Visão geral
A inteligência artificial que pode criar conteúdo como áudio, texto, código, vídeo, fotos e outros dados é conhecida como IA generativa. A IA generativa emprega algoritmos de aprendizado de máquina para produzir resultados com base em um conjunto de dados de treinamento, em oposição aos algoritmos de IA padrão, que podem ser usados para encontrar padrões em um conjunto de dados de treinamento e fazer previsões. Os resultados da IA generativa podem estar na mesma mídia que o prompt (texto para texto) ou em uma mídia diferente (texto para imagem ou imagem para vídeo). Os aplicativos generativos de IA ChatGPT, Bard, DALL-E, Midjourney e DeepMind são alguns exemplos bem conhecidos. Especificamente, os modelos generativos de IA são alimentados com grandes quantidades de conteúdo existente para treinar os modelos para produzir novos conteúdos. Eles aprendem a identificar padrões subjacentes no conjunto de dados com base em uma distribuição de probabilidade e, quando solicitados, criam padrões semelhantes (ou resultados baseados nesses padrões).
Por exemplo,
Além disso, parte da categoria abrangente de aprendizado de máquina chamada aprendizagem profunda ou IA generativa usa uma rede neural que permite lidar com padrões mais complexos do que o aprendizado de máquina tradicional. Inspiradas no cérebro humano, as redes neurais não requerem necessariamente supervisão ou intervenção humana para distinguir diferenças ou padrões nos dados de treinamento.
De acordo com a Data Bridge Market Research, espera-se que o mercado de inteligência artificial obtenha um crescimento de mercado de CAGR 26,1% no período de previsão de 2021 a 2028. O relatório da Data Bridge Market Research oferece ampla análise e melhores insights sobre o mercado, destacando o fatores que deverão ter uma influência proeminente em seu crescimento durante o período de previsão. Para saber mais sobre o estudo, por favor siga o link abaixo
https://www.databridgemarketresearch.com/pt/reports/global-artificial-intelligence-market
O que é IA generativa?
IA generativa refere-se a modelos de aprendizagem profunda que podem usar dados brutos para gerar resultados estatisticamente prováveis quando solicitado. Modelos generativos têm sido usados há anos em estatística para analisar dados numéricos. A ascensão da aprendizagem profunda, no entanto, tornou possível estendê-la a imagens, fala e outros tipos de dados complexos. Entre a primeira classe de modelos a alcançar esse feito cruzado estavam os codificadores automáticos de variação, ou VAEs, introduzidos em 2013. Os VAEs foram os primeiros modelos de aprendizagem profunda a serem amplamente utilizados para gerar imagens e fala realistas.
A IA generativa pode aprender com artefatos existentes para gerar artefatos novos e realistas que reflitam as características dos dados de treinamento. Ele pode produzir uma variedade de conteúdos novos, como imagens, vídeo, música, fala, texto, código de software e designs de produtos. A IA generativa utiliza diversas técnicas que continuam a evoluir. Em primeiro lugar estão os modelos básicos de IA, que são treinados em um amplo conjunto de dados não rotulados que podem ser usados para diferentes tarefas, com ajustes adicionais. Matemática complexa e enorme poder computacional são necessários para criar esses modelos treinados, mas eles são, em essência, algoritmos de previsão.
Tipos de modelos de IA:
Modelo
|
TIPO
|
Geração de imagem
|
Tradução de imagem para imagem, Esboços para imagens realistas, Tradução de texto para imagem, Conversão de texto para fala
|
Geração de áudio
|
Edição de trilha sonora, ajuste automático
|
Geração de dados sintéticos
|
Pseudoimagens e deep fakes
|
Geração de vídeo
|
|
Fonte: Altexsoft
A jornada da IA generativa
Os riscos da IA generativa são substanciais e mudam rapidamente. ChatGPT e programas similares são treinados usando muitos dados disponibilizados ao público. É essencial prestar muita atenção à forma como as suas empresas utilizam as plataformas, porque elas não se destinam a cumprir o regulamento geral de proteção de dados (RGPD) e outras leis de direitos de autor.
