Descripción general
En los últimos años, la conducción autónoma y los también denominados robotaxis se han convertido en uno de los temas de tendencia en la industria del automóvil. El mercado de la automoción, el transporte y la movilidad en general está experimentando un cambio social, tecnológico y económico transformador, que cambia fundamentalmente la forma en que se transportan las personas y los productos. En medio del continuo crecimiento demográfico, la urbanización y las preocupaciones ambientales, nuevas formas de movilidad son fundamentales para sustentar los centros de población y la actividad económica del mañana.
Según el período previsto de 2022 a 2029, se prevé que el mercado de vehículos autónomos de lujo experimente un crecimiento significativo, con una tasa proyectada del 36,16%. El informe de Data Bridge Market Research ofrece análisis e información completos sobre el mercado, destacando los factores que se espera que tengan una influencia destacada en su crecimiento durante este período.
Los gigantes tecnológicos que lideran los actores del software y las nuevas empresas de movilidad también están a punto de cosechar los frutos de una era de movilidad futura completamente nueva. Hoy en día, el coche se está convirtiendo en una plataforma que cumple diversas funciones. Por lo tanto, los vehículos autónomos se están convirtiendo en productos mucho más basados en software en comparación con los automóviles tradicionales. Un coche autónomo es un vehículo que es capaz de detectar su entorno y funcionar sin intervención humana. Los avances en tecnología de sensores, LiDAR e imágenes de radar 4D, entre otros, están allanando el camino para un vehículo totalmente autónomo. Estas tecnologías se utilizan para recopilar datos específicos en tiempo real que permiten al vehículo tomar decisiones oportunas.
No es necesario que un pasajero humano tome el control del vehículo en ningún momento, ni tampoco que esté presente. Los fabricantes y proveedores tradicionales trabajan muy duro para acortar continuamente los ciclos de desarrollo y ponerse al día con la inevitable transición a la nueva era del software. Sin embargo, los modelos de trabajo ágiles y colaborativos, predominantemente conocidos en la industria del software, y enfoques de gestión de la cooperación más innovadores allanan el camino para abordar estos desafíos y convertirlos en oportunidades.
¿Qué es el vehículo autónomo?
El aprendizaje profundo es el aspecto central de la parte de automatización de los vehículos autónomos. Los AV pueden tomar decisiones calculadas basadas en varios modelos de entrenamiento y adquisición de datos en tiempo real. Los recientes desarrollos de aprendizaje profundo e inteligencia artificial han permitido que los vehículos autónomos respondan a situaciones de alto riesgo y contrarresten los problemas de seguimiento de obstáculos debido a las condiciones climáticas. Un coche autónomo o coche sin conductor es un vehículo que utiliza una combinación de sensores, cámaras, radar e inteligencia artificial (IA) para viajar entre destinos sin un operador humano. Las empresas que desarrollan y/o prueban automóviles autónomos incluyen Audi, BMW, Ford, Google, General Motors, Tesla, Volkswagen y Volvo.
Escenario del mercado mundial de vehículos autónomos
El vehículo autónomo está revolucionando la experiencia de movilidad de los consumidores en todo el mundo. Con los avances de la tecnología, los vehículos autónomos serán más seguros que los vehículos conducidos por humanos. En Estados Unidos, se pierden 30.000 vidas cada año en accidentes automovilísticos, a menudo debido a fatiga, errores humanos y conducción en estado de ebriedad.
