개요
더 나은 상품과 서비스를 만들기 위해 특히 디지털 마케팅 부문에서 AI 기술과 접근 방식이 사용됩니다. 또한 대상 고객에게 보다 쉽게 접근하고 정교한 마케팅 선택을 하는 데 도움이 됩니다. AI는 디지털 마케팅 담당자가 다양한 전략을 수립하고, 광고를 최적화하고, 소비자 관계를 관리하고, 점진적으로 투자 수익을 높이는 데 도움이 됩니다. 내장된 수많은 기계 학습 도구는 일상적인 시스템 프로세스의 관찰을 통해 의사 결정과 지속적인 학습을 제어합니다.
디지털 마케팅의 데이터 분석과 같은 기술적 부분은 인공 지능 분야의 향후 발전을 통해 얻을 수 있습니다. AI는 어려운 마케팅 문제를 단순화하고, 지루하고 반복적인 작업을 자동화하며, 사용자 생산성을 높이는 새로운 디지털 생태계 트렌드를 구현하는 데 도움이 될 것입니다. Google Cloud Platform과 인공 지능을 갖춘 음성 도우미는 마케팅 담당자가 현재 일상적인 프로모션 캠페인에 사용하는 도구 중 두 가지에 불과합니다. 이는 데이터를 분석하고, 오래된 입력과 새로운 입력을 모두 처리하고, 패턴을 찾고, 시스템이 과거 또는 반복된 경험으로부터 학습하도록 돕습니다. 수익을 극대화하기 위해 마케팅 부문과 소매업에서 AI를 사용하면 몇 가지 장점이 있습니다. 소비자의 즉각적인 요구에 추가적인 편의성을 더해 대응하는 온라인 쇼핑은 전통적인 쇼핑 방식을 대체하고 인공지능 덕분에 점점 커지는 디지털 혁명의 중요한 구성 요소가 되었습니다. 현재 상황에 따라 우리는 AI의 추가적인 발전이 마케팅 산업의 미래를 획기적으로 자동화하고 변화시킬 수 있다고 믿습니다. 인공 지능은 마케팅 담당자가 인적 오류 가능성을 낮추면서 더 나은 결과를 얻기 위한 가장 효과적인 접근 방식을 선택하는 데 도움을 줍니다.
그림 1: 마케팅에서 AI의 이점
AI 디지털 마케팅은 경쟁 우위를 확보하는 데 도움이 됩니다.
- AI는 데이터를 분석하여 목표 시장의 구매 패턴과 선택을 예측할 수 있습니다.
- AI 데이터를 사용하면 청중이 정말로 원하는 것을 제공하고 사용자 경험을 향상시키는 데 도움이 되며 비즈니스 효율성을 최대 40%까지 높일 수 있습니다.
- AI는 데이터 기반 연구를 통해 추측을 제거하여 보다 성공적인 회사를 위한 디지털 마케팅 전략을 개발합니다.
- AI 알고리즘을 사용하면 지루하고 다양한 집안일을 자동화할 수 있습니다. 이를 통해 생산성을 높이는 동시에 시간과 비용도 절약할 수 있습니다.
- AI가 의사결정을 촉진하고 보다 효과적인 콘텐츠 제작을 지원하므로 ROI가 높아집니다. AI 디지털 마케팅 기술을 사용하면 더 나은 거래로 적합한 사람들과 연결할 수 있습니다.
마케팅 시장의 글로벌 인공 지능은 광고를 위한 소셜 미디어 플랫폼의 활용이 증가함에 따라 최근 몇 년 동안 상당한 성장을 보였습니다. 여기에 빅 데이터 분석의 발전과 함께 AI 관련 제품 및 서비스의 사용 증가는 예측 기간의 성장을 향상시키는 주요 요인이 되는 경향이 있습니다. 데이터브릿지 마켓리서치 분석에 따르면 글로벌 마케팅 시장 인공지능 시장은 2021년부터 2028년까지 연평균 복합 성장률(CAGR) 28.13%로 성장할 것으로 전망됐다.
