Rapport d’analyse de la taille, de la part et des tendances du marché de la maintenance prédictive aux États-Unis – Aperçu du secteur et prévisions jusqu’en 2032

Demande de table des matières Demande de table des matières Parler à un analysteParler à un analyste Exemple de rapport gratuitExemple de rapport gratuit Renseignez-vous avant d'acheterRenseignez-vous avant Acheter maintenantAcheter maintenant

Rapport d’analyse de la taille, de la part et des tendances du marché de la maintenance prédictive aux États-Unis – Aperçu du secteur et prévisions jusqu’en 2032

  • ICT
  • Upcoming Reports
  • Feb 2025
  • Country Level
  • 350 Pages
  • Nombre de tableaux : 220
  • Nombre de figures : 60
  • Author : Megha Gupta

Contournez les défis liés aux tarifs grâce à un conseil agile en chaîne d'approvisionnement

L’analyse de l’écosystème de la chaîne d’approvisionnement fait désormais partie des rapports DBMR

Us Predictive Maintenance Market

Taille du marché en milliards USD

TCAC :  % Diagram

Chart Image USD 7.23 Billion USD 55.12 Billion 2024 2032
Diagram Période de prévision
2025 –2032
Diagram Taille du marché (année de référence)
USD 7.23 Billion
Diagram Taille du marché (année de prévision)
USD 55.12 Billion
Diagram TCAC
%
DiagramPrincipaux acteurs du marché
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5 < /li>

Segmentation du marché de la maintenance prédictive aux États-Unis, par offre (solution et services), mode de déploiement (cloud et sur site), application (vérification de la transmission, changement d'huile, inspection des pneus, remplacement du liquide de refroidissement, freins, filtre à air du moteur, filtre d'habitacle et changement de courroie), taille de l'entreprise (grandes organisations et petites et moyennes organisations), type de véhicule (voiture de tourisme, véhicule utilitaire et véhicule tout-terrain), utilisateur final (propriétaires de flotte, FMS, fabricants, FMC et particuliers) - Tendances et prévisions du secteur jusqu'en 2032

Analyse du marché de la maintenance prédictive aux États-Unis

Le marché américain de la maintenance prédictive connaît une croissance significative, alimentée par la nécessité de réduire les charges opérationnelles grâce à des services d'assistance à la maintenance, la demande croissante d'équipements basés sur des projets et le rythme rapide de l'innovation technologique, qui permet aux entreprises de minimiser les risques d'amortissement et d'éviter les pertes financières. Cependant, le marché est confronté à des contraintes telles que des investissements en capital élevés et la disponibilité limitée d'équipements spécialisés. Les opportunités résident dans la formation de partenariats et de collaborations avec des fournisseurs de technologie, l'adoption d'initiatives écologiques et de durabilité, et la capitalisation sur l'industrialisation croissante et l'adoption technologique. Malgré ces perspectives, le marché est confronté à des complexités de gestion des stocks et à une concurrence intense, ce qui conduit à une saturation du marché.

Taille du marché de la maintenance prédictive aux États-Unis

La taille du marché américain de la maintenance prédictive était évaluée à 7,23 milliards USD en 2024 et devrait atteindre 55,12 milliards USD d’ici 2032, avec un TCAC de 28,89 % au cours de la période de prévision de 2025 à 2032. En plus des informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse approfondie des experts, une production et une capacité géographiquement représentées par l’entreprise, des configurations de réseau de distributeurs et de partenaires, une analyse détaillée et mise à jour des tendances des prix et une analyse des déficits de la chaîne d’approvisionnement et de la demande.

Tendance du marché de la maintenance prédictive aux États-Unis

« Adoption de l'IoT et de l'IA »

L’adoption d’appareils IoT permet une surveillance continue des équipements en collectant des données en temps réel sur leurs performances et leur état. Ces données sont ensuite analysées à l’aide d’algorithmes d’IA pour identifier des tendances et prédire les pannes potentielles. En exploitant l’apprentissage automatique, les organisations peuvent améliorer la précision de leurs prévisions de maintenance. Cette approche proactive minimise les temps d’arrêt imprévus et améliore l’efficacité opérationnelle globale. En fin de compte, l’intégration de l’IoT et de l’IA transforme la maintenance de réactive en prédictive, favorisant ainsi une meilleure gestion des ressources.