Hoy en día, la mayoría de los automóviles incluyen funciones básicas ADAS (sistemas avanzados de asistencia al conductor) y pueden funcionar sin estos comportamientos, lo que potencialmente salva miles de vidas. La mayoría de los vehículos autónomos vienen con un sistema de frenado de emergencia automatizado que está diseñado para detectar cuando el automóvil se acerca a un peligro, como una parada repentina en el tráfico. Además, los sistemas automatizados de frenado de emergencia se pueden configurar para detectar y responder a peatones, ciclistas u otros vehículos en la carretera. Waymo lanzó los primeros automóviles autónomos en 2018 para brindar a miles de millones de personas una movilidad más segura, limpia y conveniente. La flota de 600 vehículos autónomos de Waymo ha recorrido más kilómetros de forma autónoma que cualquier competidor. De hecho, en octubre de 2018, la flota había recorrido más de 10 millones de millas en calles públicas en 25 ciudades, aunque la atención se centró en las calles de Mountain View (CA), Austin (TX), Kirkland (WA) y Phoenix (AZ). . En agosto de 2018, la empresa de transporte Lyft anunció que sus clientes habían pagado más de 5.000 viajes sin conductor en Las Vegas utilizando su aplicación móvil. El servicio se lanzó en Las Vegas en enero con 30 coches BMW, pero en aquel entonces la empresa tenía 75 coches en su flota.
Estrategias clave adoptadas por los fabricantes de automóviles
Nivel de automatización en vehículos autónomos
La Sociedad de Ingenieros Automotrices (SAE) define 6 niveles de automatización de la conducción que van del 0 (completamente manual) al 5 (completamente autónomo), que ha adoptado el Departamento de Transporte de EE. UU.
Nivel 0 (sin automatización de conducción)
|
Vehículo equipado sin funciones automatizadas y el conductor tiene el control total del vehículo.
|
Nivel 1 (Asistencia al conductor)
|
Vehículo equipado con una o más funciones automatizadas principales, como control de crucero, pero requiere que el conductor realice todas las demás tareas.
|
Nivel 2 (Automatización de conducción parcial)
|
Vehículo equipado con dos o más funciones principales, como control de crucero adaptativo. El vehículo puede controlar tanto la dirección como la aceleración/desaceleración. En este caso, la automatización no llega a la conducción autónoma, porque una persona se sienta en el asiento del conductor y puede tomar el control del coche en cualquier momento. Los sistemas Tesla Autopilot y Cadillac (General Motors) Super Cruise califican como Nivel 2
|
Nivel 3 (Automatización de conducción condicional)
|
Vehículo equipado con características que permiten al conductor renunciar a la función de seguridad crítica del vehículo dependiendo del tráfico y las condiciones ambientales. Se espera que el conductor asuma el control del vehículo dadas las limitaciones de las funciones automatizadas después de un período de transición.
|
Nivel 4 (alta automatización de conducción)
|
Los vehículos de nivel 4 pueden operar en modo de conducción autónoma y la diferencia clave entre la automatización de nivel 3 y 4 es que los vehículos de nivel 4 pueden intervenir si algo sale mal o hay una falla del sistema.
Por ejemplo,
|
Nivel 5 (Automatización de conducción completa)
|
Vehículo totalmente autónomo que monitorea las condiciones de la carretera y realiza tareas críticas para la seguridad durante todo el viaje con o sin conductor presente.
|
Fuente: MAR
La tecnología clave de los vehículos autónomos o autónomos
El control automático, la arquitectura, la inteligencia artificial, la visión por computadora y muchas otras tecnologías están integradas en el automóvil autónomo, que es un producto de la informática, el reconocimiento de patrones y la tecnología de control inteligente altamente desarrollados.
Desafíos que enfrentan los automóviles autónomos
El principal obstáculo que enfrentan los vehículos autónomos de nivel 5 es que la tecnología no está lo suficientemente avanzada como para crear un verdadero vehículo autónomo de nivel 5. Los vehículos de prueba Cruise de General Motors y los coches Nuro son sólo los primeros pasos en el desarrollo de coches de nivel 5. La desconfianza del público hacia los vehículos sin conductor es otro obstáculo que los vehículos autónomos de nivel 5 deben superar. Los actuales coches de nivel 3 se han visto implicados en accidentes, lo que plantea auténticas preocupaciones en cuanto a la seguridad de los coches de nivel 5, ya que son totalmente autónomos. Aparte de estos, todavía se enfrentan muchos desafíos en el diseño de sistemas totalmente autónomos para automóviles sin conductor.