연구에 대해 자세히 알아보려면 https://www.databridgemarketresearch.com/ko/reports/global-artificial-intelligence-in-marketing-market을 방문하세요.
그림 2: AI가 가치를 추가할 수 있는 가치 사슬의 4개 위치.
디지털 마케팅 기능을 변화시키는 인공 지능의 예
- 소셜 미디어 마케팅(SMM)의 AI - 게시물, 해시태그, 이미지 등 소셜 미디어 사이트에 대한 텍스트 또는 시각적 콘텐츠를 만들기 위해 마케팅 담당자는 AI 지원 도구를 사용합니다. 이러한 AI 기반 솔루션을 사용하여 SMM 전략의 성과를 추적하고 추적할 수 있습니다. AI는 사용자의 선호도, 지리적 위치 및 기타 세부 사항을 기반으로 각 사용자의 소셜 미디어 자료를 개인화하는 데 도움을 줍니다.
- 콘텐츠 마케팅의 AI - 콘텐츠 기반 광고에 대한 수요가 증가함에 따라 콘텐츠 마케팅은 산업 전반에 걸쳐 광고의 표준 방법이 되었습니다. 콘텐츠 마케팅 담당자는 AI를 사용하여 현재 및 잠재 고객이 관심을 갖는 콘텐츠 유형을 결정할 수 있습니다. AI 기반 애플리케이션을 사용하여 콘텐츠를 생성하고 편집할 수 있습니다. 예를 들어 Co-schedule, Grammarly, Hemingway Editor 및 Jarvis와 같은 AI 기반 도구는 콘텐츠 작성자가 블로그 및 광고 문구에 대한 눈길을 끄는 헤드라인을 빠르게 만드는 데 도움이 됩니다. 대중은 최근 거의 모든 주제에 대한 대화 솔루션을 생성할 수 있는 두 가지 최첨단 AI 앱, 즉 ChatGPT와 BARD에 관심을 갖게 되었습니다. 앞으로 몇 년 안에 AI는 광고 카피 작성, 광고 그래픽 생성 등 콘텐츠 개발의 모든 측면을 처리하게 될 것입니다. AI는 기존 콘텐츠를 개선하는 데에도 활용될 수 있다. 콘텐츠의 성능을 모니터링하고 무엇이 효과적으로 수행되고 있으며 어떤 영역에 개발이 필요한지에 대한 통찰력을 제공하기 위해 AI 기술 및 방법론을 적용할 수 있습니다.
- 고객 관계 관리(CRM)의 AI - 디지털 마케팅 담당자는 AI 기반 애플리케이션을 사용하여 고객 상호 작용을 맞춤화하고 독특한 프로모션이나 인센티브를 통해 더 나은 사용자 경험을 제공하여 잃어버린 소비자 충성도를 회복할 수 있습니다.
예를 들어,
- 스타벅스는 일반 고객이 구매할 수 있는 모바일 앱과 포인트 카드를 출시했습니다. 그런 다음 이를 사용하여 포인트를 적립하고 보상, 쿠폰 및 할인에 사용할 수 있습니다. 스타벅스는 AI를 사용해 고객 구매 정보를 추적합니다. 정확한 시간, 요일, 위치, 주문한 내용, 심지어 특정 날짜의 날씨까지 모두 캡처됩니다! 그런 다음 이는 미래의 맞춤형 소비자 추천을 개발하는 데 활용됩니다.
자연어 처리(NLP)는 챗봇이 고객 문의를 분할하고, 긴급한 사용자 요구에 신속하게 응답하고, 모든 클라이언트를 실시간으로 처리하여 불만을 제한하기 위해 사용하는 또 다른 AI 기반 기술입니다. 또한 AI 기반 CRM은 예측 분석을 사용하여 이전 상호 작용 및 기타 데이터를 기반으로 소비자 행동 및 선호도에 대한 심층적인 통찰력을 얻습니다. 또한 리드를 생성하고 전환율을 높이는 데 사용할 수 있습니다.
