Глобальный рынок интеллектуальной автоматизации процессов машинного обучения (ML), по компонентам (решения, услуги), типу (структурированный, неструктурированный), технологии (обработка естественного языка, машинное и глубокое обучение, нейронные сети, виртуальные агенты, мини-боты, компьютерное зрение, другие), размер организации (крупные предприятия, малый и средний бизнес), приложение (ИТ-операции, управление контакт-центром, автоматизация бизнес-процессов, управление приложениями, управление контентом, управление безопасностью, другие), бизнес-функции (информационные технологии, финансы и учет, человеческие ресурсы, Операции и цепочка поставок), режим развертывания (локально, облако), конечный пользователь (банковское дело, финансовые услуги, страхование (BFSI), телекоммуникации и ИТ, транспорт и логистика, средства массовой информации и развлечения, розничная торговля и электронная коммерция, производство, здравоохранение и науки о жизни, другие) – Тенденции отрасли и прогноз до 2030 года.
Анализ и размер рынка интеллектуальной автоматизации процессов машинного обучения (ML)
Ожидается, что необходимость повышения продуктивности бизнеса и растущее внедрение технологий в различных отраслях промышленности будут способствовать росту рынка интеллектуальной автоматизации процессов машинного обучения (ML). Интеллектуальные решения для автоматизации процессов предоставляют пользователям передовые инструменты и адаптируемые рабочие процессы, позволяющие им принимать решения быстрее и с более глубокими знаниями. Эти решения управляют интерфейсами и устраняют узкие места в системах рабочих процессов. Ожидается, что этот фактор придаст импульс рынку в ближайшие годы.
Исследование рынка Data Bridge показывает, что рынок интеллектуальной автоматизации процессов машинного обучения (ML), оцениваемый в 13,6 млрд долларов США в 2022 году, достигнет 41,03 млрд долларов США к 2030 году, а среднегодовой темп роста составит 14,80% в течение прогнозируемого периода с 2023 по 2030 год. В дополнение к такой информации о рынке, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, игроки рынка и рыночный сценарий, отчет о рынке, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта / экспорта, ценообразование. анализ, анализ потребления продукции и анализ пестика.
Объем и сегментация рынка интеллектуальной автоматизации процессов машинного обучения (ML)
Отчет по метрике |
Подробности |
Прогнозный период |
2023–2030 гг. |
Базисный год |
2022 год |
Исторические годы |
2021 г. (настраивается на 2015–2020 гг.) |
Количественные единицы |
Выручка в миллиардах долларов США, объемы в единицах, цены в долларах США. |
Охваченные сегменты |
Компонент (решения, услуги), тип (структурированный, неструктурированный), технология (обработка естественного языка, машинное и глубокое обучение, нейронные сети, виртуальные агенты, мини-боты, компьютерное зрение, другие), размер организации (крупные предприятия, малые и средние предприятия), Приложение (ИТ-операции, управление контакт-центром, автоматизация бизнес-процессов, управление приложениями, управление контентом, управление безопасностью и другие), бизнес-функции (информационные технологии, финансы и учет, человеческие ресурсы, операции и цепочка поставок), режим развертывания (он- Помещения, облако), конечный пользователь (банковское дело, финансовые услуги, страхование (BFSI), телекоммуникации и ИТ, транспорт и логистика, средства массовой информации и развлечения, розничная торговля и электронная коммерция, производство, здравоохранение и науки о жизни, другие) |
Охваченные страны |
США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальные страны Европы в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, остальная часть Ближнего Востока и Африки (MEA) в составе Ближнего Востока и Африка (MEA), Бразилия, Аргентина и остальная часть Южной Америки как часть Южной Америки. |
Охваченные игроки рынка |
Automation Anywhere, Inc. (США), UiPath (США), Blue Prism Limited (Великобритания), Pegasystems Inc. (США), AntWorks (Сингапур), NICE (Израиль), Kofax Inc. (США), SAP SE (Германия) , AutomationEdge (США), Larc AI (Pty) Ltd. (Южная Африка), Autologyx (Великобритания), Sanbot Innovation Technology., Ltd (Китай), Cinnamon Inc. (Япония), Wipro (Индия), Xerox Corporation (США) , TATA Consultancy Services Limited. (Индия), IBM (США), Atos SE (Франция), Capgemini (Франция), Accenture (Ирландия) |
Возможности рынка |
|
Определение рынка
Программные приложения теперь могут делать прогнозы более точно с помощью ML, подобласти искусственного интеллекта. Алгоритмы машинного обучения прогнозируют новые выходные значения, используя в качестве входных данных исторические данные. Технологии искусственного интеллекта (ИИ) используются в автоматизации когнитивных процессов для ускорения когнитивных процессов, таких как рассуждение, машинное обучение и обработка естественного языка. Благодаря автоматизации когнитивных процессов эти задачи будут выполняться быстрее и проще как людьми, так и машинами.