Los vehículos autónomos tienen dificultades para interpretar situaciones inusuales, como un oficial de tránsito que hace señales a los vehículos para pasar un semáforo en rojo. La programación simple basada en reglas no siempre funcionará porque es imposible codificar cada escenario por adelantado. Por lo tanto, la idea de un vehículo "sin conductor o autónomo" en la carretera ha intrigado a personas de todos los ámbitos de la vida, ya que existen muchos problemas relacionados con el control de los vehículos autónomos y muchos factores móviles que deben gestionarse. y regulados simultáneamente durante la conducción.
Principales países preparados para vehículos autónomos
La continua evolución de la tecnología automotriz, incluidas las tecnologías de asistencia al conductor y los sistemas de conducción automatizados, tiene como objetivo ofrecer beneficios de seguridad aún mayores. El mundo ha sido conquistado por los vehículos autónomos y su desarrollo está progresando increíblemente. Si bien los Países Bajos son considerados como el líder emergente en este índice de preparación para vehículos autónomos debido a su excelente infraestructura vial, un gobierno altamente solidario y una adopción entusiasta de los vehículos eléctricos, Singapur superó a Estados Unidos y ocupó el segundo lugar en gran parte debido a la enmienda a su sistema de carreteras. Ley de tráfico que permite probar vehículos autónomos en la vía pública.
Tabla 1: Índice de preparación de vehículos autónomos
País
|
Clasificación de tecnología e innovación
|
Rango de infraestructura
|
Rango de política y legislación
|
Aceptación del consumidor
|
Clasificación general
|
Los países bajos
|
4
|
1
|
3
|
2
|
1
|
Singapur
|
8
|
2
|
1
|
1
|
2
|
A NOSOTROS
|
1
|
7
|
10
|
4
|
3
|
Suecia
|
2
|
6
|
8
|
6
|
4
|
Reino Unido
|
5
|
10
|
4
|
3
|
5
|
Alemania
|
3
|
12
|
5
|
12
|
6
|
Canada
|
6
|
11
|
7
|
7
|
7
|
Fuente: Medios y Comunicaciones Geoespaciales
Ventajas de los vehículos autónomos
Tabla 2: Beneficios y costos potenciales de los vehículos autónomos
Beneficios
|
Costos/Problemas
|
Reducción del estrés de los conductores y aumento
Productividad
|
Requiere equipo, servicios y tarifas adicionales para el vehículo.
|
Reduce los costos de los taxis.
conductores de servicios y transporte comercial
|
Fallos adicionales causados por el sistema
fallas, pelotones, velocidades de tráfico más altas, toma de riesgos adicionales y mayor viaje total de vehículos
|
Reduce la demanda de aparcamiento en los destinos
|
Puede requerir estándares más altos de diseño y mantenimiento de carreteras.
|
Podría facilitar el uso compartido de automóviles y viajes compartidos, reduciendo la propiedad total de vehículos y los viajes, y los costos asociados.
|
Las predicciones optimistas sobre la conducción autónoma pueden desalentar otras mejoras y estrategias de gestión del transporte
|
Fuente:
Los vehículos autónomos pueden reducir el estrés y el tedio del conductor y aumentar su productividad, permitiendo a los pasajeros trabajar mientras viajan. Sin embargo, por razones de seguridad, los ocupantes deben usar cinturones de seguridad, lo que restringe el uso de las camas dentro del vehículo y, como cualquier espacio confinado, es probable que el interior del vehículo se abarrote y se ensucie. Además, los vehículos autónomos pueden proporcionar movilidad independiente a personas que, por cualquier motivo, no pueden o no deben conducir. Esto beneficia directamente a esos viajeros y, al mejorar su acceso a la educación y las oportunidades de empleo, puede aumentar su productividad y reducir la carga de los choferes para sus familiares y amigos.