Portée du rapport et marché américain de la maintenance prédictive

Attributs

Informations clés sur le marché de la maintenance prédictive aux États-Unis 

Segments couverts

  • En offrant  : Solution et Services
  • Par mode de déploiement : Cloud et sur site
  • Par application : Vérification de la transmission, changement d'huile et pneus
  • Par inspection , remplacement du liquide de refroidissement, frein, filtre à air du moteur, filtre d'habitacle et changement de courroie
  • Par taille d'entreprise : grandes organisations et petites et moyennes organisations
  • Par type de véhicule  : voiture de tourisme, véhicule utilitaire et véhicule tout-terrain
  • Par utilisateur final : propriétaires de flottes, FMS, fabricants, FMC et particuliers

Principaux acteurs du marché

AISIN CORPORATION (Japon), PHINIA Inc. (Chine), KPIT (Inde), Microsoft (États-Unis), Aptiv (Irlande), Continental AG (Allemagne), Robert Bosch GmbH (Allemagne), Siemens AG (Allemagne), SAP SE (Allemagne), ZF Friedrichshafen AG (Allemagne), Valeo Corporation (France), IBM (États-Unis), Teletrac Navman (États-Unis), Garrett Motion Inc. (États-Unis), Pstream Security Ltd. (Royaume-Uni), Verizon (États-Unis), Infineon Technologies AG (Allemagne), Uptake Technologies Inc. (États-Unis), Fluke Corporation (États-Unis), PTC (États-Unis), Rockwell Automation (États-Unis), Embitel (Inde), Altair Engineering Inc. (États-Unis), Honeywell International Inc. (États-Unis), NEC Corporation (Japon), Emerson (États-Unis), C3.AI (États-Unis), Progress (États-Unis), Fiix by Rockwell Automation Inc. (États-Unis) et Ansys (États-Unis) entre autres

Opportunités de marché

  • Demande croissante de durabilité
  • Collaboration avec les fabricants de pneus pour des pneus intelligents

Ensembles d'informations sur les données à valeur ajoutée

Outre les informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse approfondie des experts, une production et une capacité géographiquement représentées par l'entreprise, des configurations de réseau de distributeurs et de partenaires, une analyse détaillée et mise à jour des tendances des prix et une analyse du déficit de la chaîne d'approvisionnement et de la demande.

Définition du marché de la maintenance prédictive aux États-Unis

La maintenance prédictive dans l'industrie automobile fait référence à l'utilisation d'analyses basées sur des données et de technologies de surveillance en temps réel pour prédire quand les composants d'un véhicule, tels que les moteurs, les freins ou les pneus, nécessiteront une maintenance. En utilisant des capteurs, la télématique et les systèmes IoT, la maintenance prédictive identifie les tendances et les premiers signes d'usure ou de défaillance potentielle, ce qui permet de planifier les réparations ou les remplacements de pièces avant que les pannes ne surviennent. Cette approche proactive minimise les temps d'arrêt imprévus des véhicules, améliore la sécurité, réduit les coûts de maintenance et prolonge la durée de vie globale des composants automobiles.

Dynamique du marché de la maintenance prédictive aux États-Unis

Conducteur

  • Adoption croissante de l'IoT dans les opérations industrielles

L’adoption croissante de l’IoT dans les opérations industrielles est un moteur important pour le marché de la maintenance prédictive, car elle permet la surveillance et la collecte de données en temps réel à partir d’équipements et de machines dans divers secteurs.  Les capteurs IoT  capturent en continu des données opérationnelles critiques telles que la température, les vibrations, la pression et l’usure, qui sont ensuite analysées à l’aide d’algorithmes prédictifs avancés pour identifier les pannes potentielles des équipements avant qu’elles ne se produisent. Cette approche proactive permet aux entreprises d’optimiser les calendriers de maintenance, de réduire les temps d’arrêt imprévus, de prolonger la durée de vie des équipements et de réduire les coûts d’exploitation. Alors que les industries adoptent de plus en plus l’IoT pour la fabrication intelligente, la gestion de l’énergie et l’optimisation de la chaîne d’approvisionnement, la maintenance prédictive devient essentielle pour garantir l’efficacité, la productivité et la fiabilité des actifs dans les environnements compatibles avec l’IoT.

