Taxis
Dienstleistungen und gewerbliche Transportfahrer
|
Weitere systembedingte Abstürze
Ausfälle, Platooning, höhere Verkehrsgeschwindigkeiten, zusätzliches Risiko und erhöhte Gesamtfahrzeugfahrten
|
Reduziert den Parkplatzbedarf an Zielorten
|
Möglicherweise sind strengere Standards für Straßenkonstruktion und -wartung erforderlich
|
Könnte Carsharing und Mitfahrgelegenheiten erleichtern und so die Zahl der Fahrzeugbesitzer und Fahrten sowie die damit verbundenen Kosten verringern
|
Optimistische Vorhersagen zum autonomen Fahren können andere Verkehrsverbesserungen und Managementstrategien behindern
|
Quelle:
Autonome Fahrzeuge können den Stress und die Langeweile des Fahrers verringern und seine Produktivität steigern, da die Passagiere während der Fahrt arbeiten können. Aus Sicherheitsgründen sollten die Insassen jedoch angeschnallt sein und die Nutzung von Betten im Fahrzeug einschränken. Wie in jedem beengten Raum kann es auch im Fahrzeuginnenraum zu Unordnung und Verschmutzung kommen. Darüber hinaus können autonome Fahrzeuge Menschen, die aus irgendeinem Grund nicht selbst fahren können oder sollten, unabhängige Mobilität bieten. Dies kommt diesen Reisenden direkt zugute und kann durch die Verbesserung ihres Zugangs zu Bildung und Beschäftigungsmöglichkeiten ihre Produktivität steigern und die Belastung ihrer Familienmitglieder und Freunde durch Chauffeure verringern.
Herausforderungen im Zusammenhang mit autonomen Fahrzeugen
Autonome Fahrzeuge benötigen verschiedene Geräte und Dienste, um richtig zu funktionieren. Da Ausfälle tödlich sein können, benötigen autonome Fahrzeuge robuste und redundante Komponenten, die von Spezialisten installiert und gewartet werden, was die Wartungskosten erhöht. Derzeit kosten optionale Fahrzeugzubehörteile wie Fernstart, aktiver Spurhalteassistent und Sicherheitskameras in der Regel mehrere Tausend Dollar, und Abonnements für Navigations- und Sicherheitsdienste wie OnStar und TomTom kosten Hunderte von Dollar pro Jahr. Ein Upgrade auf Teslas Full Self-Drive (FSD)-Dienste, die einen eingeschränkten autonomen Betrieb ermöglichen, kostet 15.000 USD, und im Jahr 2022 verklagten Besitzer Tesla wegen falscher Werbung für seine Verfügbarkeit und Vorteile. Fahrzeugbesitzer werden wahrscheinlich regelmäßige Software-Updates und Navigationskartendienste abonnieren müssen.
Die meisten autonomen Autos nutzen drei Technologien zur Navigation: LiDAR (Light Detection and Ranging), Kameras und Radar. Während der Fahrt erkennen Radarsensoren die Reflexionen von Radiowellen von umgebenden Objekten. Eine schnelle Berechnung der für die Reflexion der Radiowellen benötigten Zeit ermöglicht es dem selbstfahrenden Auto, die Nähe zu nahe gelegenen Objekten zu messen. Es besteht jedoch die Möglichkeit, dass sich die von zwei oder mehr Fahrzeugen in unmittelbarer Nähe gesendeten Radiowellen gegenseitig stören, was zu falschen Signalen führt. Die Bildklassifizierung erfolgt durch Training des Convolutional Neural Network (CNN), um Objekte zu erkennen und zu klassifizieren. Das Problem mit CNN besteht darin, dass es nicht die beste Lösung für Bilder mit mehreren Objekten ist, da das Modell wahrscheinlich nicht alle Objekte erfasst. Das Global Positioning System (GPS) kann jedoch verwendet werden, um die genaue Position anderer autonomer Fahrzeuge zu erkennen, aber manchmal sind sie nicht in der Lage, zwischen wenigen Objekten wie Wänden, Gebäuden, Trümmern und Bäumen zu unterscheiden. Ein selbstfahrendes oder autonomes Auto muss in der Lage sein, seine eigenen Signale von den anderen zu unterscheiden, daher wird dies in den kommenden Jahren eine der größten Herausforderungen sein.