- 이메일 마케팅의 AI - 조직은 AI를 통해 다양한 방법으로 이메일 마케팅 운영을 지원할 수 있습니다. 이는 기업에서 취미, 참여 수준, 과거 구매 등과 같은 요소에 따라 고객을 여러 그룹으로 분류하는 데 사용됩니다. 고객에게 신제품 출시, 독점 제안 또는 할인, 기타 회사 및 제품 관련 정보를 알리는 이메일을 보내기 위해 AI 기반 애플리케이션을 사용하여 세분화된 이메일 목록이 생성됩니다. 또한 AI는 이메일 마케팅 담당자가 사기 이메일을 인식하는 데 도움을 줄 수 있습니다. 스팸 이메일이 받은편지함에 도달하지 못하도록 스팸 이메일을 보낼 별도의 폴더를 만듭니다.
- 검색 엔진 최적화(SEO)의 AI - SEO의 AI는 온라인 마케팅 담당자가 링크 구축, 웹사이트 분석 및 키워드 연구를 개선하는 데 도움을 줍니다. 제공되는 상품이나 서비스와 관련된 키워드를 찾기 위해 AI 기반 SEO를 통해 대량의 데이터를 분석합니다. ...SERP 또는 검색 엔진 결과 페이지에서 웹사이트의 순위를 높이기 위해 이를 사용합니다.
인공지능이 디지털 마케팅 분야를 발전시키는 여러 가지 방법
그림 3: AI가 마케팅 미래를 변화시키는 다양한 방식
- 상품 검색 및 추천- 인공지능을 통해 사용자가 구매하고 싶은 상품을 찾는 정확도가 향상될 뿐만 아니라 그에 따른 상품 추천도 표시됩니다. AI 기반 상품 제안을 통해 고객이 사고 싶은 물건을 더 쉽게 찾을 수 있습니다. 반면, 올바른 AI 솔루션을 통해 디지털 마케팅 담당자는 고객이 어떤 제품을 구매할지 보다 정확하고 신속하게 예측할 수 있습니다. 결과적으로 매출이 증가하고 브랜드는 기존 소비자가 가치 있고 효과적이라고 생각하는 것을 잠재 고객 앞에서 홍보할 수 있습니다. 지능형 AI 디지털 마케팅 추천으로 매출 및 고객 유지율이 향상되고 반품률이 높아집니다.
- 동적 가격 - 전체 수익을 극대화할 수 있는 제품 가격을 선택하기 위해 엄청난 양의 동적 데이터를 수집하는 방법입니다. 예를 들어, 급변하는 디지털 경제에서 전자상거래 플랫폼은 여러 머신러닝 알고리즘을 AI와 융합하여 가격을 동적으로 변경해야 합니다. 가격 책정 방법은 재고 수준, 트래픽 패턴, 남은 재고, 제품 관련 정서 조사 등의 요소를 기반으로 근본적으로 다시 최적화됩니다.
- 콘텐츠 큐레이션과 마케팅 - AI 기능을 갖춘 소프트웨어는 플랫폼을 위해 생산할 자료와 배포 시기를 선택할 수 있습니다. AI 기반 콘텐츠 마케팅은 콘텐츠 제작자에게 데이터 기반 통찰력과 피드백을 제공하는 다양한 도구를 활용합니다. 이는 지속적인 피드백 루프를 구축함으로써 마케터가 콘텐츠 생성 능력을 향상하고 경쟁사와 비교하여 자신의 능력을 평가할 수 있음을 의미합니다.
- 소비자 행동 분석 - 고객의 과거 성격 특성과 행동을 기반으로 고객의 미래 행동을 예측하기 위해 AI는 통계 모델과 알고리즘을 사용합니다. 일반 대중의 구매 패턴을 확인하기 위해 AI Customer Behavior Analytics는 다양한 모델 행동을 사용합니다. 이를 통해 기업은 고객 행동과 그것이 어떻게 변화할 것인지에 대한 통찰력을 제공함으로써 고객 관리에 있어 한 발 앞서 나갈 수 있습니다. 이를 통해 조직은 수익, 민감도, 규정 준수 및 기타 위험 조건을 근접하게 유지하는 동시에 고객 요구 사항도 충족할 수 있습니다. 따라서 디지털 마케팅에 머신러닝 통계와 AI를 접목하면 업계 동향을 예측할 수 있다.
