Descripción general

La inteligencia artificial que puede crear contenidos como audio, texto, código, vídeo, fotografías y otros datos se conoce como IA generativa. La IA generativa emplea algoritmos de aprendizaje automático para producir resultados basados ​​en un conjunto de datos de entrenamiento, a diferencia de los algoritmos de IA estándar, que pueden usarse para encontrar patrones en un conjunto de datos de entrenamiento y hacer predicciones. Los resultados de la IA generativa pueden estar en el mismo medio que el mensaje (texto a texto) o en un medio diferente (texto a imagen o imagen a video). Las aplicaciones de IA generativa ChatGPT, Bard, DALL-E, Midjourney y DeepMind son algunos ejemplos bien conocidos. Específicamente, los modelos de IA generativa reciben grandes cantidades de contenido existente para entrenarlos y producir contenido nuevo. Aprenden a identificar patrones subyacentes en el conjunto de datos basándose en una distribución de probabilidad y, cuando se les da una indicación, crean patrones similares (o resultados basados ​​en estos patrones).

The Role of Generative AI in Transforming Business

Por ejemplo,

Además, parte de la categoría general de aprendizaje automático llamada aprendizaje profundo o IA generativa utiliza una red neuronal que le permite manejar patrones más complejos que el aprendizaje automático tradicional. Inspiradas en el cerebro humano, las redes neuronales no necesariamente requieren supervisión o intervención humana para distinguir diferencias o patrones en los datos de entrenamiento.

Según Data Bridge Market Research, se espera que el mercado de inteligencia artificial obtenga un crecimiento de mercado de CAGR del 26,1% en el período de pronóstico de 2021 a 2028. El informe de Data Bridge Market Research ofrece un análisis extenso y una mejor visión del mercado, destacando la factores que se espera que tengan una influencia destacada en su crecimiento durante el período de pronóstico. Para saber más sobre el estudio, siga el siguiente enlace.

https://www.databridgemarketresearch.com/es/reports/global-artificial-intelligence-market

¿Qué es la IA generativa?

La IA generativa se refiere a modelos de aprendizaje profundo que pueden tomar datos sin procesar para generar resultados estadísticamente probables cuando se les solicita. Los modelos generativos se han utilizado durante años en estadística para analizar datos numéricos. Sin embargo, el auge del aprendizaje profundo hizo posible extenderlo a imágenes, voz y otros tipos de datos complejos. Entre la primera clase de modelos que lograron esta hazaña cruzada se encontraban los codificadores automáticos de variación, o VAE, introducidos en 2013. Los VAE fueron los primeros modelos de aprendizaje profundo que se utilizaron ampliamente para generar imágenes y voz realistas.

La IA generativa puede aprender de los artefactos existentes para generar artefactos nuevos y realistas que reflejen las características de los datos de entrenamiento. Puede producir una variedad de contenidos novedosos, como imágenes, vídeos, música, voz, texto, código de software y diseños de productos. La IA generativa utiliza varias técnicas que continúan evolucionando. Los más importantes son los modelos básicos de IA, que se entrenan en un amplio conjunto de datos sin etiquetar que se pueden utilizar para diferentes tareas, con ajustes adicionales. Se requieren matemáticas complejas y una enorme potencia informática para crear estos modelos entrenados, pero son, en esencia, algoritmos de predicción.

Tipos de modelos de IA:

Modelo

TIPO

Generación de imágenes

Traducción de imagen a imagen, De bocetos a imágenes realistas, Traducción de texto a imagen, Texto a voz

Generación de audio

Edición de banda sonora, sintonización automática

Generación de datos sintéticos.

Pseudoimágenes y deep fakes

Generación de vídeo

 

Fuente: Altexsoft

El viaje de la IA generativa

Los riesgos de la IA generativa son sustanciales y cambian rápidamente. ChatGPT y programas similares se entrenan utilizando una gran cantidad de datos que se ponen a disposición del público. Es esencial prestar mucha atención a cómo sus empresas utilizan las plataformas porque no están destinadas a cumplir con el Reglamento general de protección de datos (GDPR) y otras leyes de derechos de autor.