Die Gesetzgebung ist eines der wichtigsten Merkmale des autonomen Fahrens. In vielen Fällen herrscht in den Landes- und Bundesgesetzen Unklarheit darüber, wer für Unfälle verantwortlich ist, die von diesen Autos verursacht werden. Die Feststellung, wer bei Personenschäden infolge routinemäßiger Autounfälle schuld ist, ist bereits schwierig genug. Da es bei autonomen Fahrzeugen keine eindeutige Definition des Fahrers gibt, ist es noch schwieriger, festzustellen, wer den Unfall verursacht hat und welche Folgen er hatte. Abgesehen davon ist bei den meisten selbstfahrenden Autos die Software der wichtigste Entscheidungsträger und Bediener. Das Design kann jedoch je nach Hersteller variieren.
Obwohl das Computer Vision-Modell für autonomes Fahren über einen Echtzeit-Objektdetektor verfügt, besteht die Möglichkeit, dass sich seine Leistung je nach Wetter, Beleuchtung und Standort ändert. Autonome Fahrzeuge benötigen viele verschiedene Datensätze, um mögliche Unfälle durch die oben genannten Variablen zu verhindern. Selbstfahrende Fahrzeuge können Entfernungen berechnen und Ampeln, andere Fahrzeuge und Fußgänger erkennen, indem sie LiDAR-Sensoren und -Kameras in Verbindung mit Daten aus dreidimensionalen (3D-)Karten und Computer Vision-Technologie einsetzen. Um die Sicherheit der Passagiere und des Fahrzeugs zu gewährleisten, ist die Tiefenschätzung unerlässlich. Obwohl mehrere andere Tools eine wichtige Rolle spielen, wie LIDAR und Kameraradar, ist es hilfreich, sie durch Stereovision zu unterstützen. Dies wirft jedoch viele andere Probleme auf, wie beispielsweise die Kameraanordnung, da der Abstand zwischen den Linsen und dem Sensor bei jedem Fahrzeug unterschiedlich sein kann, was das Tiefenschätzungssystem anspruchsvoller macht.
Regulierungsbehörden im gesamten Großraum
Auswirkungen von Covid-19 auf den Markt für autonome Fahrzeuge
Die COVID-19-Pandemie hat enorme Veränderungen im täglichen Leben mit sich gebracht, sodass die Automobil- und Transportbranche ein Auge darauf hat, wie sich Veränderungen im Verbraucherverhalten auf die Einführung autonomer Fahrzeugtechnologien (AV) in allen Wirtschaftssektoren auswirken können. Die COVID-19-Pandemie hat die Geschäftstätigkeit mehrerer OEMs von der Produktion bis hin zu Forschung und Entwicklung beeinflusst. Zwar kann es kurzfristig zu einer Unterbrechung der Entwicklung und Einführung autonomer Fahrzeuge kommen, doch diese Unterbrechung kann neue Möglichkeiten für die Einführung autonomer Technologien in Verbrauchersegmenten eröffnen und die Einführung in verschiedenen kommerziellen Segmenten beschleunigen, da die AV-Technologie als entscheidender Bestandteil der Reaktion in Notsituationen angesehen wird. COVID-19 verändert auch die Einstellung der Verbraucher zum öffentlichen Nahverkehr auf eine Weise, die der AV-Technologie langfristig zugute kommen kann. Während die Zurückhaltung der Verbraucher beim Kauf neuer Autos die OEMs dazu veranlassen könnte, die Entwicklung autonomer Fahrzeuge zu unterbrechen, könnte das Potenzial für die Einführung autonomer Fahrzeuge durch Logistikunternehmen, Lieferunternehmen und die Lebensmittelindustrie den OEMs und anderen AV-Teilnehmern den Marktbedarf bieten, um die AV-Technologie auf die nächste Stufe zu heben. In einer Welt, in der wir für unsere Gesundheit heutzutage nur noch von unseren Mitbürgern fernbleiben können, scheinen selbstfahrende Langstrecken-Lkw, stadtweite Lieferfahrzeuge und robotergestützte Essenslieferungen attraktiver denn je.