- 사기 방지 - 기업 자원에 대한 사용자 접근을 통제하기 위해 디지털 마케팅에 인공지능을 적용함으로써 사이버 보안이 혁신되고 데이터 침해 위험이 감소했습니다. 사기 탐지를 위해 AI와 사이버 보안을 결합하는 것이 널리 퍼져 있습니다. 무단 사용자에 의한 데이터 복제를 방지하고 불법 로그인, 무단 구매, 신원 도용 등 특정 사용자 활동을 차단 또는 허용하기 위해 인공 지능(AI) 알고리즘이 적용되었습니다.
그림 4: AI가 마케팅 미래를 변화시키는 다양한 방식
사이버 보안에서 AI의 과제
- 조직은 AI 시스템을 개발하고 유지하는 데 더 많은 돈과 자원을 투자해야 합니다.
- 사이버 범죄자는 AI 알고리즘을 사용하여 가장 정교한 공격을 수행할 수도 있습니다.
- AI 시스템이 성공적으로 작동하려면 방대한 양의 데이터가 필요합니다. 시스템에 충분한 콘텐츠가 제공되지 않으면 잘못된 결과가 발생합니다.
- 다양한 악성 코드, 양성 코드, 이상 징후가 수집된 데이터 세트를 사용하여 AI 시스템을 교육하려면 조직에서 많은 노력이 필요합니다.
- 이 시스템은 가격이 비싸서 중소기업에서는 감당할 수 없습니다.
- 채널별 프로모션 - 채널별 프로모션 중 고객 맞춤형 모바일 마케팅과 이메일이 차지하는 비중이 높습니다. 특정 고객에게 전달된 이메일, Whatsapp 메시지 및 기타 메시지가 이 범주에 속합니다. 사람들은 자동으로 생성되는 커뮤니케이션 시대에 자신과 관련된 개인화된 이메일을 원합니다. 디지털 마케팅의 AI는 기업이 사용자 행동과 선호도를 조사하여 캠페인에 대한 타겟 이메일과 메시지를 보내는 데 도움을 줄 수 있습니다. 마케팅 담당자는 AI를 사용하여 광범위한 메시징부터 특정 소셜 미디어 게시물에 이르기까지 캠페인의 성공을 모니터링할 수 있습니다.
- 증강 현실과 가상 현실의 통합 - 향후에는 인공지능(AI)을 통해 증강현실(AR), 가상현실(VR)의 발전이 가속화될 것입니다. 시각적 지능의 도움을 받아 증강 현실을 통해 온라인 쇼핑 경험이 향상될 것입니다. 사용자에게 흥미로운 방식으로 지침을 제공하기 위해 AI 모델은 제공된 텍스트를 인식하고 읽고 이미지로 번역합니다. 그런 다음 증강 현실 API가 번역된 텍스트와 이미지를 오버레이합니다. 증강 현실(AR) 매뉴얼은 시각적 구성 요소, 오디오 또는 기타 감각 기술을 사용하여 원격으로 사용자를 교육하고 안내하는 온라인 사용자 가이드입니다. 결과적으로 인공지능을 활용한 디지털 마케팅은 소비자가 제품을 검색하고 원하는 대로 맞춤화할 수 있게 함으로써 AR과 VR의 채택을 가속화할 것입니다. 소비자는 이제 가운을 쇼핑하면서 동일한 드레스의 여러 색상을 입어보고 어떤 것이 자신에게 가장 잘 어울리는지 확인할 수 있습니다.