Principais estratégias adotadas pelos proprietários de empresas
A IA generativa entrou no mundo dos negócios, com notáveis 35% das empresas a incorporando, de acordo com o índice global de adoção de IA de 2022. As ferramentas de IA generativa, incluindo ChatGPT, analisam grandes quantidades de dados para produzir insights exclusivos que os tradicionais os métodos muitas vezes não são entregues prontamente. A IA generativa para negócios tem um impacto de longo alcance, que vai desde a automação da criação de conteúdo até a otimização da cadeia de suprimentos e melhor atendimento ao cliente. Ao combinar a aprendizagem automática e o processamento de linguagem natural, as ferramentas generativas de IA permitem que as empresas tomem decisões bem informadas, otimizem as suas operações e aumentem os seus lucros.
A inteligência artificial generativa e a realidade alargada são ferramentas poderosas que podem ajudar a enfrentar desafios sociais e problemas empresariais prementes, aumentando, expandindo e alargando a experiência humana, em vez de a replicar ou substituir. A IA generativa pode “gerar” texto, fala, imagens, música, vídeo e especialmente código. Quando essa capacidade é combinada com um feed de informações de alguém, usado para personalizar quando, o quê e como de uma interação, a facilidade com que alguém pode realizar as tarefas e a acessibilidade cada vez maior do software aumentam dramaticamente.
A IA generativa está a transformar indústrias numa vasta gama de setores e a remodelar as empresas a um ritmo rápido, com a sua capacidade de gerar soluções inovadoras, automatizar procedimentos e melhorar as capacidades de tomada de decisão. É um subconjunto da inteligência artificial que pode produzir textos, gráficos e outros tipos de materiais originais. De acordo com os resultados da pesquisa, a IA generativa é uma ferramenta potente que pode ser aplicada às empresas de diversas maneiras. Nos próximos anos, a IA generativa provavelmente terá um impacto ainda maior nas organizações à medida que a tecnologia avança.
Aplicação de IA Generativa
O advento da inteligência artificial (IA) impactou significativamente a forma como as empresas operam e gerenciam os fluxos de trabalho diários. O surgimento de diversas aplicações e ferramentas de IA permitiu que as empresas tomassem decisões mais sábias e automatizassem tarefas repetitivas, tornando as operações mais eficientes e eficazes. Aplicativos de produtividade profissional, como e-mail e processamento de texto, agora podem ser aprimorados com automação para aumentar a eficiência e a precisão, graças aos desenvolvimentos mais recentes em recursos de IA generativa. A implementação do GPT-3.5 pela Microsoft na edição premium do Teams é uma ilustração notável da potência da IA generativa. Ao criar automaticamente seções, títulos e marcadores personalizados, esta ferramenta eficaz melhora os registros das reuniões. Até as menções podem ser destacadas, tornando mais fácil localizar as passagens mais importantes da conversa.
Criação de conteúdo
Criar conteúdo de alta qualidade é uma das tarefas mais difíceis e demoradas no mundo corporativo, seja na produção de descrições de produtos, materiais promocionais ou até mesmo artigos inteiros. Nesses casos, as empresas podem aproveitar a tecnologia generativa de IA nos negócios para gerar conteúdo de qualidade aceitável em um período limitado de tempo. Ao utilizar processamento de linguagem natural e algoritmos de aprendizado de máquina, as ferramentas generativas de IA podem avaliar o conteúdo existente e criar conteúdo novo e de alta qualidade que atenda a padrões específicos. Isso pode envolver considerações como tom, estilo e até mesmo públicos-alvo.
Atendimento ao Cliente
O atendimento ao cliente é um campo vital no qual ferramentas generativas de IA como o ChatGPT podem resolver problemas de negócios desafiadores. Os chatbots desenvolvidos pela ChatGPT podem fornecer aos clientes respostas rápidas e precisas às suas dúvidas, melhorando a experiência geral do cliente. Eles também podem fazer sugestões personalizadas aos clientes com base em seu histórico de compras e preferências.