Da COVID-19 die menschliche Seite des Warentransports in den Mittelpunkt rückt, benötigen Logistikunternehmen selbstfahrende Systeme in Echtzeit. Während Kosteneinsparungen und ein ununterbrochener Warentransport Faktoren sind, hat die Fähigkeit von COVID-19, den Warentransport zu unterbrechen, den menschlichen Faktor des Warentransports als schwaches Glied in unserer nationalen Lieferkette für Waren ins Rampenlicht gerückt. In Notfällen ist die Fähigkeit, Waren effizient und zuverlässig durch die Lieferkette zu transportieren, wichtiger denn je, insbesondere bei Panikkäufen und Lieferengpässen. Darüber hinaus kann sich die Abhängigkeit des Automobilsektors von Just-in-time-Lieferungen keine Lieferunterbrechungen aufgrund von Störungen im LKW-Verkehr und in der Logistik leisten. Während die Verbrauchernachfrage nach Neu- und Gebrauchtwagenkäufen die Einführung von AV-Systemen im Verbrauchersegment vorübergehend verzögert haben mag, hat die COVID-19-Pandemie hervorgehoben, wie wichtig AV im gesamten täglichen Handel und in der Logistikbranche ist.
Abschluss
Autonome Fahrzeuge (AV) gelten als eine der disruptivsten technologischen Innovationen, da unter anderem Fragen der Kundenakzeptanz aufgrund von Sicherheit und Ethik bestehen. AVs verändern die Wahrnehmung von Fahrzeugen und menschlicher Mobilität und stellen eine bedeutende technologische Innovation in der Automobilindustrie dar. Sie können eine Reihe von Vorteilen mit sich bringen, wie z. B. eine Steigerung der Mobilität, eine Verringerung des Ressourcenverbrauchs, geringere Emissionen, einen geringeren Bedarf an Parkplätzen und eine Erhöhung der Verkehrssicherheit. Obwohl AVs durch die Entstehung hilfreicher Anwendungen eine Reihe von Verkehrsproblemen lösen konnten, besteht Einigkeit darüber, dass in bestimmten Verkehrssituationen, bei der Fahrzeugwartung und wenn der autonome Fahrmodus nicht genutzt werden kann, eine langfristige menschliche Interaktion erforderlich sein wird.
Um mehr über den Markt für autonome Fahrzeuge zu erfahren, besuchen Sie bitte den folgenden Link
Laut Prognosezeitraum von 2022 bis 2029 wird für den Markt für halbautonome und autonome Fahrzeuge ein deutliches Wachstum von 3,8 % erwartet. Der Bericht von Data Bridge Market Research bietet umfassende Analysen und Einblicke in den Markt und hebt die Faktoren hervor, die voraussichtlich in diesem Zeitraum einen großen Einfluss auf das Wachstum haben werden.
In der Vollversion des Berichts wird Data Bridge die Marktgröße in Bezug auf den Wert (Millionen USD) angeben oder entsprechend den Kundenanforderungen anpassen.
DBMR hat mehr als 40 % der Fortune 500-Unternehmen weltweit betreut und verfügt über ein Netzwerk von mehr als 5000 Kunden. Unser Team hilft Ihnen gerne bei Ihren Fragen. Besuchen Sie https://www.databridgemarketresearch.com/de/contact
Kontaktiere unsCybersicherheit: Schutz von Benutzerdaten im Internet
Cybersicherheit: Schutz von Benutzerdaten im Internet
Cybersicherheit: Schutz von Benutzerdaten im Internet
Cybersicherheit: Schutz von Benutzerdaten im Internet
Cybersicherheit: Schutz von Benutzerdaten im Internet