Image

Глобальный рынок интеллектуальной автоматизации процессов машинного обучения (ML) – тенденции отрасли и прогноз до 2030 года

ИКТ

Image

Глобальный рынок интеллектуальной автоматизации процессов машинного обучения (ML) – тенденции отрасли и прогноз до 2030 года

  • ИКТ
  • Предстоящий отчет
  • июнь 2023 г.
  • Глобальный
  • 350 страниц
  • Количество столов: 220
  • Кол-во фигурок: 60

Глобальный рынок интеллектуальной автоматизации процессов машинного обучения (ML) – тенденции отрасли и прогноз до 2030 года

Размер рынка в миллиардах долларов США

Среднегодовой темп роста: % Diagram

Diagram Прогнозный период 2022–2030 гг.
Diagram Размер рынка (базовый год) 13,60 млрд долларов США
Diagram Размер рынка (прогнозный год) 41,03 миллиарда долларов США
Diagram Среднегодовой темп роста %

Глобальный рынок интеллектуальной автоматизации процессов машинного обучения (ML), по компонентам (решения, услуги), типу (структурированный, неструктурированный), технологии (обработка естественного языка, машинное и глубокое обучение, нейронные сети, виртуальные агенты, мини-боты, компьютерное зрение, другие), размер организации (крупные предприятия, малый и средний бизнес), приложение (ИТ-операции, управление контакт-центром, автоматизация бизнес-процессов, управление приложениями, управление контентом, управление безопасностью, другие), бизнес-функции (информационные технологии, финансы и учет, человеческие ресурсы, Операции и цепочка поставок), режим развертывания (локально, облако), конечный пользователь (банковское дело, финансовые услуги, страхование (BFSI), телекоммуникации и ИТ, транспорт и логистика, средства массовой информации и развлечения, розничная торговля и электронная коммерция, производство, здравоохранение и науки о жизни, другие) – Тенденции отрасли и прогноз до 2030 года.

Machine Learning (ML) Intelligent Process Automation Market

Анализ и размер рынка интеллектуальной автоматизации процессов машинного обучения (ML)

Ожидается, что необходимость повышения продуктивности бизнеса и растущее внедрение технологий в различных отраслях промышленности будут способствовать росту рынка интеллектуальной автоматизации процессов машинного обучения (ML). Интеллектуальные решения для автоматизации процессов предоставляют пользователям передовые инструменты и адаптируемые рабочие процессы, позволяющие им принимать решения быстрее и с более глубокими знаниями. Эти решения управляют интерфейсами и устраняют узкие места в системах рабочих процессов. Ожидается, что этот фактор придаст импульс рынку в ближайшие годы.

Исследование рынка Data Bridge показывает, что рынок интеллектуальной автоматизации процессов машинного обучения (ML), оцениваемый в 13,6 млрд долларов США в 2022 году, достигнет 41,03 млрд долларов США к 2030 году, а среднегодовой темп роста составит 14,80% в течение прогнозируемого периода с 2023 по 2030 год. В дополнение к такой информации о рынке, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, игроки рынка и рыночный сценарий, отчет о рынке, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта / экспорта, ценообразование. анализ, анализ потребления продукции и анализ пестика.

Объем и сегментация рынка интеллектуальной автоматизации процессов машинного обучения (ML)

Отчет по метрике

Подробности

Прогнозный период

2023–2030 гг.

Базисный год

2022 год

Исторические годы

2021 г. (настраивается на 2015–2020 гг.)

Количественные единицы

Выручка в миллиардах долларов США, объемы в единицах, цены в долларах США.

Охваченные сегменты

Компонент (решения, услуги), тип (структурированный, неструктурированный), технология (обработка естественного языка, машинное и глубокое обучение, нейронные сети, виртуальные агенты, мини-боты, компьютерное зрение, другие), размер организации (крупные предприятия, малые и средние предприятия), Приложение (ИТ-операции, управление контакт-центром, автоматизация бизнес-процессов, управление приложениями, управление контентом, управление безопасностью и другие), бизнес-функции (информационные технологии, финансы и учет, человеческие ресурсы, операции и цепочка поставок), режим развертывания (он- Помещения, облако), конечный пользователь (банковское дело, финансовые услуги, страхование (BFSI), телекоммуникации и ИТ, транспорт и логистика, средства массовой информации и развлечения, розничная торговля и электронная коммерция, производство, здравоохранение и науки о жизни, другие)

Охваченные страны

США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальные страны Европы в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, остальная часть Ближнего Востока и Африки (MEA) в составе Ближнего Востока и Африка (MEA), Бразилия, Аргентина и остальная часть Южной Америки как часть Южной Америки.