예를 들어,
- 영국의 다국적 의류 소매업체인 TopShop은 AI 기술을 사용하여 모스크바 매장의 가상 탈의실을 개발했습니다. 고객은 이 매장의 스크린과 카메라 앞에 서서 드레스가 어떻게 나타나는지 확인할 수 있습니다. 클라이언트는 큰 화면 앞에 있을 때 가상 표현을 볼 수 있습니다. 고객은 피팅룸에 들어가지 않고도 인공지능 덕분에 다양한 체험을 할 수 있다
- IKEA라는 스웨덴 가구 회사가 AI 디지털 마케팅의 기준을 높이고 있습니다. IKEA는 사용자가 자신의 집에서 IKEA 제품을 사진으로 볼 수 있는 증강현실(AR) 앱을 출시하고 있습니다. 고객은 앱에 객실 크기를 입력할 수 있습니다. 그런 다음 다양한 디자인과 생활 단계를 지닌 다양한 물건을 보게 됩니다. 고객은 제품을 선택할 때 자신의 집에 있는 것처럼 제품을 볼 수 있습니다. 고객은 앱을 통해 직접 제품을 주문하여 구매할 수 있습니다. 따라서 소비자는 AR을 사용하여 안락한 집을 떠나지 않고도 집에 둘 가구를 검색할 수 있습니다.
- 고급 의류 회사인 구찌(Gucci)가 박물관의 가상 이탈리아 장소인 구찌 가든(Gucci Garden)을 디지털 방식으로 재현한 작품을 공개했습니다. 방문객들은 박물관을 둘러보고 유물에 대한 자세한 내용을 문의할 수 있습니다. 이러한 증강현실 플랫폼의 목적은 특히 비디오 게임을 즐기고 디지털 인터페이스 사용에 익숙한 젊은 소비자들 사이에서 브랜드 노출을 높이는 것입니다. 현재의 팬데믹으로 인해 일부 청소년과 어린이는 실제 공공 장소보다 온라인 세계에 더 익숙해졌습니다. 이 고객 부문은 현재는 물론 미래에도 중요합니다.
증강 현실 및 가상 현실 시장은 소매 및 전자 상거래 분야에서 AR 및 VR에 대한 수요가 증가함에 따라 최근 몇 년 동안 상당한 성장을 보였습니다. 또한 기술 발전의 증가, 투자 증가 및 합리적인 속도로 이러한 장치의 가용성은 예측 기간 동안 시장 성장을 촉진하는 다른 요인입니다. 소비자와 소매업체는 이러한 기술을 도구로 활용하여 소매업의 미래에 인간적 요소를 빼앗지 않으면서 소비자가 원하는 편리함을 제공하는 쇼핑 경험을 창출할 것입니다. 데이터브릿지 시장조사(Data Bridge Market Research) 분석에 따르면 글로벌 증강현실 및 가상현실 시장은 2023년부터 2029년까지 연평균 복합 성장률(CAGR) 69.0%로 성장할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요.https://www.databridgemarketresearch.com/ko/reports/global-augmented-reality-and-virtual-reality-market
- 시각적 검색 기능 - AI 알고리즘으로 제어되는 텍스트나 키워드를 활용하는 것이 아니라, 고객이 온라인에서 어떤 형태의 이미지든 검색할 수 있도록 하는 기술이다. 현재 디지털 산업에서 AI를 활용한 시각적 검색의 가장 좋은 예는 Google Lens입니다. 찾고 있는 것을 정확하게 정의하는 방법을 모르거나 해당 단어와 관련된 용어에 익숙하지 않은 사람들에게 매우 도움이 됩니다. 따라서 시각적 검색은 사람들이 검색 필드에 잘못된 용어를 입력할 때 발생하는 문제를 해결하는 유용한 대안입니다.
- 비디오 마케팅 - 비디오는 정보와 전문 지식을 전파하는 효과적인 방법입니다. 최근에는 특히 라이브 스트리밍 동영상의 경우 동영상 시청자 수가 크게 증가했습니다. 기업에서는 비디오 마케팅 이니셔티브의 효율성을 높이기 위해 인공 지능을 사용하고 있습니다. 기업은 AI를 활용하여 고객의 시청 선호도를 더 잘 이해하고 개인화된 콘텐츠를 제작하며 궁극적으로 비디오 투자 수익률(ROI)을 높일 수 있습니다. 앞서 언급한 모든 디지털 마케팅 도구는 실시간 최적화를 사용하여 자동화된 판매 예측을 위한 프레임워크를 구축하는 지속적인 마케팅 계획의 요소로 간주될 수 있습니다. 미래의 AI 개발을 통해 조직은 수익성을 극대화하고 매출을 늘리는 등의 활동을 수행할 수 있습니다.
