米国機械状態監視市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
1.01 Billion
USD
1.81 Billion
2025
2033
| 2026 –2033 | |
| USD 1.01 Billion | |
| USD 1.81 Billion | |
|
|
|
|
米国機械状態監視市場のセグメント化、コンポーネント別(ハードウェアおよびソフトウェア)、監視タイプ別(固定監視システムおよびポータブル監視システム)、監視技術別(サーモグラフィー、振動監視、オイル分析、超音波放出監視、腐食監視およびモーター電流シグネチャ分析)、導入モード別(クラウドおよびオンプレミス)、アプリケーション別(施設保守、メンテナンス、生産/製造および品質保証)、業界別(農業、自動車、航空宇宙、化学、建設、食品および飲料、半導体および電子機器、石油およびガス、金属および鉱業、海洋、発電、ヘルスケア、紙およびパルプ、その他) - 2033年までの業界動向および予測
米国の機械状態監視市場規模
- 米国の機械状態監視市場規模は2025年に10億1000万米ドルと評価され、予測期間中に7.6%のCAGRで成長し、2033年までに18億1000万米ドルに達すると予想されています。
- 市場の成長は、主に予知保全技術の導入拡大と産業オートメーションの進歩によって推進されており、機械・設備全体のリアルタイム監視と早期故障検知が可能になっています。IoTセンサー、AI駆動型分析、無線通信の統合により、従来の保守はプロアクティブな資産管理へと変革され、製造業、石油・ガス、発電などの業界における運用停止時間と保守コストの削減につながっています。
- さらに、産業オペレーションにおける信頼性、運用効率、コスト最適化への需要の高まりにより、機械状態監視システムの導入が加速しています。例えば、主要企業は、継続的な診断と予測的な洞察を提供する高度な振動・熱監視ソリューションを開発しており、企業は機器の寿命を最大限に延ばし、予期せぬ故障を最小限に抑えることができます。これらの要因が相まって、産業界がよりスマートでデータ駆動型のメンテナンスエコシステムへと移行する中で、市場の大幅な成長を促進しています。
米国機械状態監視市場分析
- 機械状態監視システムは、振動解析、サーモグラフィー、オイル分析などの技術を用いて機器の健全性を継続的に評価することで、産業オペレーションにおいて重要な役割を果たします。これらの技術は、故障の早期発見、タイムリーなメンテナンス、そしてコストのかかるダウンタイムの防止に役立ちます。重工業や製造工場において、安全性、効率性、信頼性を維持するためには、こうしたシステムの導入が不可欠です。
- 予知保全のニーズの高まりと、産業分野全体におけるデジタル化の進展が市場拡大を牽引しています。クラウドベースの監視プラットフォーム、AIを活用した診断、ワイヤレスセンサーの利用拡大により、リアルタイムデータの精度とアクセス性が向上し、事後対応型から予防型への保守戦略の転換が促進され、米国機械状態監視市場の持続的な成長が期待されます。
- ハードウェアセグメントは、機械の状態をリアルタイムで監視できる高度なセンサー、データ収集デバイス、振動分析装置の導入拡大により、2025年には63.3%の市場シェアを獲得し、市場を席巻しました。産業界は、異常を早期に検知し、計画外のダウンタイムを防止するために、堅牢なハードウェアシステムに大きく依存しています。製造業や重機環境における状態監視ハードウェアの導入増加は、その信頼性と予知保全の効率化への直接的な貢献により、このセグメントの優位性をさらに高めています。
レポートの範囲と米国の機械状態監視市場のセグメンテーション
|
属性 |
米国の機械状態監視の主要市場分析 |
|
対象セグメント |
|
|
対象国 |
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジマーケットリサーチがまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、専門家による詳細な分析、地理的に表された企業別の生産量と生産能力、販売業者とパートナーのネットワークレイアウト、詳細かつ最新の価格動向分析、サプライチェーンと需要の不足分析も含まれています。 |