Estrategias clave adoptadas por los propietarios de empresas

La IA generativa se ha abierto camino en el mundo empresarial, y un notable 35% de las empresas la han incorporado, según el índice global de adopción de IA de 2022. Las herramientas de IA generativa, incluido ChatGPT, analizan grandes cantidades de datos para producir conocimientos exclusivos que los tradicionales. Los métodos a menudo no funcionan con prontitud. La IA generativa para empresas tiene un impacto de gran alcance, que va desde la automatización de la creación de contenido hasta la optimización de la cadena de suministro y la mejora del servicio al cliente. Al combinar el aprendizaje automático y el procesamiento del lenguaje natural, las herramientas de IA generativa permiten a las empresas tomar decisiones bien informadas, optimizar sus operaciones y aumentar sus ganancias.

La inteligencia artificial generativa y la realidad extendida son herramientas poderosas que pueden ayudar a abordar desafíos sociales y problemas comerciales apremiantes al aumentar, expandir y extender la experiencia humana en lugar de replicarla o reemplazarla. La IA generativa puede “generar” texto, voz, imágenes, música, vídeo y, especialmente, código. Cuando esa capacidad se combina con una fuente de información propia de alguien, utilizada para personalizar cuándo, qué y cómo de una interacción, entonces la facilidad con la que alguien puede hacer las cosas y la accesibilidad cada vez mayor del software aumentan dramáticamente.

La IA generativa está transformando industrias en una amplia gama de sectores y remodelando negocios a un ritmo rápido, con su capacidad para generar soluciones novedosas, automatizar procedimientos y mejorar las capacidades de toma de decisiones. Es un subconjunto de inteligencia artificial que puede producir textos, gráficos y otros tipos de material originales. Según los resultados de la encuesta, la IA generativa es una herramienta potente que se puede aplicar a las empresas de diversas formas. En los próximos años, la IA generativa probablemente tendrá un impacto aún mayor en las organizaciones a medida que avance la tecnología.

Aplicación de la IA generativa

La llegada de la inteligencia artificial (IA) ha tenido un impacto significativo en la forma en que las empresas operan y gestionan los flujos de trabajo diarios. La aparición de diversas aplicaciones y herramientas de IA ha permitido a las empresas tomar decisiones más acertadas y automatizar tareas repetitivas, haciendo que las operaciones sean más eficientes y efectivas. Las aplicaciones de productividad profesional, como el correo electrónico y el procesamiento de textos, ahora se pueden mejorar con la automatización para aumentar la eficiencia y la precisión gracias a los desarrollos más recientes en capacidades de IA generativa. La implementación de GPT-3.5 por parte de Microsoft en la edición premium de Teams es un ejemplo notable de la potencia de la IA generativa. Al crear automáticamente secciones, títulos y marcadores personalizados, esta eficaz herramienta mejora los registros de las reuniones. Incluso las menciones pueden resaltarse, lo que le facilitará localizar los pasajes más importantes de la conversación.

Crear contenido de alta calidad es una de las tareas más desalentadoras y que consumen más tiempo en el mundo empresarial, ya sea produciendo descripciones de productos, materiales promocionales o incluso artículos completos. En tales casos, las empresas pueden aprovechar la tecnología de IA generativa en los negocios para generar contenido de calidad aceptable en un período de tiempo limitado. Al utilizar algoritmos de procesamiento de lenguaje natural y aprendizaje automático, las herramientas de inteligencia artificial generativa pueden evaluar el contenido existente y crear contenido nuevo de alta calidad que cumpla con estándares específicos. Esto puede implicar consideraciones como el tono, el estilo e incluso el público objetivo.

El servicio al cliente es un campo vital en el que las herramientas de inteligencia artificial generativa como ChatGPT pueden abordar problemas comerciales desafiantes. Los chatbots impulsados ​​por ChatGPT pueden brindar a los clientes respuestas rápidas y precisas a sus consultas, mejorando la experiencia general del cliente. También pueden hacer sugerencias personalizadas a los clientes según su historial de compras y sus preferencias.

