개요

오디오, 텍스트, 코드, 비디오, 사진, 기타 데이터 등의 콘텐츠를 생성할 수 있는 인공지능을 생성적 AI라고 합니다. Generative AI는 훈련 데이터 세트에서 패턴을 찾고 예측하는 데 사용될 수 있는 표준 AI 알고리즘과 달리 기계 학습 알고리즘을 사용하여 훈련 데이터 세트를 기반으로 출력을 생성합니다. 생성 AI의 출력은 프롬프트와 동일한 미디어(텍스트-텍스트) 또는 다른 미디어(텍스트-이미지 또는 이미지-비디오)에 있을 수 있습니다. 생성 AI 애플리케이션인 ChatGPT, Bard, DALL-E, Midjourney 및 DeepMind는 잘 알려진 예입니다. 특히, 생성적 AI 모델에는 방대한 양의 기존 콘텐츠가 제공되어 모델을 훈련시켜 새로운 콘텐츠를 생성합니다. 확률 분포를 기반으로 데이터 세트의 기본 패턴을 식별하고 프롬프트가 제공되면 유사한 패턴(또는 이러한 패턴을 기반으로 한 출력)을 생성하는 방법을 배웁니다.

The Role of Generative AI in Transforming Business

예를 들어,

또한 딥 러닝 또는 생성 AI라고 불리는 기계 학습의 우산 범주 중 일부는 기존 기계 학습보다 더 복잡한 패턴을 처리할 수 있는 신경망을 사용합니다. 인간의 두뇌에서 영감을 받은 신경망은 훈련 데이터의 차이점이나 패턴을 구별하기 위해 반드시 인간의 감독이나 개입이 필요하지 않습니다.

Data Bridge Market Research에 따르면, 인공 지능 시장은 2021년부터 2028년까지 예측 기간 동안 CAGR 26.1%의 시장 성장을 달성할 것으로 예상됩니다. Data Bridge Market Research의 보고서는 시장에 대한 광범위한 분석과 더 나은 통찰력을 제공하여 다음을 강조합니다. 예측 기간 동안 성장에 눈에 띄는 영향을 미칠 것으로 예상되는 요소입니다. 연구에 대해 더 자세히 알고 싶으시면 아래 링크를 따라가세요

https://www.databridgemarketresearch.com/ko/reports/global-artificial-intelligence-market

생성 AI란 무엇인가?

생성적 AI는 메시지가 표시될 때 원시 데이터를 가져와 통계적으로 가능한 출력을 생성할 수 있는 딥 러닝 모델을 의미합니다. 생성 모델은 수치 데이터를 분석하기 위해 통계 분야에서 수년간 사용되어 왔습니다. 그러나 딥러닝의 등장으로 이를 이미지, 음성 및 기타 복잡한 데이터 유형으로 확장하는 것이 가능해졌습니다. 이러한 교차 성과를 달성하기 위한 첫 번째 모델 클래스 중에는 2013년에 도입된 변형 자동 인코더(VAE)가 있습니다. VAE는 사실적인 이미지와 음성을 생성하는 데 널리 사용되는 최초의 딥 러닝 모델이었습니다.

생성적 AI는 기존 아티팩트로부터 학습하여 훈련 데이터의 특성을 반영하는 새롭고 현실적인 아티팩트를 생성할 수 있습니다. 이미지, 비디오, 음악, 음성, 텍스트, 소프트웨어 코드, 제품 디자인 등 다양하고 참신한 콘텐츠를 제작할 수 있습니다. Generative AI는 계속 발전하는 여러 기술을 사용합니다. 가장 중요한 것은 추가적인 미세 조정을 통해 다양한 작업에 사용할 수 있는 레이블이 지정되지 않은 광범위한 데이터 세트에 대해 훈련된 AI 기반 모델입니다. 이러한 훈련된 모델을 생성하려면 복잡한 수학과 엄청난 컴퓨팅 성능이 필요하지만 본질적으로 예측 알고리즘입니다.

AI 모델 유형:

모델

유형

이미지 생성

이미지를 이미지로 번역, 스케치를 사실적인 이미지로, 텍스트를 이미지로 번역, 텍스트를 음성으로 변환

오디오 생성

사운드트랙 편집, 오토튠

합성 데이터 생성

유사 이미지와 딥 페이크

비디오 생성

 

출처: 알텍스소프트

생성적 AI의 여정

생성적 AI의 위험은 상당하며 빠르게 변화하고 있습니다. ChatGPT 및 유사한 프로그램은 대중에게 제공되는 많은 데이터를 사용하여 교육됩니다. 플랫폼은 일반 데이터 보호 규정(GDPR) 및 기타 저작권법을 준수하기 위한 것이 아니기 때문에 회사에서 플랫폼을 사용하는 방법에 세심한 주의를 기울이는 것이 중요합니다.