Динамика рынка интеллектуальной автоматизации процессов машинного обучения (ML)
Драйверы
- Растущее внедрение RPA стимулирует рынок
Предприятия используют технологию RPA для автоматизации задач ручного ввода данных, устраняя необходимость в человеческом труде. Рабочий процесс IPA сочетает в себе когнитивное обучение, RPA, машинное обучение и искусственный интеллект. В результате по мере роста популярности RPA растет и спрос на IPA. RPA обеспечивает эффективность и скорость. Искусственный интеллект (ИИ) добавляется к автоматизации для анализа данных так, как не может человек, распознавать закономерности в данных и учиться на предыдущих решениях, чтобы принимать более мудрые решения. IPA сокращает время, необходимое для выполнения задач, устраняя необходимость ввода данных человеком, проверки информации и сортировки документов, что способствует росту рынка.
- Увеличение спроса на услуги по внедрению и обучению стимулирует рынок
Значительным сегментом, демонстрирующим рост, является проектирование и реализация. Таким образом, рост объясняется лучшим пониманием использования решений автоматизации для сокращения ручного труда. По мере более широкого использования интеллектуальных решений для автоматизации процессов растет спрос на услуги по внедрению и обучению. Поставщики сосредоточены на предоставлении индивидуального решения, удовлетворяющего бизнес-требованиям. В результате ожидается, что спрос на услуги интеллектуальной автоматизации процессов будет расти в течение прогнозируемого периода.
- Высокий коэффициент принятия стимулирует рынок
Интеллект машинного обучения (МО) предполагает быстрое расширение масштабов и использования ИТ и автоматизации во всем мире с высокой степенью принятия, минимизацией человеческого труда и ошибок с оптимальным использованием ресурсов для повышения эффективности бизнеса. Автоматизация с помощью искусственного интеллекта помогает улучшить качество обслуживания клиентов и ускорить принятие решений во всей организации, что способствует росту рынка.
Возможности
- Рост инвестиций в рынок интеллектуальной автоматизации процессов
Предприятия переходят на политику работы на дому, что существенно влияет на объем инвестиций в автоматизацию операционных процессов. Рынок растет благодаря увеличению инвестиций в такие области приложений, как телемедицина, профилактическое обслуживание и виртуальное управление здравоохранением. Внедрение решений IPA увеличилось в большинстве вертикалей, не связанных с ИТ, поэтому на рынке наблюдается расширение рынка интеллектуальной автоматизации процессов машинного обучения (ML) в течение вышеупомянутого прогнозируемого периода.
- Развитие технологий создает выгодную возможность для роста.
Новые интеллектуальные технологии автоматизации, такие как виртуальные агенты и обработка естественного языка, среди прочего, открывают возможности для улучшения качества обслуживания клиентов, а решения машинного обучения значительно повышают эффективность. Системы могут автоматически учиться на основе опыта и совершенствоваться с помощью машинного обучения, что устраняет необходимость в явном программировании, поэтому развитие технологий может создать прибыльные возможности на рынке.