Por ejemplo,

Ayudar en las operaciones legales de una empresa es una de las aplicaciones comerciales de IA generativa más importantes. Las corporaciones pueden obtener ventajas considerables del uso de herramientas de inteligencia artificial generativa en sus departamentos legales. Mediante la capacidad de realizar investigaciones jurídicas, examinar la jurisprudencia y formular documentos legales, la IA generativa tiene el potencial de permitir que los equipos legales operen de manera más capaz y competente.

Por ejemplo,

Los instrumentos de inteligencia artificial como ChatGPT tienen el potencial de ofrecer un apoyo significativo para las operaciones corporativas de recursos humanos. ChatGPT, a través del procesamiento del lenguaje natural y técnicas de aprendizaje automático, puede mecanizar tareas repetitivas de recursos humanos y al mismo tiempo brindar respuestas exactas y rápidas a las consultas del personal.

Por ejemplo, las empresas pueden aprovechar el poder de la IA generativa para diseñar un asistente virtual de recursos humanos. Este asistente virtual puede ayudar a los empleados con tareas como gestionar las licencias, administrar los beneficios y presentar nuevos empleados a la organización. Además, el chatbot puede ofrecer recomendaciones de desarrollo profesional personalizadas a los trabajadores en función de sus habilidades e intereses, mejorando así la participación y retención de los empleados. Además, la IA generativa se puede utilizar para implementar medidas de prevención de trampas en las pruebas de acceso en línea.

La tecnología de IA generativa en los negocios ofrece una ventaja significativa en el análisis de datos al descubrir patrones y tendencias ocultos que pueden eludir la percepción humana. La capacidad de la IA para revelar estos conocimientos ofrece a las empresas la oportunidad de identificar nuevas áreas de crecimiento, optimizar las operaciones y aumentar la satisfacción de sus clientes.

La capacidad de análisis de sentimientos de la IA generativa constituye un excelente caso de uso en el análisis de datos. Herramientas como ChatGPT pueden analizar datos de redes sociales para identificar la disposición de los clientes hacia una marca, producto o servicio. Las empresas pueden aprovechar los beneficios de la IA generativa en los negocios utilizando esta información. Pueden perfeccionar sus estrategias de marketing, desarrollar una comprensión profunda de sus clientes y mejorar la satisfacción del cliente con la ayuda de estos datos. Además, las herramientas de IA generativa tienen el potencial de analizar grandes cantidades de datos y detectar riesgos potenciales. Estos conocimientos analíticos ofrecen a las empresas que utilizan IA generativa la capacidad de identificar y abordar de forma proactiva problemas potenciales antes de que se agraven. Al analizar los comentarios y el comportamiento de los clientes, la tecnología de IA generativa en las empresas puede identificar patrones que indican un alto riesgo de pérdida de clientes. Esta funcionalidad permite a las empresas abordar dichos patrones de manera proactiva, reteniendo así a los clientes a través de ofertas e incentivos personalizados.

Muchas organizaciones utilizan la IA generativa para sus negocios, particularmente para mejorar sus ventas. La inteligencia artificial generativa (IA) está ganando importancia en el mundo empresarial como medio para aumentar las ventas y mantenerse competitivo. Una aplicación específica de esta tecnología implica el uso de modelos de lenguaje generativo para crear descripciones de productos personalizadas que satisfagan las necesidades y preferencias individuales de los clientes. A través del análisis de los datos y el comportamiento de los clientes, la IA generativa es capaz de generar descripciones únicas y convincentes. La optimización de precios es otra forma en la que se puede aprovechar la tecnología de IA generativa en las empresas. Al analizar las tendencias del mercado, el comportamiento de los clientes y los precios de la competencia, los modelos generativos pueden generar precios óptimos para productos o servicios. Esto permite a las empresas maximizar los ingresos y al mismo tiempo ofrecer valor a sus clientes.