Par exemple, en septembre 2024, MachineQ de Comcast a lancé une solution de surveillance de l'alimentation basée sur l'IoT visant à aider les entreprises à gérer la consommation d'énergie et à améliorer l'efficacité opérationnelle. Cette solution a facilité la maintenance prédictive en détectant les anomalies de consommation d'énergie, permettant ainsi un entretien proactif des équipements critiques tels que les congélateurs à très basse température. Le capteur CT MQpower a fourni des données en temps réel, offrant une vue complète de la consommation d'énergie et des informations exploitables. Cette innovation a soutenu l'adoption croissante de l'IoT dans les opérations industrielles, permettant aux entreprises d'optimiser l'utilisation des actifs et de réduire les coûts globaux tout en contribuant aux efforts de durabilité.

  • Demande croissante de solutions Big Data et d'analyse

La demande croissante de solutions de big data et d’analyse façonne considérablement le marché de la maintenance prédictive, car les entreprises reconnaissent de plus en plus la valeur des informations basées sur les données pour optimiser l’efficacité opérationnelle. En exploitant des analyses avancées, les entreprises peuvent traiter de vastes quantités de données en temps réel provenant de capteurs IoT et d’autres sources, ce qui leur permet d’identifier des tendances, de prédire les pannes d’équipement et de prendre des décisions de maintenance éclairées. Cette approche proactive minimise les temps d’arrêt imprévus, réduit les coûts de maintenance et améliore les performances globales des actifs, ce qui entraîne de nouveaux investissements dans les technologies de big data. Alors que les industries continuent d’adopter l’analyse des données comme élément central de leurs stratégies de maintenance, le marché de la maintenance prédictive devrait connaître une croissance substantielle, alimentée par le besoin d’améliorer la fiabilité et l’efficacité opérationnelle. Par exemple,

En avril 2024, Databricks a lancé la plateforme Data Intelligence for Energy, conçue pour intégrer les capacités d’IA dans l’ensemble du secteur de l’énergie. Cette plateforme utilise une architecture ouverte de type lakehouse, permettant aux organisations de gérer de grands volumes de données énergétiques tout en préservant la confidentialité des données. Elle permet une gestion des performances des actifs en temps réel et une maintenance proactive, aidant ainsi les entreprises à réduire les temps d’arrêt imprévus et à améliorer l’efficacité opérationnelle. Alors que le secteur de l’énergie évolue vers des systèmes plus propres et plus fiables, la plateforme répond à la demande croissante de solutions de big data et d’analyse, permettant aux organisations d’optimiser leur infrastructure et de mettre en œuvre efficacement des stratégies de maintenance prédictive.

 Opportunité

  • Demande croissante de durabilité

La demande croissante en matière de développement durable représente une opportunité considérable pour le marché de la maintenance prédictive. Alors que les industries cherchent à réduire leur consommation d’énergie, à minimiser les déchets et à améliorer l’efficacité des ressources, les technologies de maintenance prédictive peuvent jouer un rôle crucial en optimisant les performances des équipements et en évitant les pannes inattendues. En permettant la détection précoce de problèmes potentiels, ces solutions contribuent à prolonger la durée de vie des machines, à réduire les temps d’arrêt et à diminuer l’impact environnemental des opérations. Cela s’inscrit dans la tendance plus large en faveur de pratiques durables, faisant de la maintenance prédictive une option attrayante pour les entreprises qui cherchent à atteindre leurs objectifs de développement durable tout en améliorant leur efficacité opérationnelle.