Ограничения/вызовы
- Нехватка высококвалифицированной и сложной рабочей силы ограничивает рост
Для запуска новой автоматизированной операционной модели требуется квалифицированная рабочая сила, но крайне важно найти людей с опытом RPA и искусственного интеллекта. Технические навыки, понимание бизнес-процедур организации и способность адаптировать методы управления — все это части интеллекта машинного обучения. Назначение людей для постоянного обслуживания, поддержки и устранения неполадок одинаково важно для развития автоматизации, и отсутствие таких навыков может ограничить рост.
- Рост угроз кибербезопасности сдерживает расширение рынка
Кибербезопасность является одной из наиболее серьезных проблем в эпоху цифровых технологий. Атаки вредоносных программ и программ-вымогателей становятся все более организованными формами киберпреступности. Каждый день предприятия получают все большее количество уведомлений о безопасности. По данным CERT-In, в первой половине 2021 года было зарегистрировано более 6,07 тысяч инцидентов кибербезопасности. В результате использование кибербезопасности для IPA необходимо для создания эффективной архитектуры безопасности, которая защищает организацию от растущих рисков. По данным опроса Cisco, 77% предприятий намерены увеличить автоматизацию своих экосистем безопасности в ближайшие годы, что ограничивает рынок.
В этом отчете о рынке интеллектуальной автоматизации процессов машинного обучения (ML) представлена подробная информация о последних разработках, торговых правилах, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии отечественных и локализованных участников рынка, анализируются возможности с точки зрения новых карманы доходов, изменения в рыночном регулировании, стратегический анализ роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрение продуктов, запуск продуктов, географическое расширение, технологические инновации на рынке. Чтобы получить дополнительную информацию о рынке интеллектуальной автоматизации процессов машинного обучения (ML), свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Недавние улучшения
- В 2021 году Cisco и IBM совместно работали над координацией и управлением сетями 5G.
- По данным HCL Technologies, в 2021 году пользователи Google Cloud Marketplace смогут приобрести DRYiCE iAutomate.
- В 2021 году IBM анонсировала дебют IBM Cloud Pak for Network Automation.
- В 2021 году, чтобы продолжить совместную работу, Atos и du продлили контракт еще на пять лет. Модернизация приложений и цифровая трансформация будут способствовать этому сотрудничеству с du.
- По данным Pegasystems, в 2020 году платформа Pega получила новое улучшение. Pega Process AI теперь имеет новую функцию, которая помогает предприятиям оптимизировать бизнес и операции с клиентами в режиме реального времени.
Глобальный рынок машинного обучения (ML) интеллектуальной автоматизации процессов
Рынок интеллектуальной автоматизации процессов машинного обучения (ML) сегментирован по компонентам, типу, технологии, размеру организации, приложениям, бизнес-функциям, режиму развертывания и конечному пользователю. Рост среди этих сегментов поможет вам проанализировать скудные сегменты роста в отраслях и предоставить пользователям ценный обзор рынка и информацию о рынке, которая поможет им принять стратегические решения для определения основных рыночных приложений.
Компонент
- Решения
- Программные инструменты
- Платформы
- Услуги
- Профессиональные услуги
- Консультации/Консалтинг
- Проектирование и реализация
- Обучение
- Поддержка и обслуживание
- Управляемые службы
Тип
- Структурированный
- Неструктурированный
Технологии
- Обработка естественного языка
- Машинное и глубокое обучение
- Нейронные сети
- Виртуальные агенты
- Мини Боты
- Компьютерное зрение
- Другие
Размер организации
- Крупные предприятия
- МСП
Приложение
- ИТ-операции
- Управление контакт-центром
- Автоматизация бизнес-процессов
- Управление приложением
- Управление содержанием
- Управление безопасностью
- Другие
Путешествия и гостиничный бизнес
Бизнес-функция
- Информационные технологии
- Финансы и счета
- Человеческие ресурсы
- Операции и цепочка поставок
Режим развертывания
- Локально
- Облако
Конечный пользователь
- Банковское дело, финансовые услуги, страхование (BFSI)
- Телекоммуникации и ИТ
- Транспорт и логистика
- СМИ и развлечения
- Розничная торговля и электронная коммерция
- Производство
- Здравоохранение и науки о жизни
- Другие
- Управление человеческими ресурсами
- Разрешение инцидентов
- Оркестрация сервисов
- Образование
- Правительство и государственный сектор
- Утилиты
Машинное обучение (ML) Региональный анализ/аналитика рынка интеллектуальной автоматизации процессов
Анализируется рынок интеллектуальной автоматизации процессов машинного обучения (ML), а информация о размере рынка и тенденциях предоставляется по компонентам, типу, технологии, размеру организации, приложению, бизнес-функции, режиму развертывания и конечному пользователю, как указано выше.