- 시장 예측 분석 - 인공 지능 기반 소프트웨어는 엄청난 양의 데이터를 처리하고, 컴파일하고, 데이터에서 나타나는 패턴을 사용하여 정확한 예측을 생성할 수 있습니다. 이는 마케팅 담당자에게 실시간으로 수집되는 동적 콘텐츠를 사용하여 미래를 예측할 수 있는 도구를 제공합니다. 이 분석의 또 다른 중요한 구성 요소는 시장 최적화입니다. 이를 통해 측정값을 실시간으로 맞춤화하고 상품 및 서비스 판매를 위한 더 나은 마케팅 전략을 구현할 수 있습니다. 캠페인의 전반적인 성공에 영향을 미치는 두 가지 요소에는 시장 잠재력을 파악하고 경쟁업체를 조사하는 것이 포함됩니다. 시장 예측 분석 분석은 다양한 소셜 미디어 플랫폼에서 경쟁업체가 실시간으로 변경한 변경 사항과 업데이트를 식별하고 해당 웹사이트, 포럼 및 기타 온라인 자산을 모니터링하는 것으로 구성됩니다.
예를 들어,
- 세계 최대 온라인 소매업체인 Amazon은 AI 기반 추천 시스템을 사용하여 개인화된 아이디어를 제공합니다. 이러한 제안은 판매를 가속화하고 수익을 늘리는 데 필수적입니다. Amazon의 추천 알고리즘은 고객의 장바구니에 담긴 상품, 고객이 좋아한 상품, 구매 내역, 다른 사용자가 구매하거나 조회한 상품을 모두 고려합니다.
예측 분석 시장은 추적 및 모니터링을 위한 실시간 분석 솔루션에 대한 수요 증가와 예측 기간의 시장 성장을 향상시킬 연결 및 통합 기술의 활용도 증가로 인해 최근 몇 년간 상당한 성장을 보였습니다. Data Bridge Market Research 분석에 따르면 글로벌 예측 분석 시장은 2021년부터 2028년까지 연평균 복합 성장률(CAGR) 23.52%로 성장할 것으로 예상됩니다.
연구에 대해 자세히 알아보려면 다음을 방문하세요. https://www.databridgemarketresearch.com/ko/reports/global-predictive-analytics-market
- 디지털 광고 및 타겟 마케팅 - 디지털 마케팅의 인공지능은 기업이 Google, Facebook, Instagram과 같은 플랫폼에서 창의적인 광고 캠페인을 개발할 수 있는 수많은 기회를 제공할 뿐만 아니라 마케팅 담당자가 올바른 잠재고객에게 도달하도록 지원합니다. 이러한 플랫폼은 연령, 성별, 인구 통계, 관심사 및 기타 개인 정보를 포함한 사용자 데이터를 조사하여 가능한 최고의 경험을 제공합니다. AI 알고리즘은 타겟 마케팅을 사용하여 사용자에게 가장 관련성이 높은 광고를 표시하여 제작된 디지털 광고의 효과를 높일 수 있습니다. 회사는 모든 사용자에게 표시되는 각 광고에 대해 수수료를 지불하므로 광고를 볼 사람을 선택할 권리가 있습니다. 회사가 개인화된 고객 경험을 제공하려면 먼저 수많은 소비자 부문을 예측하고 디지털 마케팅 전략에 기발한 아이디어를 사용해야 합니다. 올바른 잠재고객에게 도달하는 것은 모든 마케팅 전략이 성공하기 위한 필수 조건입니다. AI 디지털 마케팅을 통해 기업의 고객 타겟팅이 간단해집니다. 또한 AI 디지털 마케팅은 창의적인 광고 전략을 개발할 수 있는 잠재력을 제공합니다.