사업주가 채택한 주요 전략

2022년 글로벌 AI 채택 지수에 따르면 제너레이티브 AI는 기업의 35%가 이를 통합하면서 비즈니스 세계에 진출했습니다. ChatGPT를 포함한 제너레이티브 AI 도구는 방대한 양의 데이터를 분석하여 기존 방식이 제공하지 못하는 독점적인 통찰력을 생성합니다. 방법은 종종 즉시 전달되지 않습니다. 비즈니스를 위한 생성적 AI는 콘텐츠 생성 자동화부터 공급망 최적화 및 고객 서비스 개선에 이르기까지 광범위한 영향을 미칩니다. 생성적 AI 도구는 기계 학습과 자연어 처리를 결합하여 기업이 정보에 입각한 결정을 내리고 운영을 최적화하며 수익을 증대할 수 있도록 지원합니다.

생성적 인공 지능과 확장 현실은 인간 경험을 복제하거나 대체하는 대신 인간 경험을 증대, 확대, 확장함으로써 시급한 사회적 과제와 비즈니스 문제를 해결하는 데 도움이 될 수 있는 강력한 도구입니다. 생성적 AI는 텍스트, 음성, 이미지, 음악, 비디오, 특히 코드를 "생성"할 수 있습니다. 이러한 기능이 누군가 자신의 정보 피드와 결합되어 언제, 무엇을, 어떻게 상호 작용할 것인지를 조정하는 데 사용되면 누군가가 작업을 쉽게 수행할 수 있고 소프트웨어의 접근성이 넓어집니다.

제너레이티브 AI는 새로운 솔루션을 생성하고, 절차를 자동화하고, 의사결정 능력을 향상시키는 능력을 통해 광범위한 분야의 산업을 변화시키고 빠른 속도로 비즈니스를 재편하고 있습니다. 원본 텍스트, 그래픽 및 기타 유형의 자료를 생성할 수 있는 인공 지능의 하위 집합입니다. 설문조사 결과에 따르면 생성 AI는 다양한 방식으로 기업에 적용할 수 있는 강력한 도구입니다. 앞으로 몇 년 안에 생성 AI는 기술이 발전함에 따라 조직에 훨씬 더 큰 영향을 미칠 가능성이 높습니다.

생성적 AI의 적용

인공 지능(AI)의 출현은 기업이 일상적인 워크플로우를 운영하고 관리하는 방식에 큰 영향을 미쳤습니다. 다양한 AI 애플리케이션과 도구의 출현으로 기업은 현명한 결정을 내리고 반복적인 작업을 자동화하여 운영을 더욱 효율적이고 효과적으로 만들 수 있게 되었습니다. 이메일 및 워드 프로세싱과 같은 전문 생산성 애플리케이션은 이제 생성 AI 기능의 최신 개발 덕분에 효율성과 정확성을 높이는 자동화를 통해 향상될 수 있습니다. Microsoft가 Teams 프리미엄 에디션에 GPT-3.5를 구현한 것은 생성 AI의 잠재력을 보여주는 주목할 만한 예시입니다. 섹션, 제목 및 사용자 정의 마커를 자동으로 생성함으로써 이 효과적인 도구는 회의 기록을 향상시킵니다. 언급된 내용도 강조 표시되어 대화에서 가장 중요한 부분을 더 쉽게 찾을 수 있습니다.

제품 설명, 홍보 자료, 전체 기사 등을 제작하는 등 고품질 콘텐츠를 제작하는 것은 기업 세계에서 가장 어렵고 시간이 많이 걸리는 작업 중 하나입니다. 이러한 경우 기업은 생성적 AI 기술을 비즈니스에 활용하여 제한된 시간 내에 허용 가능한 품질의 콘텐츠를 생성할 수 있습니다. 생성 AI 도구는 자연어 처리 및 기계 학습 알고리즘을 활용하여 기존 콘텐츠를 평가하고 특정 표준을 충족하는 새로운 고품질 콘텐츠를 만들 수 있습니다. 여기에는 어조, 스타일, 심지어 대상 고객과 같은 고려 사항이 포함될 수 있습니다.