Par exemple, en mai 2023, selon un article publié par Software GmbH, l’Internet des objets (IoT) a considérablement transformé l’industrie manufacturière, renforçant les efforts en matière de développement durable. L’IoT permet aux fabricants de mettre en œuvre une maintenance prédictive, qui utilise les données des capteurs pour prévoir les pannes d’équipement. Cette approche proactive permet de réduire les temps d’arrêt imprévus, les coûts de maintenance et les émissions de carbone. La maintenance prédictive peut augmenter la productivité de 25 % et réduire les pannes de 70 %. Alors que les fabricants sont confrontés à une pression croissante pour atteindre leurs objectifs de développement durable, la demande de solutions de maintenance prédictive devrait augmenter. En optimisant les processus de production et en minimisant les déchets, la maintenance prédictive répond directement à la demande croissante de durabilité, ce qui en fait un aspect essentiel de la fabrication moderne.

  • Collaboration avec les fabricants de pneus pour des pneus intelligents

La collaboration avec les fabricants de pneus pour les pneus intelligents représente une opportunité précieuse pour le marché de la maintenance prédictive. Alors que l'industrie automobile se tourne de plus en plus vers les technologies intelligentes, l'intégration de solutions de maintenance prédictive aux systèmes de pneus intelligents peut améliorer les performances et la sécurité des véhicules. Ces pneus intelligents, équipés de capteurs qui surveillent l'état, la pression et la température des pneus en temps réel, fournissent des données critiques que les systèmes de maintenance prédictive peuvent analyser. En exploitant ces données, les exploitants de flottes et les propriétaires de véhicules peuvent résoudre de manière proactive les problèmes potentiels, réduire les temps d'arrêt et améliorer l'efficacité globale des véhicules. Cette collaboration renforce non seulement le marché de la maintenance prédictive, mais répond également à la demande croissante de solutions automobiles intelligentes et durables.

Par exemple, en septembre 2023, Revvo et Smartcar ont lancé une solution de pneus connectés visant à transformer la gestion des pneus pour la maintenance prédictive. Ce partenariat a permis aux détaillants de pneus, aux flottes et aux particuliers d'intégrer la télématique des véhicules et d'automatiser les alertes de maintenance prédictive, réduisant ainsi les temps d'arrêt et optimisant les ressources. En exploitant cette plateforme, les fournisseurs de pneus ont pu faire face à la hausse des coûts des pneus et améliorer le service client grâce à des solutions de maintenance proactive. Cette collaboration a marqué une avancée significative sur le marché de la maintenance prédictive, permettant une allocation plus intelligente des ressources et moins de réparations d'urgence grâce à une surveillance des données en temps réel et à des flux de travail automatisés.

Retenue/Défi

  • Intégration de données de haute qualité pour la maintenance prédictive automobile

Les investissements élevés en capital requis pour les équipements de test et de mesure constituent un obstacle pour les nouveaux entrants sur le marché. Les dépenses financières importantes nécessaires pour constituer un inventaire compétitif dissuadent les nouveaux acteurs potentiels d'entrer dans le secteur. Ce manque de nouvelle concurrence peut conduire à un marché dominé par quelques entreprises établies, ce qui réduit l'innovation et limite les options pour les clients. Par conséquent, les exigences élevées en capital limitent non seulement la croissance et la diversification des sociétés de location et de leasing, mais entravent également le dynamisme global du marché et le choix des clients.

Par exemple, en mars 2024, selon KHL Group LLP, United Rentals a investi 1,1 milliard USD pour acquérir l'activité de routes temporaires de A-Plant, basée au Royaume-Uni, élargissant ainsi son offre dans les secteurs des infrastructures et de la construction. Cette acquisition stratégique visait à enrichir son portefeuille avec des équipements et des services spécialisés, renforçant ainsi sa position sur le marché de la location. Cette opération s'inscrit dans la stratégie de United Rentals visant à diversifier et à renforcer ses capacités de service à l'échelle mondiale.