Охваченные игроки рынка

Automation Anywhere, Inc. (США), UiPath (США), Blue Prism Limited (Великобритания), Pegasystems Inc. (США), AntWorks (Сингапур), NICE (Израиль), Kofax Inc. (США), SAP SE (Германия) , AutomationEdge (США), Larc AI (Pty) Ltd. (Южная Африка), Autologyx (Великобритания), Sanbot Innovation Technology., Ltd (Китай), Cinnamon Inc. (Япония), Wipro (Индия), Xerox Corporation (США) , TATA Consultancy Services Limited. (Индия), IBM (США), Atos SE (Франция), Capgemini (Франция), Accenture (Ирландия)

Возможности рынка

  • Рост инвестиций в рынок интеллектуальной автоматизации процессов
  • Развитие технологий создает выгодную возможность для роста.

Определение рынка

Программные приложения теперь могут делать прогнозы более точно с помощью ML, подобласти искусственного интеллекта. Алгоритмы машинного обучения прогнозируют новые выходные значения, используя в качестве входных данных исторические данные. Технологии искусственного интеллекта (ИИ) используются в автоматизации когнитивных процессов для ускорения когнитивных процессов, таких как рассуждение, машинное обучение и обработка естественного языка. Благодаря автоматизации когнитивных процессов эти задачи будут выполняться быстрее и проще как людьми, так и машинами.

Динамика рынка интеллектуальной автоматизации процессов машинного обучения (ML)

Драйверы

  • Растущее внедрение RPA стимулирует рынок

Предприятия используют технологию RPA для автоматизации задач ручного ввода данных, устраняя необходимость в человеческом труде. Рабочий процесс IPA сочетает в себе когнитивное обучение, RPA, машинное обучение и искусственный интеллект. В результате по мере роста популярности RPA растет и спрос на IPA. RPA обеспечивает эффективность и скорость. Искусственный интеллект (ИИ) добавляется к автоматизации для анализа данных так, как не может человек, распознавать закономерности в данных и учиться на предыдущих решениях, чтобы принимать более мудрые решения. IPA сокращает время, необходимое для выполнения задач, устраняя необходимость ввода данных человеком, проверки информации и сортировки документов, что способствует росту рынка.

  • Увеличение спроса на услуги по внедрению и обучению стимулирует рынок

Значительным сегментом, демонстрирующим рост, является проектирование и реализация. Таким образом, рост объясняется лучшим пониманием использования решений автоматизации для сокращения ручного труда. По мере более широкого использования интеллектуальных решений для автоматизации процессов растет спрос на услуги по внедрению и обучению. Поставщики сосредоточены на предоставлении индивидуального решения, удовлетворяющего бизнес-требованиям. В результате ожидается, что спрос на услуги интеллектуальной автоматизации процессов будет расти в течение прогнозируемого периода.

  • Высокий коэффициент принятия стимулирует рынок

Интеллект машинного обучения (МО) предполагает быстрое расширение масштабов и использования ИТ и автоматизации во всем мире с высокой степенью принятия, минимизацией человеческого труда и ошибок с оптимальным использованием ресурсов для повышения эффективности бизнеса. Автоматизация с помощью искусственного интеллекта помогает улучшить качество обслуживания клиентов и ускорить принятие решений во всей организации, что способствует росту рынка.

Возможности

  • Рост инвестиций в рынок интеллектуальной автоматизации процессов

Предприятия переходят на политику работы на дому, что существенно влияет на объем инвестиций в автоматизацию операционных процессов. Рынок растет благодаря увеличению инвестиций в такие области приложений, как телемедицина, профилактическое обслуживание и виртуальное управление здравоохранением. Внедрение решений IPA увеличилось в большинстве вертикалей, не связанных с ИТ, поэтому на рынке наблюдается расширение рынка интеллектуальной автоматизации процессов машинного обучения (ML) в течение вышеупомянутого прогнозируемого периода.

  • Развитие технологий создает выгодную возможность для роста.

Новые интеллектуальные технологии автоматизации, такие как виртуальные агенты и обработка естественного языка, среди прочего, открывают возможности для улучшения качества обслуживания клиентов, а решения машинного обучения значительно повышают эффективность. Системы могут автоматически учиться на основе опыта и совершенствоваться с помощью машинного обучения, что устраняет необходимость в явном программировании, поэтому развитие технологий может создать прибыльные возможности на рынке.