예를 들어,
- 미국 신발회사 에어워크(Airwalk)는 증강현실과 위치정보를 활용해 한정판 에어워크 짐(Airwalk Jim) 신발을 홍보했다. 이번 캠페인을 위해 그들은 AR 소프트웨어를 사용해 뉴욕과 로스앤젤레스에 보이지 않는 팝업 매장을 구축했습니다. 사람들은 앱을 다운로드하고 워싱턴 스퀘어 파크(Washington Square Park)나 베니스 비치(Venice Beach)를 방문해야 이러한 시설에 접근할 수 있습니다. 사용자는 이러한 사이트에서 GPS에 연결된 가상 운동화를 찾을 수 있습니다. 이러한 매장을 찾은 후 사용자는 Airwalk의 온라인 매장으로 연결되었습니다. 그들은 거래를 완료하기 위해 웹사이트에 제공된 비밀번호 링크를 입력해야 했습니다. AI 디지털 마케팅은 이러한 혁신을 가능하게 하는 유일한 도구입니다
- 데이터 수집, 데이터 연구 및 편집 - 소비자 프로파일링, 기업 인텔리전스, 온라인 판매 분석 등 다양한 분야에서 수집된 원시 데이터의 세분화가 인공지능을 통해 가능해집니다. 디지털 마케팅의 AI는 데이터 종류를 식별하고, 데이터 세트 간의 잠재적인 링크를 찾고, 수많은 채널에서 반복되는 추세를 식별함으로써 마케팅 담당자가 정보에 입각한 결정을 내리는 데 도움이 될 수 있습니다. 추가 응용 프로그램에는 데이터 준비 작업의 자동화 및 가속화, 생성된 데이터 모델을 사용한 미래 이벤트의 정확한 예측, 데이터 탐색의 효율적인 지원이 포함됩니다.
- 마이크로 인플루언서 식별 - 기업 및 청중과 연결될 가능성이 가장 높은 소규모 영향력자는 이미 AI 알고리즘을 사용하여 발견되고 있습니다. 디지털 세계의 지속적인 성장과 함께 머신러닝(ML)과 인공지능(AI)은 각 제안에서 과도한 데이터를 흡수할 수 있는 역량을 보유함으로써 인플루언서 마케팅 환경을 변화시키고 있습니다. 적절한 작성자를 찾고, 효과적인 절차를 제안하고, 보다 적절한 콘텐츠를 제작하는 것은 모두 AI 기반 인플루언서 마케팅 기술의 장점입니다. 신뢰할 수 있는 소셜 미디어 영향력자를 결정하기 위해 그들은 또한 이전 브랜드 관계에 대한 메시지와 효능을 분석하는 데 매우 능숙합니다.
- 메뉴 기반 카탈로그의 효율적인 처리 - 다양한 AI 솔루션의 도움으로 조직은 이제 팀이 제품 카탈로그를 작성하고 공급업체를 온보딩하는 데 소요되는 시간을 줄일 수 있습니다. 이는 AI 제품 태그 선택 및 이미지 조정을 통해 기업이 카탈로그 텍스트 및 이미지 콘텐츠를 생성하고 표준화할 수 있음을 시사합니다. 디지털 마케팅의 AI는 또한 데이터 포지셔닝 및 분류를 개선하는 데 도움이 될 뿐만 아니라 카탈로그를 더 효과적으로 시각화하여 추세와 격차를 파악하는 데도 도움이 됩니다.
- 웹사이트 구축 및 디자인 – AI는 유명한 웹 사이트 빌더인 Wix에서 특정 마케팅 목표를 충족하는 웹 사이트를 생성하는 데 사용됩니다. 이 소프트웨어는 실시간으로 제안을 제공하고 AI를 활용하여 웹사이트 생성을 가속화합니다. 이러한 도구는 알고리즘을 사용하여 웹 사이트를 만들고 웹 사이트 레이아웃 및 디자인에 대한 권장 사항을 제공하여 프로그래머를 돕습니다. 콘텐츠, 클릭 유도 문구 아이콘 그래픽 및 이상적인 페이지 레이아웃 마무리가 모두 필요합니다. 이에 더해 웹사이트 소유자는 FireDrop의 인공 지능 디자이너인 Sacha의 도움을 받아 랜딩 페이지를 만들 수 있습니다. 디자인 과정을 용이하게 하기 위해 Sacha는 귀하의 명령을 따르도록 설정되었습니다.