米国の機械状態監視市場の動向
「予知保全のためのAIとIoTの統合」
- 米国の機械状態監視市場は、効果的な予知保全戦略を可能にする人工知能(AI)とモノのインターネット(IoT)技術の統合により急速に進化しています。この統合により、機器の健全性を継続的に監視し、故障を事前に予測し、保守スケジュールを最適化する能力が向上し、ダウンタイムと運用コストを最小限に抑えることができます。
- 例えば、シーメンスやGEデジタルなどの企業は、IoT対応の状態監視プラットフォームにAI駆動型分析機能を組み込んでいます。これらのシステムは、リアルタイムのセンサーデータを収集し、機械学習アルゴリズムを用いて処理することで、オペレーターが予期せぬ故障を防止し、資産寿命を延ばすための実用的な洞察を生み出します。
- AIとIoTを組み合わせることで、多様なソースからの大量の設備データの集約と分析が容易になり、故障検出の精度が向上し、誤報が削減されます。これにより、固定スケジュールではなく実際の機械の状態に基づいてメンテナンス活動をカスタマイズできるため、効率が向上します。
- さらに、IoT接続による遠隔監視は、リアルタイムの意思決定と機械の故障発生時の迅速な対応をサポートし、運用の安全性と生産性を向上させます。この機能は、地理的に分散した資産や継続的な監視を必要とする重要なインフラを持つ業界にとって特に有益です。
- 高度なセンサー技術とクラウドコンピューティング・プラットフォームの開発により、複数の資産や拠点に状態監視システムをスケーラブルに導入できるようになり、導入がさらに加速しています。これらの技術の相乗効果により、スマート製造とインダストリー4.0環境への移行が推進されています。
- 全体として、AIとIoTを活用した予知保全へのトレンドは、機械の状態監視を事後対応型から予防型へと変革しつつあります。この変化は、製造、エネルギー、輸送の各セクターにおいて、コスト削減、資産の信頼性向上、そして運用のレジリエンス強化を促進しています。
米国の機械状態監視市場の動向
ドライバ
「リアルタイムの機器健全性モニタリングの需要の高まり」
- 高度な機械状態監視システムの導入と維持に伴う莫大なコストは、依然として市場浸透を阻む大きな課題となっています。センサー、データインフラ、ソフトウェアライセンス、そして既存機器との統合に向けた初期投資は、特に中小企業にとって設備予算を圧迫する可能性があります。
- 例えば、発展途上地域の製造業者は、高価なハードウェアと限られた技術的専門知識のために、包括的な状態監視ソリューションの資金調達が困難であると報告しています。この財政的障壁は導入を遅らせ、従来の事後対応型メンテナンス手法への依存を永続させています。
- さらに、センサーの校正、ソフトウェアの更新、データ保存、熟練した人員といった継続的なメンテナンス費用が総所有コストを増加させ、予算編成を複雑化させます。運用コストの高さは、パイロットプロジェクトや特定の機器を超えたシステムの拡張を躊躇させる要因となります。
- 多様なデータソースを統合し、接続された資産のサイバーセキュリティを確保するという複雑さは、さらなる課題をもたらします。これらの問題に対処するには、専門的なスキルと継続的な投資が必要であり、IT能力が限られている組織にとっては、多くのリソースを費やすことになる可能性があります。
- モジュール式で拡張性の高いソリューション、クラウドベースのサービス、ベンダーサポートによる保守プログラムを通じて、これらのコストと運用上のハードルを克服することが、より広範な導入を促進する上で不可欠です。市場を持続的に成長させるには、参入障壁を下げ、導入を簡素化する費用対効果の高いイノベーションが不可欠です。
抑制/挑戦
「導入と保守のコストが高い」
- 高度な機械状態監視システムの導入と維持に伴う莫大なコストは、依然として市場浸透を阻む大きな課題となっています。センサー、データインフラ、ソフトウェアライセンス、そして既存機器との統合に向けた初期投資は、特に中小企業にとって設備予算を圧迫する可能性があります。
