Глобальный рынок чипов для машинного обучения, по типу чипа (GPU, ASIC, FPGA, CPU и другие), технологии (система на кристалле, система в корпусе, многочиповый модуль, другие), отраслевой вертикали (СМИ и реклама, BFSI, IT и Telecom, Розничная торговля, Здравоохранение, Автомобилестроение и транспорт, Прочее) - Тенденции отрасли и прогноз до 2029 года.
Анализ рынка и размер
Чипы машинного обучения широко используются для предотвращения ошибок и экономии средств в различных отраслях, включая автомобилестроение, транспорт, производство, средства массовой информации и рекламу, а также финансы. Аппаратная инфраструктура включает в себя хранилище, вычисления, компоненты и сеть.
Глобальный рынок чипов для машинного обучения в 2021 году оценивался в 1,78 миллиарда долларов США, и ожидается, что к 2029 году он достигнет 144,24 миллиарда долларов США, при этом среднегодовой темп роста составит 41,10% в течение прогнозируемого периода 2022-2029 годов. Система-на-кристалле составляет крупнейший технологический сегмент на соответствующем рынке из-за широкого использования этой технологии поставщиками для снижения затрат. Отчет о рынке, подготовленный командой Data Bridge Market Research, включает углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестика.
Определение рынка
Машинное обучение (ML) определяется как часть искусственный интеллект (ИИ), который обычно основан на экспериментальном обучении, а не на программировании задачи принятия решений. Эти чипы установлены для расширения ядер интеллектуальной собственности. Они помогают улучшить производительность и результаты по площади (PPA) с помощью машинного обучения, мощности, оптимизации и аналитики.
Объем отчета и сегментация рынка
Отчет по метрике |
Подробности |
Прогнозный период |
2022–2029 гг. |
Базисный год |
2021 год |
Исторические годы |
2020 г. (настраивается на 2019–2014 гг.) |
Количественные единицы |
Выручка в миллиардах долларов США, объемы в единицах, цены в долларах США. |
Охваченные сегменты |
Тип чипа (GPU, ASIC, FPGA, CPU, другие), технология (Система на кристалле, «Система в корпусе», «Мультичиповый модуль», «Другие»), «Отрасли (СМИ и реклама, BFSI, ИТ и телекоммуникации, Розничная торговля, здравоохранение, автомобилестроение и транспорт, другие)» |
Охваченные страны |
США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальные страны Европы в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, Остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Израиль, Египет, Южная Африка, Остальная часть Ближнего Востока и Африки (MEA) в составе Ближнего Востока и Африка (MEA), Бразилия, Аргентина и остальная часть Южной Америки как часть Южной Америки. |
Охваченные игроки рынка |
Google Inc (США), Amazon Web Services, Inc. (США), Advanced Micro Devices, Inc (США), BitMain Technologies Holding Company (Китай), Intel Corporation (США), Xilinx (США), SAMSUNG (Южная Корея), Qualcomm Technologies, Inc. (США), NVIDIA Corporation (США), Wave Computing, Inc. (США), Graphcore (Великобритания), IBM Corporation (США), Taiwan Semiconductor Manufacturing Company Limited (Тайвань) и Micron Technology, Inc. (США), среди прочего |
Возможности рынка |
|
Динамика рынка чипов машинного обучения
В этом разделе рассматривается понимание движущих сил рынка, преимуществ, возможностей, ограничений и проблем. Все это подробно обсуждается ниже:
Драйверы
- Рост тенденции цифровизации
Рост тенденции цифровизации наряду с расширением индустрии информационных технологий (ИТ) по всему миру является одним из основных факторов, способствующих росту рынка чипов для машинного обучения. Алгоритмы глубокого обучения способны автоматически перехватывать доступные точки данных, что повышает точность и эффективность процесса принятия решений.
- Рост кибератак
Рост числа кибератак побуждает отрасли использовать управление базами данных. системы обнаружения мошенничества и информационная безопасность ускорить рынок.
Интеграция с передовыми технологиями
Интеграция с аналитикой больших данных и облачными вычислениями для предоставления расширенных услуг различным отраслям еще больше влияет на рынок. Исследования и разработки (RandD) улучшают аппаратные и программные решения для глубокого обучения.
Кроме того, быстрая урбанизация, изменение образа жизни, рост инвестиций и рост потребительских расходов положительно влияют на рынок чипов машинного обучения.
Возможности
Кроме того, усиление внимания к разработке систем искусственного интеллекта, ориентированных на человека, расширяет прибыльные возможности для игроков рынка в прогнозируемый период с 2022 по 2029 год. Кроме того, внедрение искусственного интеллекта в периферийные устройства будет способствовать дальнейшему расширению рынка.