Desafíos asociados con los vehículos autónomos
Los vehículos autónomos requieren diversos equipos y servicios para su correcto funcionamiento. Dado que las fallas pueden ser mortales, los vehículos autónomos necesitan componentes robustos y redundantes instalados y mantenidos por especialistas, lo que aumenta los costos de mantenimiento. Actualmente, los accesorios opcionales del vehículo, como el arranque remoto, el asistente activo de carril y las cámaras de seguridad, suelen costar varios miles de dólares, y las suscripciones a servicios de navegación y seguridad, como OnStar y TomTom, cuestan cientos de dólares al año. La actualización a los servicios Full Self-Drive (FSD) de Tesla, que proporcionan un funcionamiento autónomo limitado, costó 15.000 dólares y, en 2022, los propietarios demandaron a Tesla por publicidad falsa de su disponibilidad y beneficios. Los propietarios de vehículos probablemente necesitarán suscribirse a actualizaciones frecuentes de software y servicios de mapas de navegación.
La mayoría de los coches autónomos utilizan tres tecnologías para navegar: LiDAR (Light Detección y Rango), cámaras y radar. Al conducir, los sensores de radar detectan los reflejos de las ondas de radio de los objetos circundantes. Así, un cálculo rápido del tiempo necesario para la reflexión de las ondas de radio permite al vehículo autónomo medir la proximidad de los objetos cercanos. Pero es probable que las ondas de radio transmitidas por dos o más vehículos muy próximos interfieran entre sí, lo que dará como resultado señales falsas. La clasificación de imágenes se realiza entrenando la red neuronal convolucional (CNN) para reconocer y clasificar objetos. El problema con CNN es que no es la mejor solución para imágenes con múltiples objetos, ya que es probable que el modelo no capture todos los objetos. Sin embargo, el sistema de posicionamiento global (GPS) se puede utilizar para detectar la posición exacta de otros vehículos autónomos, pero a veces no son capaces de distinguir entre algunos objetos, como paredes, edificios, escombros y árboles. Un coche autónomo o autónomo debe ser capaz de distinguir sus propias señales del resto, de ahí que vaya a ser uno de los mayores retos de los próximos años.
La legislación es una de las características más esenciales de la conducción autónoma. En muchos casos, las leyes estatales y federales no están claras sobre quién sería responsable de los accidentes provocados por estos automóviles. Determinar quién tiene la culpa en reclamaciones por lesiones personales resultantes de accidentes automovilísticos de rutina ya es bastante difícil. Como no existe una definición clara del conductor en el caso de los vehículos autónomos, resulta más difícil precisar quién causó el accidente y cuáles fueron sus efectos. Aparte de esto, en la mayoría de los vehículos autónomos, el software es el operador y el tomador de decisiones clave. Pero el diseño puede variar según el fabricante.
Aunque el modelo de conducción autónoma por visión por computadora tiene un detector de objetos en tiempo real, existe la posibilidad de que su rendimiento cambie según el clima, la iluminación y la ubicación en la que se encuentre. Los vehículos autónomos necesitan una gran cantidad de conjuntos de datos diferentes para evitar posibles accidentes. causado por las variables antes mencionadas. Los vehículos autónomos pueden calcular distancias y detectar señales de tráfico, otros vehículos y peatones mediante el empleo de sensores y cámaras LiDAR junto con datos de mapas tridimensionales (3D) y tecnología de visión por computadora. Para garantizar la seguridad de los pasajeros y del vehículo, la estimación de la profundidad es fundamental. Aunque hay otras herramientas que desempeñan funciones clave, como LIDAR y el radar de cámara, es útil respaldarlas con una visión estéreo. Sin embargo, esto deja espacio para muchas otras cuestiones, como la disposición de las cámaras, ya que la distancia entre las lentes y el sensor puede ser diferente para cada vehículo, lo que hace que el sistema de estimación de profundidad sea más complicado.