- 음성인식을 통한 검색 및 맞춤형 응답 제공 - 고객은 Siri를 사용하여 알람을 설정하거나 Alexa를 사용하여 음성 인식 기술을 사용하여 음악을 들을 수 있습니다. 마케팅 담당자로서 이러한 획기적인 변화는 모든 웹 사이트에서 음성 검색 SEO의 가치와 중요성을 강조하기 때문에 전 세계적으로 인기가 높아지고 있다는 것을 알고 있어야 합니다. ROI는 조직의 총 투자 비용에 대한 순이익의 비율입니다. 이 기술은 기업이 총 투자 비용(ROI) 대비 순이익을 결정하고 일반 검색을 통해 유기적인 트래픽을 늘리는 데 도움이 됩니다.
- 자동화된 고객 서비스 - 인공지능은 메시지 전달, 챗봇 응답, 계산된 설문조사 결과, 기타 온라인 포럼 참여 등 자동화된 고객 서비스 기능을 가능하게 합니다. AI 기술의 가장 실제적인 적용은 챗봇이다. AI 기반 가상 비서는 고객 문의에 신속하게 답변하고, 상품이나 서비스에 대한 철저한 정보를 수집한 후 고객이 최선의 선택을 할 수 있도록 안내합니다.
예를 들어,
- 인간 직원을 지원하기 위해 이러한 AI 디지털 마케팅 전략을 효과적으로 활용하는 회사 중 하나가 커피 대기업 스타벅스입니다. Facebook 메신저용 스타벅스 바리스타 봇은 최소한의 인간 상호작용으로 좋아하는 커피만 원하는 경우에 사용할 수 있습니다. 나만의 맞춤형 커피를 주문할 수 있습니다. 봇은 복잡한 명령도 이해합니다. 간단한 '라떼' 주문 외에도 맞춤형 요구 사항을 갖춘 정교한 주문도 가능합니다. 봇을 사용하면 "더블 톨 모카 무지방 엑스트라 핫 노 휩"과 같은 문구로 커피를 빠르게 얻을 수 있습니다.
PRM(Public Relationship Management)은 수집된 고객 데이터를 분석하고 관련 데이터를 선택하는 고객 중심 전략을 선택합니다. AI 기능을 갖춘 CRM 소프트웨어는 이메일, 전자 상거래 활동, 판매, 사물 인터넷(IoT)의 비즈니스 데이터를 평가하여 데이터를 생성하고 소셜 미디어 채널을 통해 자동 통찰력을 생성합니다.
결론
데이터 분석, 고객 페르소나 이해 등 디지털 마케팅의 기술적 부분은 인공 지능 분야의 향후 발전을 통해 얻을 수 있습니다. AI는 어려운 마케팅 문제를 단순화하고, 지루하고 반복적인 작업을 자동화하며, 사용자 생산성을 높이는 새로운 디지털 생태계 트렌드를 구현하는 데 도움이 될 것입니다. 현대 인공 지능은 조직의 요구 사항을 충족하기 위해 디지털 마케팅 분야의 마케팅 노력을 간소화하고 최적화하는 데 도움을 줍니다. 인적 자원을 절약하기 위해 디지털 어시스턴트는 이미 맞춤형 학습을 지원하는 소비자와 소통할 것입니다. 인공 지능은 마케팅 담당자가 인적 오류 가능성을 낮추면서 더 나은 결과를 얻기 위한 가장 효과적인 접근 방식을 선택하는 데 도움을 줍니다. 디지털 마케팅 부문의 상당 부분이 계속해서 인간의 혁신에 의존하겠지만, 콘텐츠는 항상 최고를 지배할 것이며 인간은 항상 운영과 기술을 처리할 것입니다.