Ограничения/вызовы

  • Нехватка высококвалифицированной и сложной рабочей силы ограничивает рост

Для запуска новой автоматизированной операционной модели требуется квалифицированная рабочая сила, но крайне важно найти людей с опытом RPA и искусственного интеллекта. Технические навыки, понимание бизнес-процедур организации и способность адаптировать методы управления — все это части интеллекта машинного обучения. Назначение людей для постоянного обслуживания, поддержки и устранения неполадок одинаково важно для развития автоматизации, и отсутствие таких навыков может ограничить рост.

  • Рост угроз кибербезопасности сдерживает расширение рынка

Кибербезопасность является одной из наиболее серьезных проблем в эпоху цифровых технологий. Атаки вредоносных программ и программ-вымогателей становятся все более организованными формами киберпреступности. Каждый день предприятия получают все большее количество уведомлений о безопасности. По данным CERT-In, в первой половине 2021 года было зарегистрировано более 6,07 тысяч инцидентов кибербезопасности. В результате использование кибербезопасности для IPA необходимо для создания эффективной архитектуры безопасности, которая защищает организацию от растущих рисков. По данным опроса Cisco, 77% предприятий намерены увеличить автоматизацию своих экосистем безопасности в ближайшие годы, что ограничивает рынок.

В этом отчете о рынке интеллектуальной автоматизации процессов машинного обучения (ML) представлена ​​подробная информация о последних разработках, торговых правилах, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии отечественных и локализованных участников рынка, анализируются возможности с точки зрения новых карманы доходов, изменения в рыночном регулировании, стратегический анализ роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрение продуктов, запуск продуктов, географическое расширение, технологические инновации на рынке. Чтобы получить дополнительную информацию о рынке интеллектуальной автоматизации процессов машинного обучения (ML), свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.

Недавние улучшения

  • В 2021 году Cisco и IBM совместно работали над координацией и управлением сетями 5G.
  • По данным HCL Technologies, в 2021 году пользователи Google Cloud Marketplace смогут приобрести DRYiCE iAutomate.
  • В 2021 году IBM анонсировала дебют IBM Cloud Pak for Network Automation.
  • В 2021 году, чтобы продолжить совместную работу, Atos и du продлили контракт еще на пять лет. Модернизация приложений и цифровая трансформация будут способствовать этому сотрудничеству с du.
  • По данным Pegasystems, в 2020 году платформа Pega получила новое улучшение. Pega Process AI теперь имеет новую функцию, которая помогает предприятиям оптимизировать бизнес и операции с клиентами в режиме реального времени.

Глобальный рынок машинного обучения (ML) интеллектуальной автоматизации процессов

Рынок интеллектуальной автоматизации процессов машинного обучения (ML) сегментирован по компонентам, типу, технологии, размеру организации, приложениям, бизнес-функциям, режиму развертывания и конечному пользователю. Рост среди этих сегментов поможет вам проанализировать скудные сегменты роста в отраслях и предоставить пользователям ценный обзор рынка и информацию о рынке, которая поможет им принять стратегические решения для определения основных рыночных приложений.

Компонент

  • Решения
  • Программные инструменты
  • Платформы
  • Услуги
  • Профессиональные услуги
  • Консультации/Консалтинг
  • Проектирование и реализация
  • Обучение
  • Поддержка и обслуживание
  • Управляемые службы

Тип

  • Структурированный
  • Неструктурированный

Технологии

  • Обработка естественного языка
  • Машинное и глубокое обучение
  • Нейронные сети
  • Виртуальные агенты
  • Мини Боты
  • Компьютерное зрение
  • Другие

Размер организации

  • Крупные предприятия
  • МСП

Приложение

  • ИТ-операции
  • Управление контакт-центром
  • Автоматизация бизнес-процессов
  • Управление приложением
  • Управление содержанием
  • Управление безопасностью
  • Другие

Путешествия и гостиничный бизнес

Бизнес-функция

  • Информационные технологии
  • Финансы и счета
  • Человеческие ресурсы
  • Операции и цепочка поставок

Режим развертывания

  • Локально
  • Облако

Конечный пользователь

  • Банковское дело, финансовые услуги, страхование (BFSI)
  • Телекоммуникации и ИТ
  • Транспорт и логистика
  • СМИ и развлечения
  • Розничная торговля и электронная коммерция
  • Производство
  • Здравоохранение и науки о жизни
  • Другие
  • Управление человеческими ресурсами
  • Разрешение инцидентов
  • Оркестрация сервисов
  • Образование
  • Правительство и государственный сектор
  • Утилиты

Машинное обучение (ML) Региональный анализ/аналитика рынка интеллектуальной автоматизации процессов

Анализируется рынок интеллектуальной автоматизации процессов машинного обучения (ML), а информация о размере рынка и тенденциях предоставляется по компонентам, типу, технологии, размеру организации, приложению, бизнес-функции, режиму развертывания и конечному пользователю, как указано выше.