Autoridades reguladoras en todo el país principal
Impacto de Covid-19 en el mercado de vehículos autónomos
La pandemia de COVID-19 ha provocado una enorme cantidad de cambios en la vida cotidiana, por lo que los sectores de la automoción y el transporte están atentos a cómo los cambios en el comportamiento de los consumidores pueden afectar la adopción de tecnologías de vehículos autónomos (AV) en todos los sectores de la economía. . La pandemia de COVID-19 ha influido en las operaciones de varios OEM, desde la producción hasta la I+D. Si bien puede haber una interrupción a corto plazo en el desarrollo y la implementación de AV, esta interrupción puede abrir nuevas oportunidades para la adopción de la tecnología AV dentro de los segmentos de consumidores y acelerar la adopción en varios segmentos comerciales, ya que la tecnología AV se considera un componente crucial para responder en tiempos de emergencias. COVID-19 también está cambiando las actitudes de los consumidores hacia el transporte público de maneras que pueden beneficiar la tecnología AV a largo plazo. Si bien la vacilación de los consumidores ante la compra de automóviles nuevos podría estar llevando a los OEM a detener el desarrollo AV, el potencial de adopción de AV por parte de las empresas de logística, las empresas de entrega y la industria de servicios de alimentos podría proporcionar a los OEM y otros participantes AV la necesidad del mercado para impulsar la tecnología AV a el siguiente nivel. En un mundo donde actualmente mantenerse saludable significa mantenerse lejos de nuestros conciudadanos, los camiones autónomos de larga distancia, los vehículos de reparto que cruzan la ciudad y la entrega robótica de alimentos parecen más atractivos que nunca.
A medida que COVID-19 pone el lado humano del transporte de mercancías en el centro de atención, las empresas de logística necesitan sistemas de conducción autónoma en tiempo real. Si bien el ahorro de costos y el tránsito continuo de mercancías son factores, la capacidad de la COVID-19 para pausar el envío de mercancías ha puesto de relieve el factor humano del transporte de mercancías como un eslabón débil en nuestra cadena nacional de suministro de mercancías. En emergencias, la capacidad de transportar bienes de manera eficiente y confiable a lo largo de la cadena de suministro es más importante que nunca, especialmente en situaciones de compras de pánico y restricciones de suministro. Además, la dependencia del sector automotriz de la entrega justo a tiempo no puede permitirse la interrupción del suministro debido a interrupciones en el transporte por carretera y la logística. Si bien la demanda de los consumidores por la compra de automóviles nuevos y usados puede haber retrasado momentáneamente la adopción de sistemas AV en el segmento de consumidores, la pandemia de COVID-19 ha puesto de relieve la importancia de los AV en el comercio diario y la industria de la logística.
Conclusión
Los vehículos autónomos (AV) se consideran una de las innovaciones tecnológicas más disruptivas debido a cuestiones de aceptación de los clientes basadas en la seguridad y la ética, entre otras. Los vehículos autónomos están cambiando la forma en que el mundo ve los vehículos y la movilidad humana y son una innovación tecnológica importante en la industria automotriz. Pueden aportar diversos beneficios, como un aumento de la movilidad, una reducción de la cantidad de recursos consumidos, un menor nivel de emisiones, una menor necesidad de plazas de aparcamiento y un aumento de la seguridad del tráfico. Aunque la aparición de aplicaciones útiles ha permitido que los AV resuelvan una serie de problemas de tráfico, se acepta que la interacción humana a largo plazo será necesaria en determinadas situaciones de tráfico, mantenimiento de vehículos y cuando no se pueda utilizar el modo de conducción autónoma.
Para saber más sobre el mercado de vehículos autónomos, visite el siguiente enlace
Según el período previsto de 2022 a 2029, se prevé que el mercado semiautónomo y autónomo experimente un crecimiento significativo, con una tasa proyectada del 3,8%. El informe de Data Bridge Market Research ofrece análisis e información completos sobre el mercado, destacando los factores que se espera que tengan una influencia destacada en su crecimiento durante este período.
En la versión completa del informe, Data Bridge proporcionará el tamaño del mercado en términos de valor (millones de dólares) o lo personalizará según los requisitos del cliente.
DBMR ha prestado servicios a más del 40% de las empresas Fortune 500 a nivel internacional y tiene una red de más de 5000 clientes. Nuestro equipo estará encantado de ayudarle con sus consultas. Visita, https://www.databridgemarketresearch.com/es/contact
ContáctenosSeguridad cibernética: protección de los datos del usuario en línea
Seguridad cibernética: protección de los datos del usuario en línea
Seguridad cibernética: protección de los datos del usuario en línea
Seguridad cibernética: protección de los datos del usuario en línea
Seguridad cibernética: protección de los datos del usuario en línea