고객 서비스는 ChatGPT와 같은 생성 AI 도구가 까다로운 비즈니스 문제를 해결할 수 있는 중요한 분야입니다. ChatGPT를 기반으로 하는 챗봇은 고객의 문의 사항에 대해 신속하고 정확한 답변을 제공하여 전반적인 고객 경험을 향상시킬 수 있습니다. 또한 고객의 구매 내역과 선호도를 바탕으로 고객에게 맞춤형 제안을 할 수도 있습니다.

예를 들어,

회사의 법적 운영을 지원하는 것은 가장 중요한 생성 AI 비즈니스 애플리케이션 중 하나입니다. 기업은 법률 부서에서 생성 AI 도구를 활용하여 상당한 이점을 얻을 수 있습니다. 법률 연구를 수행하고, 판례를 면밀히 조사하고, 법률 문서를 작성하는 능력을 통해 생성 AI는 법무팀이 보다 유능하고 능숙하게 운영할 수 있는 잠재력을 가지고 있습니다.

예를 들어,

ChatGPT와 같은 인공 지능 도구는 기업 HR 운영에 중요한 지원을 제공할 수 있는 잠재력을 가지고 있습니다. ChatGPT는 자연어 처리 및 머신러닝 기술을 통해 반복적인 HR 업무를 기계화하는 동시에 직원 문의에 정확하고 신속한 답변을 제공할 수 있습니다.

예를 들어, 기업은 기업용 생성 AI의 힘을 활용하여 가상 HR 보조자를 고안할 수 있습니다. 이 가상 비서는 직원들이 휴가 관리, 복리후생 관리, 조직에 신입 사원 소개 등의 작업을 수행하는 데 도움을 줄 수 있습니다. 또한 챗봇은 직원의 기술과 관심 사항에 따라 맞춤형 경력 개발 추천을 제공하여 직원 참여와 유지를 향상시킬 수 있습니다. 또한 생성 AI를 활용하여 온라인 입학 테스트에서 부정 행위 방지 조치를 취할 수도 있습니다.

비즈니스에서 생성적 AI 기술은 인간의 인식을 피할 수 있는 숨겨진 패턴과 추세를 밝혀 데이터 분석에 상당한 이점을 제공합니다. 이러한 통찰력을 드러내는 AI의 역량은 기업에 새로운 성장 영역을 식별하고 운영을 최적화하며 고객 만족도를 높일 수 있는 기회를 제공합니다.

생성적 AI의 감정 분석 기능은 데이터 분석에서 탁월한 사용 사례로 사용됩니다. ChatGPT와 같은 도구는 소셜 미디어 데이터를 분석하여 브랜드, 제품 또는 서비스에 대한 고객의 성향을 식별할 수 있습니다. 기업은 이 정보를 사용하여 비즈니스에서 생성적 AI의 이점을 활용할 수 있습니다. 그들은 이 데이터의 도움으로 마케팅 전략을 개선하고, 고객에 대한 심층적인 이해를 발전시키며, 고객 만족도를 높일 수 있습니다. 또한 생성 AI 도구는 방대한 양의 데이터를 분석하고 잠재적인 위험을 감지할 수 있는 잠재력을 가지고 있습니다. 이러한 분석 통찰력은 생성 AI를 사용하는 기업에 잠재적인 문제가 확대되기 전에 사전에 식별하고 해결할 수 있는 능력을 제공합니다. 비즈니스의 생성적 AI 기술은 고객 피드백과 행동을 분석하여 고객 이탈 위험이 높은 패턴을 식별할 수 있습니다. 이 기능을 통해 기업은 이러한 패턴을 사전에 해결할 수 있으며, 이를 통해 개인화된 제안 및 인센티브를 통해 고객을 유지할 수 있습니다.

많은 조직에서는 비즈니스, 특히 매출 향상을 위해 생성 AI를 사용합니다. 생성적 인공 지능(AI)은 매출을 증대하고 경쟁력을 유지하는 수단으로 비즈니스 세계에서 중요성이 커지고 있습니다. 이 기술의 특정 응용 프로그램 중 하나는 생성 언어 모델을 사용하여 고객의 개별 요구와 선호도에 맞는 개인화된 제품 설명을 만드는 것입니다. 고객 데이터와 행동 분석을 통해 생성 AI는 독특하고 설득력 있는 설명을 생성할 수 있습니다. 가격 최적화는 생성 AI 기술을 비즈니스에 효과적으로 활용할 수 있는 또 다른 방법입니다. 생성 모델은 시장 동향, 고객 행동, 경쟁사 가격을 분석하여 제품이나 서비스에 대한 최적의 가격을 생성할 수 있습니다. 이를 통해 기업은 고객에게 가치를 제공하면서 수익을 극대화할 수 있습니다.