  • Disponibilité limitée d'équipements spécialisés

Les acteurs du marché américain de la maintenance prédictive automobile sont confrontés à un défi de taille en matière d’intégration de données de haute qualité. Les véhicules devenant de plus en plus complexes, équipés de capteurs avancés et de technologies connectées, la quantité de données générées est vaste et diversifiée. Il est donc difficile de consolider les informations provenant de diverses sources, telles que la télématique, les diagnostics embarqués et les dossiers de maintenance historiques. Si l’intégration des données est inefficace, elle peut conduire à des évaluations incomplètes ou inexactes de l’état du véhicule, ce qui compromet l’efficacité des stratégies de maintenance prédictive. En outre, l’intégration de systèmes existants avec des technologies modernes complique encore davantage la situation. De nombreuses entreprises automobiles s’appuient encore sur des logiciels obsolètes qui sont incompatibles avec les analyses de données avancées requises pour la maintenance prédictive. Cette lacune empêche la circulation fluide de données de haute qualité nécessaires à une prévision précise des besoins de maintenance. Par conséquent, l’incapacité à intégrer efficacement les données peut entraver le succès global des initiatives de maintenance prédictive, affectant non seulement la fiabilité du véhicule mais aussi l’efficacité opérationnelle.

Par exemple, les systèmes Tesla Autopilot et Full Self-Driving présentent des défis considérables en raison de la complexité du traitement des données en temps réel provenant de plusieurs capteurs et caméras. La dépendance à des données précises pour des fonctionnalités telles que le régulateur de vitesse adaptatif et le changement de voie automatique signifie que toute divergence peut entraîner des problèmes de sécurité et des inefficacités opérationnelles. En outre, la nécessité de mises à jour logicielles continues et d'étalonnage du système complique le processus d'intégration, ce qui rend essentiel le maintien d'un flux continu de données de haute qualité pour des performances optimales du véhicule.

Ce rapport de marché fournit des détails sur les nouveaux développements récents, les réglementations commerciales, l'analyse des importations et des exportations, l'analyse de la production, l'optimisation de la chaîne de valeur, la part de marché, l'impact des acteurs du marché national et local, les opportunités d'analyse en termes de poches de revenus émergentes, les changements dans la réglementation du marché, l'analyse stratégique de la croissance du marché, la taille du marché, la croissance des catégories de marché, les niches d'application et la domination, les approbations de produits, les lancements de produits, les expansions géographiques, les innovations technologiques sur le marché. Pour obtenir plus d'informations sur le marché, contactez Data Bridge Market Research pour un briefing d'analyste, notre équipe vous aidera à prendre une décision de marché éclairée pour atteindre la croissance du marché.

Portée du marché de la maintenance prédictive aux États-Unis

Le marché est segmenté en fonction du mode de déploiement, de l'application, de la taille de l'entreprise, du type de véhicule et de l'utilisateur final. La croissance parmi ces segments vous aidera à analyser les segments de croissance faibles dans les industries et à fournir aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.

Offre

  • Solution
  • Services

Mode de déploiement

  • Nuage
  • Sur site

Application

  • Vérification de la transmission
  • Vidange
  • Inspection des pneus
  • Remplacement du liquide de refroidissement
  • Frein
  • Filtre à air du moteur
  • Filtre d'habitacle
  • Changement de courroie

Taille de l'entreprise

  • Organisations de grande taille
  • Petite et moyenne organisation

 Type de véhicule

  • Voiture de tourisme
  • Véhicule utilitaire
  • Véhicule tout terrain

Utilisateur final

  • Propriétaires de flottes
  • FMS
  • Fabricants
  • FMC
  • Individuel

Part de marché de la maintenance prédictive aux États-Unis

Le paysage concurrentiel du marché mondial de la maintenance prédictive fournit des détails sur les concurrents. Les détails inclus sont la présentation de l'entreprise, les finances de l'entreprise, les revenus générés, le potentiel du marché, les investissements en R&D, les nouvelles initiatives du marché, les sites et installations de production, les forces et les faiblesses de l'entreprise, le lancement du produit, les approbations de produits, la largeur et l'étendue du produit, la domination des applications et la courbe de vie du type de produit. Les points de données ci-dessus fournis ne concernent que l'orientation de l'entreprise sur le marché de la maintenance prédictive.