Por exemplo,
Operação Jurídica
Auxiliar nas operações jurídicas de uma empresa é uma das aplicações de negócios generativas de IA mais importantes. As empresas podem obter vantagens consideráveis da utilização de ferramentas generativas de IA nos seus departamentos jurídicos. Por meio da capacidade de realizar pesquisas jurídicas, examinar a jurisprudência e formular documentos jurídicos, a IA generativa tem o potencial de permitir que as equipes jurídicas operem de forma mais competente e eficiente.
Por exemplo,
Lidando com processos de RH
Instrumentos de inteligência artificial como o ChatGPT têm o potencial de oferecer suporte significativo às operações corporativas de RH. ChatGPT, por meio de processamento de linguagem natural e técnicas de aprendizado de máquina, pode mecanizar tarefas repetitivas de RH e, ao mesmo tempo, fornecer respostas exatas e rápidas às dúvidas da equipe.
Por exemplo, as empresas podem aproveitar o poder da IA generativa para as empresas criarem um assistente virtual de RH. Este assistente virtual pode ajudar os funcionários em tarefas como gerenciamento de licenças, administração de benefícios e introdução de novos contratados na organização. Além disso, o chatbot pode oferecer recomendações personalizadas de desenvolvimento de carreira aos trabalhadores com base nas suas competências e interesses, melhorando assim a participação e retenção dos funcionários. Além disso, a IA generativa pode ser utilizada para instituir medidas de prevenção de trapaça em testes de admissão online.
Análise de dados
A tecnologia de IA generativa nos negócios oferece uma vantagem significativa na análise de dados, descobrindo padrões e tendências ocultos que podem escapar à percepção humana. A capacidade da IA de revelar tais insights apresenta às empresas a oportunidade de identificar novas áreas de crescimento, otimizar operações e aumentar a satisfação dos seus clientes.
A capacidade de análise de sentimento da IA generativa serve como um excelente caso de uso em análise de dados. Ferramentas como o ChatGPT podem analisar dados de mídia social para identificar a disposição dos clientes em relação a uma marca, produto ou serviço. As empresas podem aproveitar os benefícios da IA generativa nos negócios usando essas informações. Eles podem refinar suas estratégias de marketing, desenvolver uma compreensão profunda de seus clientes e aumentar o contentamento do cliente com a ajuda desses dados. Além disso, as ferramentas generativas de IA têm o potencial de analisar grandes quantidades de dados e detetar riscos potenciais. Esses insights analíticos oferecem às empresas que usam IA generativa a capacidade de identificar e resolver proativamente problemas potenciais antes que eles se agravem. Ao analisar o feedback e o comportamento dos clientes, a tecnologia generativa de IA nos negócios pode identificar padrões que significam um alto risco de rotatividade de clientes. Esta funcionalidade permite que as empresas abordem proativamente esses padrões, retendo assim os clientes através de ofertas e incentivos personalizados.
Aumente as vendas e o objetivo em uma organização
Muitas organizações usam IA generativa para negócios, principalmente para aumentar suas vendas. A inteligência artificial generativa (IA) está ganhando importância no mundo dos negócios como meio de aumentar as vendas e permanecer competitivo. Uma aplicação específica desta tecnologia envolve o uso de modelos de linguagem generativa para criar descrições personalizadas de produtos que atendam às necessidades e preferências individuais dos clientes. Através da análise dos dados e do comportamento do cliente, a IA generativa é capaz de gerar descrições únicas e atraentes. A otimização de preços é outra maneira pela qual a tecnologia generativa de IA nos negócios pode ser bem utilizada. Ao analisar tendências de mercado, comportamento do cliente e preços dos concorrentes, os modelos generativos podem gerar preços ideais para produtos ou serviços. Isso permite que as empresas maximizem a receita e, ao mesmo tempo, forneçam valor aos seus clientes.
Além disso, a IA generativa pode ser usada para negócios por empresas que desejam assistência com segmentação de clientes e campanhas de marketing direcionadas. Ao examinar minuciosamente os dados dos clientes, os modelos generativos podem detectar padrões e criar campanhas direcionadas que atrairão segmentos específicos de clientes.