В отчет о рынке интеллектуальной автоматизации процессов машинного обучения (ML) входят США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, остальные страны Европы в Европе. , Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, Остальные страны Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль , Остальная часть Ближнего Востока и Африки (MEA) как часть Ближнего Востока и Африки (MEA), Бразилия, Аргентина и остальная часть Южной Америки как часть Южной Америки.

Северная Америка доминирует на рынке и продолжит усиливать свою тенденцию доминирования в течение прогнозируемого периода. Основными факторами, объясняющими доминирование региона, являются: Наряду с преобладанием различных игроков рынка в этом районе, решения по управлению процессами и автоматизации становятся все более широко распространенными на предприятии. Кроме того, региональный рост стимулируется растущим внедрением предприятиями решений по управлению процессами и автоматизации в Соединенных Штатах. Основными драйверами роста сегмента являются увеличение расходов на оптимизацию бизнес-операций и широкое внедрение передовых технологий, таких как искусственный интеллект, машинное обучение и RPA.

В Азиатско-Тихоокеанском регионе будут наблюдаться самые высокие темпы роста в течение прогнозируемого периода благодаря внедрению в регионе облачных технологий и растущей осведомленности об автоматизации, машинном обучении и искусственном интеллекте. Спрос на интеллектуальные решения и услуги по автоматизации процессов также растет за счет растущей осведомленности об автоматизации, машинном обучении и искусственном интеллекте. Основными драйверами роста регионального рынка являются глобализация, экономическое развитие, цифровизация и более широкое внедрение облачных технологий.

В разделе отчета, посвященном странам, также представлены отдельные факторы, влияющие на рынок, и изменения в регулировании рынка внутри страны, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости в нисходящем и восходящем направлении, технические тенденции и анализ пяти сил Портера, тематические исследования, являются некоторыми из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по стране учитываются присутствие и доступность мировых брендов и проблемы, с которыми они сталкиваются из-за большой или недостаточной конкуренции со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых маршрутов.

Конкурентная среда и машинное обучение (ML) Анализ доли рынка интеллектуальной автоматизации процессов

Конкурентная среда на рынке интеллектуальной автоматизации процессов машинного обучения (ML) предоставляет подробную информацию о конкурентах. Подробная информация включает обзор компании, финансовые показатели компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, ширину и широту продукта, применение. доминирование. Приведенные выше данные относятся только к фокусу компаний, связанных с рынком интеллектуальной автоматизации процессов машинного обучения (ML).

Вот некоторые из основных игроков, работающих на рынке интеллектуальной автоматизации процессов машинного обучения (ML):

  • Automation Anywhere, Inc. (США)
  • УиПат (США)
  • Блю Призма Лимитед (Великобритания)
  • Пегасистемс Инк. (США)
  • AntWorks (Сингапур)
  • НИЦЦА (Израиль)
  • Кофакс Инк. (США)
  • SAP SE (Германия)
  • AutomationEdge (США)
  • Larc AI (Pty) Ltd. (Южная Африка)
  • Автологикс (Великобритания)
  • Sanbot Innovation Technology., Ltd (Китай)
  • Cinnamon Inc. (Япония)
  • Випро (Индия)
  • Корпорация Xerox (США)
  • ТАТА Консалтинги Сервисез Лимитед. (Индия)
  • IBM (США)
  • Атос SE (Франция)
  • Капжемини (Франция)
  • Аксенчер (Ирландия)


Артикул-

Пожалуйста, заполните форму ниже для получения подробного содержания.

Нажимая кнопку «Отправить», вы соглашаетесь с исследованием рынка Data Bridge. политика конфиденциальности и Условия и положения

Пожалуйста, заполните форму ниже для получения подробного списка таблиц.

Нажимая кнопку «Отправить», вы соглашаетесь с исследованием рынка Data Bridge. политика конфиденциальности и Условия и положения

Пожалуйста, заполните форму ниже для получения подробного списка рисунков.

Нажимая кнопку «Отправить», вы соглашаетесь с исследованием рынка Data Bridge. политика конфиденциальности и Условия и положения

Пожалуйста, заполните форму ниже для инфографики

Нажимая кнопку «Отправить», вы соглашаетесь с исследованием рынка Data Bridge. политика конфиденциальности и Условия и положения

Методология исследования:

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этот этап включает получение рыночной информации или связанных с ней данных из различных источников и стратегий. Он включает в себя предварительное изучение и планирование всех данных, полученных в прошлом. Он также включает в себя изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием рыночных статистических и последовательных моделей. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, запросите звонок аналитика или оставьте свой запрос.