- 例えば、発展途上地域の製造業者は、高価なハードウェアと限られた技術的専門知識のために、包括的な状態監視ソリューションの資金調達が困難であると報告しています。この財政的障壁は導入を遅らせ、従来の事後対応型メンテナンス手法への依存を永続させています。
- さらに、センサーの校正、ソフトウェアの更新、データ保存、熟練した人員といった継続的なメンテナンス費用が総所有コストを増加させ、予算編成を複雑化させます。運用コストの高さは、パイロットプロジェクトや特定の機器を超えたシステムの拡張を躊躇させる要因となります。
- 多様なデータソースを統合し、接続された資産のサイバーセキュリティを確保するという複雑さは、さらなる課題をもたらします。これらの問題に対処するには、専門的なスキルと継続的な投資が必要であり、IT能力が限られている組織にとっては、多くのリソースを費やすことになる可能性があります。
- モジュール式で拡張性の高いソリューション、クラウドベースのサービス、ベンダーサポートによる保守プログラムを通じて、これらのコストと運用上のハードルを克服することが、より広範な導入を促進する上で不可欠です。市場を持続的に成長させるには、参入障壁を下げ、導入を簡素化する費用対効果の高いイノベーションが不可欠です。
米国の機械状態監視市場の展望
市場は、コンポーネント、監視タイプ、監視手法、展開モード、アプリケーション、および業界に基づいて分類されています。
- コンポーネント別
米国の機械状態監視市場は、コンポーネント別にハードウェアとソフトウェアに分類されます。ハードウェアセグメントは、機械の状態をリアルタイムで監視できる高度なセンサー、データ収集デバイス、振動アナライザーの導入拡大により、2025年には63.3%という最大の収益シェアを獲得し、市場を席巻しました。産業界は、異常を早期に検知し、計画外のダウンタイムを防止するために、堅牢なハードウェアシステムに大きく依存しています。製造業や重機環境における状態監視ハードウェアの導入増加は、その信頼性と予知保全の効率化への直接的な貢献により、このセグメントの優位性をさらに高めています。
ソフトウェアセグメントは、データ分析プラットフォームとAIを活用した予測アルゴリズムへの需要の高まりにより、2026年から2033年にかけて最も高い成長率を達成すると予測されています。ソフトウェアソリューションは、複数のセンサーからのデータを統合監視ダッシュボードに統合することで運用上の洞察を強化し、より優れた診断と傾向分析を可能にします。クラウドベースの分析と機械学習ベースの診断ツールは、企業の保守データの解釈方法に変革をもたらし、予測期間中にソフトウェアセグメントに力強い成長軌道をもたらします。
- 監視タイプ別
監視タイプに基づいて、米国の機械状態監視市場は、固定式監視システムとポータブル監視システムに区分されます。固定式監視システムセグメントは、継続的かつ大規模な産業設備で広く使用されていることから、2025年には市場を席巻しました。これらのシステムは、24時間365日の機械監視と即時アラートメカニズムを提供し、石油・ガス、発電、製造業などの業界におけるミッションクリティカルな運用に高い信頼性をもたらします。恒久的な設置により、長期的な運用安全性を確保し、人的介入を最小限に抑え、一貫した資産健全性評価をサポートします。
ポータブルモニタリングシステム分野は、その柔軟性、費用対効果、そして小規模施設や複数拠点での運用への適合性により、2026年から2033年にかけて最も高い成長率を示すと予想されています。ポータブルシステムは、オペレーターがモニタリングデバイスを拠点間で持ち運ぶことができるため、定期的な保守点検に最適です。中小企業におけるハンドヘルド振動分析装置やワイヤレス診断ツールの需要の高まりも、その使いやすさと適応性からポータブルシステムの採用を後押ししています。
- 監視技術による
監視技術に基づいて、市場はサーモグラフィー、振動監視、オイル分析、超音波放射監視、腐食監視、モーター電流シグネチャ分析に分類されます。振動監視セグメントは、アンバランス、ミスアライメント、ベアリング摩耗を早期に検出できるため、2025年には最大の収益シェアを獲得し、市場を席巻しました。振動監視は、その精度、費用対効果、そして自動監視システムとの互換性から、産業用途全体で最も広く使用されている技術です。IoTセンサーやワイヤレス振動検出器の導入増加により、予知保全におけるこのセグメントの優位性が強化されています。