В отчет о рынке интеллектуальной автоматизации процессов машинного обучения (ML) входят США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, остальные страны Европы в Европе. , Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, Остальные страны Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль , Остальная часть Ближнего Востока и Африки (MEA) как часть Ближнего Востока и Африки (MEA), Бразилия, Аргентина и остальная часть Южной Америки как часть Южной Америки.
Северная Америка доминирует на рынке и продолжит усиливать свою тенденцию доминирования в течение прогнозируемого периода. Основными факторами, объясняющими доминирование региона, являются: Наряду с преобладанием различных игроков рынка в этом районе, решения по управлению процессами и автоматизации становятся все более широко распространенными на предприятии. Кроме того, региональный рост стимулируется растущим внедрением предприятиями решений по управлению процессами и автоматизации в Соединенных Штатах. Основными драйверами роста сегмента являются увеличение расходов на оптимизацию бизнес-операций и широкое внедрение передовых технологий, таких как искусственный интеллект, машинное обучение и RPA.
В Азиатско-Тихоокеанском регионе будут наблюдаться самые высокие темпы роста в течение прогнозируемого периода благодаря внедрению в регионе облачных технологий и растущей осведомленности об автоматизации, машинном обучении и искусственном интеллекте. Спрос на интеллектуальные решения и услуги по автоматизации процессов также растет за счет растущей осведомленности об автоматизации, машинном обучении и искусственном интеллекте. Основными драйверами роста регионального рынка являются глобализация, экономическое развитие, цифровизация и более широкое внедрение облачных технологий.
В разделе отчета, посвященном странам, также представлены отдельные факторы, влияющие на рынок, и изменения в регулировании рынка внутри страны, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости в нисходящем и восходящем направлении, технические тенденции и анализ пяти сил Портера, тематические исследования, являются некоторыми из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по стране учитываются присутствие и доступность мировых брендов и проблемы, с которыми они сталкиваются из-за большой или недостаточной конкуренции со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых маршрутов.
Конкурентная среда и машинное обучение (ML) Анализ доли рынка интеллектуальной автоматизации процессов
Конкурентная среда на рынке интеллектуальной автоматизации процессов машинного обучения (ML) предоставляет подробную информацию о конкурентах. Подробная информация включает обзор компании, финансовые показатели компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, ширину и широту продукта, применение. доминирование. Приведенные выше данные относятся только к фокусу компаний, связанных с рынком интеллектуальной автоматизации процессов машинного обучения (ML).
Вот некоторые из основных игроков, работающих на рынке интеллектуальной автоматизации процессов машинного обучения (ML):
- Automation Anywhere, Inc. (США)
- УиПат (США)
- Блю Призма Лимитед (Великобритания)
- Пегасистемс Инк. (США)
- AntWorks (Сингапур)
- НИЦЦА (Израиль)
- Кофакс Инк. (США)
- SAP SE (Германия)
- AutomationEdge (США)
- Larc AI (Pty) Ltd. (Южная Африка)
- Автологикс (Великобритания)
- Sanbot Innovation Technology., Ltd (Китай)
- Cinnamon Inc. (Япония)
- Випро (Индия)
- Корпорация Xerox (США)
- ТАТА Консалтинги Сервисез Лимитед. (Индия)
- IBM (США)
- Атос SE (Франция)
- Капжемини (Франция)
- Аксенчер (Ирландия)
Артикул-