Ключевой исследовательской методологией, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевыми экспертами) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной шкалы рынка, обзор и руководство рынка, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли компании на рынке, стандарты измерения, глобальный и региональный анализ и анализ доли поставщиков. Чтобы узнать больше о методологии исследования, оставьте запрос и поговорите с нашими отраслевыми экспертами.

Пожалуйста, заполните форму ниже для методологии исследования

Нажимая кнопку «Отправить», вы соглашаетесь с исследованием рынка Data Bridge. политика конфиденциальности и Условия и положения

Доступная настройка:

Data Bridge Market Research — лидер в области передовых формативных исследований. Мы гордимся тем, что обслуживаем наших существующих и новых клиентов, предоставляя данные и анализ, которые соответствуют их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимающих рынок дополнительных стран (запросите список стран), данные результатов клинических испытаний, обзор литературы, обновленный рынок и анализ базы продуктов. Рыночный анализ целевых конкурентов можно анализировать от анализа на основе технологий до стратегий рыночного портфеля. Мы можем добавить столько конкурентов, о которых вам нужны данные, в том формате и стиле данных, которые вы ищете. Наша команда аналитиков также может предоставить вам данные в необработанных сводных таблицах файлов Excel (книга фактов) или помочь вам в создании презентаций на основе наборов данных, доступных в отчете.

Пожалуйста, заполните форму ниже, чтобы получить доступную настройку.

Нажимая кнопку «Отправить», вы соглашаетесь с исследованием рынка Data Bridge. политика конфиденциальности и Условия и положения

ЧАСТО ЗАДАЮТ ВОПРОСЫ

Прогнозируется, что рынок интеллектуальной автоматизации процессов машинного обучения (ML) будет расти в среднем на 14,80% в течение прогнозируемого периода к 2030 году.
Ожидается, что к 2030 году будущая рыночная стоимость рынка интеллектуальной автоматизации процессов машинного обучения (ML) достигнет 41,03 миллиарда долларов США.
Основными игроками на рынке интеллектуальной автоматизации процессов машинного обучения (ML) являются Automation Anywhere, Inc. (США), UiPath (США), Blue Prism Limited (Великобритания), Pegasystems Inc. (США), AntWorks (Сингапур), NICE (США). Израиль), Kofax Inc. (США), SAP SE (Германия), AutomationEdge (США) и др.
Страны, охваченные рынком интеллектуальной автоматизации процессов машинного обучения (ML), — это США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, остальные страны Европы в Европе, Китай, Япония, Индия и т. д.
Бесплатный образец отчета

ВЫБЕРИТЕ ТИП ЛИЦЕНЗИИ

  • 7000,00
  • 4800,00
  • 3000,00
  • 8000,00
  • 12000.00

почему выбрали нас

Охват отрасли

DBMR работает по всему миру в различных отраслях, что дает нам знания по всем отраслям и предоставляет нашим клиентам информацию не только об их отрасли, но и о том, как другие отрасли повлияют на их экосистему.

Региональное покрытие

Охват Data Bridge не ограничивается развитыми или развивающимися странами. Мы работаем по всему миру, охватывая самый большой спектр стран, где ни одна другая фирма, занимающаяся исследованиями рынка или бизнес-консалтингом, никогда не проводила исследований; создавая возможности роста для наших клиентов в областях, которые еще неизвестны.

Технологический охват

В современном мире технологии определяют настроения рынка, поэтому наше видение состоит в том, чтобы предоставить нашим клиентам информацию не только о разработанных технологиях, но и о предстоящих и разрушительных технологических изменениях на протяжении всего жизненного цикла продукта, предоставляя им непредвиденные возможности на рынке, которые создадут переворот в их отрасли. . Это приводит к инновациям, и наши клиенты выходят победителями.

Целенаправленные решения

Цель DBMR — помочь нашим клиентам достичь своих целей с помощью наших решений; поэтому мы формативно создаем наиболее подходящие решения для нужд наших клиентов, экономя им время и усилия для реализации своих грандиозных стратегий.

Непревзойденная поддержка аналитиков

Наши аналитики гордятся успехом наших клиентов. В отличие от других, мы верим в то, что работаем вместе с нашими клиентами для достижения их целей при круглосуточной аналитической поддержке, определяющей правильные потребности и стимулирующей инновации посредством обслуживания.

Banner

Отзывы клиентов