Además, las empresas que desean ayuda con la segmentación de clientes y campañas de marketing específicas pueden utilizar la IA generativa para sus negocios. Al examinar los datos de los clientes, los modelos generativos pueden detectar patrones y crear campañas específicas que atraerán a segmentos de clientes específicos.

El desarrollo de nuevos productos es otro gran uso de la IA generativa para las empresas. Desarrollar productos innovadores y acelerar el proceso de diseño pueden ser complejos dilemas comerciales para numerosas corporaciones. Sin embargo, existen metodologías creativas para abordar estos obstáculos, y una de ellas es mediante la utilización de mecanismos impulsados ​​por inteligencia artificial.

Al explotar la IA, las empresas pueden examinar rápidamente grandes cantidades de datos y producir diseños optimizados basados ​​en parámetros específicos. Esto puede reducir significativamente la duración y los gastos del desarrollo del producto y al mismo tiempo garantizar la calidad y el rendimiento.

Por ejemplo,

Para abordar el complejo problema de la detección de fraude en el sector empresarial, las empresas pueden emplear herramientas impulsadas por IA. Estas herramientas tienen la capacidad de detectar y frustrar activamente varios tipos de actividades fraudulentas. Una aplicación ventajosa del uso de IA generativa para las empresas es el ámbito de la identificación de documentos de identidad falsificados. Estas herramientas escanean y autentican rápidamente documentos de identidad como pasaportes, licencias de conducir y más para evitar actividades fraudulentas.

Además, las empresas pueden utilizar herramientas basadas en inteligencia artificial para identificar fraudes en los pagos. Estas herramientas analizan los datos de pago y reconocen transacciones o patrones dudosos, lo que permite a las empresas tomar las medidas adecuadas y prevenir actividades fraudulentas.

Otra área en la que las herramientas de detección de fraude basadas en inteligencia artificial pueden resultar útiles es la verificación de cuentas falsas. Estas herramientas examinan el comportamiento y los datos de los usuarios para detectar cuentas falsas y evitar que accedan a la plataforma o inicien transacciones fraudulentas.

Desafíos que enfrenta la IA generativa

La inteligencia artificial (IA) generativa se ha vuelto muy popular, pero su adopción por parte de las empresas conlleva cierto grado de riesgo ético. Con la incorporación de la IA generativa a la corriente principal, las empresas tienen la responsabilidad de garantizar que utilizan esta tecnología de forma ética y mitigan posibles daños. A continuación se detallan los pocos desafíos que una organización podría enfrentar al usar IA generativa en sus negocios:

Conclusión

Si bien los chatbots que generan texto, como ChatGPT, han llamado mucho la atención, la IA generativa también puede producir otros tipos de material, como gráficos, vídeo, audio y código informático. Además, tiene la capacidad de clasificar, modificar, resumir, responder consultas y crear nuevo material para las organizaciones. Al alterar la forma en que se realiza el trabajo a nivel de actividad en todas las funciones y flujos de trabajo comerciales, cada una de estas acciones tiene el potencial de proporcionar valor. A medida que la tecnología evoluciona y madura, estos tipos de IA generativa pueden integrarse cada vez más en los flujos de trabajo empresariales para automatizar tareas y realizar directamente acciones específicas. Sin embargo, la IA generativa puede plantear diversos riesgos, ya que los modelos pueden generar sesgos algorítmicos debido a datos de entrenamiento imperfectos o decisiones tomadas por los ingenieros que desarrollan los modelos. Además, los modelos pueden producir diferentes respuestas a las mismas preguntas, impidiendo la capacidad del usuario para evaluar la precisión y confiabilidad de los resultados.


DBMR ha prestado servicios a más del 40% de las empresas Fortune 500 a nivel internacional y tiene una red de más de 5000 clientes. Nuestro equipo estará encantado de ayudarle con sus consultas. Visita, https://www.databridgemarketresearch.com/es/contact

Contáctenos

APRENDE MÁS

Información adicional sobre el impacto y las acciones