Les acteurs du marché de la maintenance prédictive opérant sur le marché sont :

  • AISIN CORPORATION (Japon)
  • PHINIA Inc. (Chine)
  • KPIT (Inde)
  • Microsoft (États-Unis)
  • Aptiv (Irlande)
  • Continental AG (Allemagne)
  • Robert Bosch GmbH (Allemagne)
  • Siemens AG (Allemagne)
  • SAP se (Allemagne)
  • ZF friedrichshafen ag (Allemagne)
  • Société Valeo (France)
  • IBM (États-Unis)
  • Système de navigation Teletrac (États-Unis)
  • Garrett motion inc. (États-Unis)
  • Upstream Security Ltd. (Royaume-Uni)
  • Verizon (États-Unis)
  • Infineon Technologies AG (Allemagne)
  • Uptake Technologies Inc. (États-Unis)
  • Fluke Corporation (États-Unis)
  • PTC (États-Unis)
  • Rockwell Automation (États-Unis)
  • Embitel (Inde)
  • Altair Engineering Inc. (États-Unis)
  • Honeywell International Inc. (États-Unis)
  • NEC Corporation (Japon)
  • Emerson (États-Unis)
  • C3.AI (États-Unis)
  • Progrès (États-Unis)
  • Fiix de Rockwell Automation Inc. (États-Unis)
  • Ansys (États-Unis)

Dernières évolutions sur le marché de la maintenance prédictive aux États-Unis

  • En juillet 2024, Fluke Reliability s'est associé à Augmentir pour fusionner sa plateforme de travailleurs connectés avec la solution de gestion des actifs d'entreprise basée sur l'IA de Fluke, qui vise à accroître la productivité et à améliorer la maintenance, la réparation et l'exploitation (MRO) pour les clients industriels. Cette collaboration permet aux clients de Fluke Corporation de mettre en œuvre des stratégies de maintenance prédictive, leur permettant d'évaluer l'état des actifs et d'exploiter les diagnostics de l'IA pour anticiper les pannes jusqu'à six mois à l'avance, réduisant ainsi les temps d'arrêt imprévus et rationalisant les processus de maintenance
  • En février 2023, Uptake s'est associé à Daimler Truck North America pour améliorer sa technologie de maintenance prédictive à l'aide d'un modèle de données en tant que service, permettant aux clients de DTNA d'accéder à des informations basées sur les données qui réduisent les temps d'arrêt imprévus de la flotte et les coûts de maintenance. Cette collaboration permet à Uptake d'utiliser les données en continu de DTNA, améliorant ainsi ses capacités de maintenance prédictive pour des prévisions plus précises des problèmes de véhicules, des cycles de vie optimisés des véhicules et des calendriers de réparation personnalisés, minimisant ainsi les événements de maintenance imprévus pour les clients


SKU-

Accédez en ligne au rapport sur le premier cloud mondial de veille économique

  • Tableau de bord d'analyse de données interactif
  • Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
  • Accès d'analyste de recherche pour la personnalisation et les requêtes
  • Analyse de la concurrence avec tableau de bord interactif
  • Dernières actualités, mises à jour et analyse des tendances
  • Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Demande de démonstration

Méthodologie de recherche

La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.

La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.

Personnalisation disponible

Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.

Questions fréquemment posées

Growing Adoption of IOT in Industrial Operations, Growing Demand for Big Data and Analytics Solutions, Stringent vehicle safety regulations, and Increased Adoption of Telematics in Fleet Management are the major growth driving factors.
AISIN CORPORATION (Japan), PHINIA Inc. (China), KPIT (India), Microsoft (U.S.), Aptiv (Ireland), Continental AG (Germany), Robert bosch gmbh (Germany), Siemens ag (Germany), SAP se (Germany), ZF friedrichshafen ag (Germany), Valeo corporation (France), IBM (U.S.), Teletrac navman (U.S.), Garrett motion inc. (U.S.), pstream Security Ltd. (United Kingdom), Verizon (U.S.), Infineon Technologies AG (Germany), Uptake technologies inc. (U.S.), Fluke Corporation (U.S.), PTC (U.S.), Rockwell Automation (U.S.), Embitel (India), Altair Engineering Inc. (U.S.), Honeywell International Inc. (U.S.), NEC Corporation (Japan), Emerson (U.S.), C3.AI (U.S.), Progress (U.S.), Fiix by Rockwell Automation Inc. (U.S.), Ansys (U.S.) among others.
The countries covered in the market are U.S. .
Testimonial