Ограничения/вызовы
С другой стороны, ожидается, что низкая рентабельность инвестиций и нехватка квалифицированной рабочей силы в области ИИ будут препятствовать росту рынка. Кроме того, прогнозируется, что ограниченность структурированных данных бросит вызов рынку чипов машинного обучения в прогнозируемый период 2022-2029 годов.
В этом отчете о рынке чипов машинного обучения представлена подробная информация о последних разработках, торговых правилах, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локализованных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в регулирование рынка, стратегический анализ роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрение продуктов, запуск продуктов, географическое расширение, технологические инновации на рынке. Чтобы получить дополнительную информацию о рынке чипов машинного обучения, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Влияние COVID-19 на рынок чипов машинного обучения
COVID-19 оказал негативное влияние на рынок чипов машинного обучения из-за строгих ограничений и социального дистанцирования для сдерживания распространения вируса. Экономическая неопределенность, частичное закрытие бизнеса и низкое доверие потребителей повлияли на спрос на технологию чипов машинного обучения. Во время пандемии цепочка поставок затруднилась, а также задержалась логистическая деятельность. Однако ожидается, что рынок чипов для машинного обучения восстановит свои темпы в постпандемическом сценарии из-за ослабления ограничений.
Недавние улучшения
- В мае 2020 года NVIDIA выпустила два мощных продукта для своей платформы EGX Edge AI и EGX A100 для более крупных коммерческих готовых серверов. Эти платформы способны безопасно развертывать, обновлять и удаленно управлять парком серверов.
- В мае 2020 года компания NVIDIA объявила о выпуске NVIDIA A100, первого графического процессора на базе архитектуры NVIDIA Ampere. Он находится в стадии производства и доставки клиентам по всему миру. Он основан на прорывных разработках в архитектуре NVIDIA Ampere и обеспечивает самый большой скачок производительности компании на сегодняшний день.
Объем и размер мирового рынка чипов машинного обучения
Рынок чипов для машинного обучения сегментирован по типу чипа, технологии и отраслевой вертикали. Рост среди этих сегментов поможет вам проанализировать скудные сегменты роста в отраслях и предоставить пользователям ценный обзор рынка и рыночную информацию, которая поможет им принять стратегические решения для определения основных рыночных приложений.
Тип чипа
- графический процессор
- ASIC
- ПЛИС
- Процессор
- Другие
- НПУ
- Гибридный чип
Технологии
- Система на кристалле
- Система в упаковке
- Многочиповый модуль
- Другие
Отраслевая вертикаль
- СМИ и реклама
- БФСИ
- ИТ и Телеком
- Розничная торговля
- Здравоохранение
- Автомобильная промышленность и транспорт
- Другие
Региональный анализ/аналитика рынка чипов машинного обучения
Рынок чипов машинного обучения анализируется, а информация о размере рынка и тенденциях предоставляется по странам, типам чипов, технологиям и отраслевым вертикалям, как указано выше.
В отчет о рынке чипов машинного обучения включены следующие страны: США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, остальные страны Европы в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Израиль, Египет, Южная Африка, остальной Ближний Восток и Африка (MEA) как часть Ближнего Востока и Африка (MEA), Бразилия, Аргентина и остальная часть Южной Америки как часть Южной Америки.
Северная Америка доминирует на рынке чипов машинного обучения из-за растущей обеспокоенности по поводу безопасности критически важной инфраструктуры и конфиденциальных данных в регионе.
Ожидается, что в течение прогнозируемого периода с 2022 по 2029 год в Европе произойдет значительный рост благодаря внедрению передовых технологий в регионе.
В разделе отчета, посвященном странам, также представлены отдельные факторы, влияющие на рынок, и изменения в регулировании рынка внутри страны, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости нисходящей и восходящей цепочки, технические тенденции и анализ пяти сил Портера, тематические исследования, являются некоторыми из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по стране учитываются наличие и доступность мировых брендов и проблемы, с которыми они сталкиваются из-за большой или недостаточной конкуренции со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых маршрутов.
Конкурентная среда и рынок чипов машинного обучения
Конкурентная среда на рынке чипов машинного обучения предоставляет подробную информацию о конкурентах. Подробная информация включает обзор компании, финансовые показатели компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, ширину и широту продукта, применение. доминирование. Приведенные выше данные относятся только к ориентации компаний на рынке чипов машинного обучения.
Некоторые из основных игроков, работающих на рынке чипов машинного обучения:
- Google Inc (США)
- Amazon Web Services, Inc. (США)
- Advanced Micro Devices, Inc (США)
- Холдинговая компания BitMain Technologies (Китай)
- Корпорация Intel (США)
- Xilinx (США), SAMSUNG (Южная Корея)
- Qualcomm Technologies, Inc. (США)
- Корпорация NVIDIA (США)
- Wave Computing, Inc. (США)
- Графкор (Великобритания)
- Корпорация IBM (США)
- Тайваньская компания по производству полупроводников (Тайвань)
- Micron Technology, Inc. (США)
Артикул-