Desenvolvimento de novos produtos
O desenvolvimento de novos produtos é outro grande uso da IA generativa para os negócios. O desenvolvimento de produtos inovadores e a aceleração do processo de design podem ser dilemas de negócios complexos para inúmeras empresas. No entanto, existem metodologias criativas para enfrentar estes obstáculos, e uma delas é através da utilização de mecanismos alimentados por inteligência artificial.
Ao explorar a IA, as empresas podem examinar rapidamente grandes quantidades de dados e produzir designs otimizados com base em parâmetros específicos. Isso pode reduzir significativamente a duração e os custos do desenvolvimento do produto, garantindo ao mesmo tempo a qualidade e o desempenho.
Por exemplo,
Detecção de fraude
Para enfrentar o intrincado problema da detecção de fraudes no setor empresarial, as empresas podem empregar ferramentas baseadas em IA. Essas ferramentas têm a capacidade de detectar e impedir ativamente vários tipos de atividades fraudulentas. Uma aplicação vantajosa do uso de IA generativa para negócios é na área de identificação de documentos de identidade falsificados. Essas ferramentas digitalizam e autenticam rapidamente documentos de identidade, como passaportes, carteiras de motorista e muito mais, para evitar atividades fraudulentas.
Além disso, as empresas podem utilizar ferramentas baseadas em IA para identificar fraudes de pagamento. Estas ferramentas examinam minuciosamente os dados de pagamento e reconhecem transações ou padrões duvidosos, capacitando as empresas a tomar as medidas adequadas e a prevenir atividades fraudulentas.
Outra área onde as ferramentas de detecção de fraude baseadas em IA podem ser úteis é na verificação de contas falsas. Essas ferramentas examinam o comportamento e os dados do usuário para detectar contas falsas e impedi-los de acessar a plataforma ou iniciar transações fraudulentas.
Desafios enfrentados pela IA generativa
A inteligência artificial generativa (IA) tornou-se amplamente popular, mas a sua adoção pelas empresas acarreta um certo grau de risco ético. Com a IA generativa se tornando popular, as empresas têm a responsabilidade de garantir que estão usando essa tecnologia de forma ética e mitigando possíveis danos. Abaixo estão alguns desafios que uma organização pode enfrentar ao usar IA generativa em seus negócios.
Conclusão
Embora os chatbots que geram texto, como o ChatGPT, tenham chamado muita atenção, a IA generativa também pode produzir outros tipos de material, como gráficos, vídeo, áudio e código de computador. Além disso, tem a capacidade de classificar, modificar, resumir, responder a consultas e criar novos materiais para organizações. Ao alterar a forma como o trabalho é realizado no nível da atividade nas funções de negócios e nos fluxos de trabalho, cada uma dessas ações tem o potencial de agregar valor. À medida que a tecnologia evolui e amadurece, estes tipos de IA generativa podem ser cada vez mais integrados nos fluxos de trabalho empresariais para automatizar tarefas e executar ações específicas diretamente. No entanto, a IA generativa pode representar vários riscos, pois os modelos podem gerar distorções algorítmicas devido a dados de treinamento imperfeitos ou a decisões tomadas pelos engenheiros que desenvolvem os modelos. Além disso, os modelos podem produzir respostas diferentes às mesmas solicitações, impedindo a capacidade do utilizador de avaliar a precisão e a fiabilidade dos resultados.
A DBMR atendeu mais de 40% das empresas Fortune 500 internacionalmente e possui uma rede de mais de 5.000 clientes. Nossa equipe terá prazer em ajudá-lo com suas dúvidas. Visita, https://www.databridgemarketresearch.com/pt/contact
Contate-nosSegurança cibernética: protegendo os dados do usuário on-line
Segurança cibernética: protegendo os dados do usuário on-line
Segurança cibernética: protegendo os dados do usuário on-line
Segurança cibernética: protegendo os dados do usuário on-line
Segurança cibernética: protegendo os dados do usuário on-line