또한 생성적 AI는 고객 세분화 및 타겟 마케팅 캠페인에 대한 지원을 원하는 기업의 비즈니스에 사용될 수 있습니다. 생성 모델은 고객 데이터를 면밀히 조사하여 패턴을 감지하고 특정 고객 부문에 관심을 끌 수 있는 타겟 캠페인을 만들 수 있습니다.

신제품 개발은 비즈니스를 위한 생성 AI의 또 다른 훌륭한 활용입니다. 혁신적인 제품을 개발하고 설계 프로세스를 가속화하는 것은 수많은 기업에게 복잡한 비즈니스 문제가 될 수 있습니다. 그럼에도 불구하고 이러한 장애물을 해결하기 위한 창의적인 방법론이 있으며 그 중 하나는 인공지능 기반 메커니즘을 활용하는 것입니다.

기업은 AI를 활용하여 방대한 양의 데이터를 신속하게 조사하고 특정 매개변수를 기반으로 최적화된 설계를 생성할 수 있습니다. 이를 통해 품질과 성능을 보장하면서도 제품 개발 기간과 비용을 크게 줄일 수 있습니다.

예를 들어,

비즈니스 부문에서 사기 탐지라는 복잡한 문제를 해결하기 위해 기업은 AI 기반 도구를 사용할 수 있습니다. 이러한 도구에는 다양한 유형의 사기 활동을 적극적으로 탐지하고 저지하는 기능이 있습니다. 비즈니스에 생성 AI를 사용하는 유리한 응용 프로그램 중 하나는 위조 ID 문서 식별 분야입니다. 이러한 도구는 여권, 운전면허증 등과 같은 신분증을 신속하게 스캔하고 인증하여 사기 행위를 방지합니다.

또한 기업은 AI 기반 도구를 활용하여 결제 사기를 식별할 수 있습니다. 이러한 도구는 결제 데이터를 면밀히 조사하고 의심스러운 거래나 패턴을 인식하여 기업이 적절한 조치를 취하고 사기 행위를 방지할 수 있도록 지원합니다.

AI 기반 사기 탐지 도구를 사용할 수 있는 또 다른 영역은 가짜 계정 확인입니다. 이러한 도구는 사용자 행동과 데이터를 면밀히 조사하여 가짜 계정을 찾아내고 해당 계정이 플랫폼에 액세스하거나 사기 거래를 시작하지 못하도록 차단합니다.

생성적 AI가 직면한 과제

생성적 인공 지능(AI)은 널리 대중화되었지만 기업이 AI를 채택하는 데는 어느 정도 윤리적 위험이 따릅니다. 생성 AI가 주류로 자리잡으면서 기업은 이 기술을 윤리적으로 사용하고 잠재적인 피해를 완화할 책임이 있습니다. 다음은 조직이 비즈니스에 생성 AI를 사용할 때 직면할 수 있는 몇 가지 과제입니다.

결론

ChatGPT와 같이 텍스트를 생성하는 챗봇이 많은 관심을 받았지만 생성 AI는 그래픽, 비디오, 오디오, 컴퓨터 코드와 같은 다른 유형의 자료도 생성할 수 있습니다. 또한 조직을 위한 새로운 자료를 분류, 수정, 요약하고 문의에 응답하고 생성하는 기능도 있습니다. 비즈니스 기능과 워크플로 전반에 걸쳐 활동 수준에서 작업이 수행되는 방식을 변경함으로써 이러한 각 작업은 가치를 제공할 수 있는 잠재력을 갖습니다. 기술이 발전하고 성숙해짐에 따라 이러한 종류의 생성 AI는 점점 더 기업 워크플로에 통합되어 작업을 자동화하고 특정 작업을 직접 수행할 수 있습니다. 그러나 생성적 AI는 불완전한 훈련 데이터나 모델을 개발하는 엔지니어의 결정으로 인해 모델이 알고리즘 편향을 생성할 수 있으므로 다양한 위험을 초래할 수 있습니다. 또한 모델은 동일한 프롬프트에 대해 서로 다른 답변을 생성할 수 있으므로 출력의 정확성과 신뢰성을 평가하는 사용자의 능력을 방해할 수 있습니다.


DBMR은 전 세계적으로 Fortune 500대 기업의 40% 이상에 서비스를 제공했으며 5000개 이상의 고객 네트워크를 보유하고 있습니다. 우리 팀은 귀하의 질문에 기꺼이 도움을 드릴 것입니다. 방문하다, https://www.databridgemarketresearch.com/ko/contact

문의하기

더 알아보기

영향 및 조치에 대한 추가 통찰력