サーモグラフィ分野は、機器の故障前に温度異常や電気系統の故障を検知する有効性により、2026年から2033年にかけて最も高い成長率を示すと予測されています。赤外線カメラと熱センサーは非接触分析を可能にし、機械損傷のリスクを低減し、職場の安全性を高めます。産業界がエネルギー効率と熱診断を優先するにつれ、サーモグラフィは特に電気システムや回転機器のメンテナンスにおいて急速に導入が進んでいます。
- 展開モード別
導入形態に基づいて、市場はクラウドとオンプレミスに区分されます。オンプレミスセグメントは、データセキュリティとリアルタイム制御が不可欠な大規模製造業や石油・ガス施設からの旺盛な需要により、2025年には市場を牽引しました。オンプレミスソリューションは、組織が運用データの完全な所有権を維持し、遅延を削減することを可能にするため、ダウンタイムやデータ漏洩のリスクを負うことができない重要な環境に適しています。社内サーバーと社内インフラへの依存は、オンプレミス状態監視システムへの安定した需要を継続的に牽引しています。
クラウドセグメントは、リモート監視とIoT対応プラットフォームの導入拡大により、2026年から2033年にかけて最も高い成長率を記録すると予想されています。クラウド導入は、拡張性、一元的な分析、そして複数拠点からの機械データへの容易なアクセスを提供します。AIベースの予測ツールとサブスクリプションベースのソフトウェアモデルの統合が進むことで、特に初期インフラコストの最小化を目指す中規模企業にとって、クラウドセグメントの魅力がさらに高まります。
- アプリケーション別
米国の機械状態監視市場は、用途別に、施設保守、メンテナンス、生産・製造、品質保証に分類されます。保守分野は、機器の故障を防ぎ、機械の寿命を延ばす上で重要な役割を果たすことから、2025年には市場を席巻しました。継続的な監視により、オペレーターは保守スケジュールを事前に計画し、業務の中断を最小限に抑えることができます。自動車およびエネルギー分野の各業界では、生産性の向上と費用対効果の高い資産管理を実現するために、予知保全システムを優先的に採用しています。
生産・製造セグメントは、製造ラインの自動化の進展と設備性能の一貫性維持の必要性により、2026年から2033年にかけて最も高い成長率を達成すると予想されています。インダストリー4.0の台頭に伴い、メーカーは生産サイクルの中断を防ぐためにAIを活用した状態監視に投資しています。総合設備効率(OEE)の向上とスクラップや手直しの削減への注力は、このセグメントの成長見通しをさらに強固なものにしています。
- 業界別
米国の機械状態監視市場は、業種別に見ると、農業、自動車、航空宇宙、化学、建設、食品・飲料、半導体・エレクトロニクス、石油・ガス、金属・鉱業、海洋、発電、ヘルスケア、紙・パルプ、その他に分類されます。石油・ガス部門は、機器の継続的な性能維持と安全基準遵守への依存度が高いことから、2025年には市場を牽引しました。状態監視は、機器の疲労、パイプラインの腐食、コンプレッサーの非効率性の早期兆候を検知するのに役立ちます。これは、オフショア施設および陸上施設における、高額な故障や事故を防ぐ上で非常に重要です。
発電セグメントは、再生可能エネルギーシステムへの移行の進展と電力インフラの稼働率維持の必要性により、2026年から2033年にかけて最も高い成長率を示すと予測されています。発電所では、運用の信頼性を確保するため、タービン、発電機、変圧器の予測監視の導入が進んでいます。エネルギー施設におけるIoTとAIベースの分析技術の統合は、故障検出能力の向上につながり、このセグメントの堅調な成長に貢献しています。
米国の機械状態監視市場シェア
機械状態監視業界は、主に次のような定評ある企業によって主導されています。
- エマーソン・エレクトリック社(米国)
- ゼネラル・エレクトリック(米国)
- ハネウェル・インターナショナル(米国)
- ナショナルインスツルメンツ社(米国)
- AB SRF(インド)
- ALS(オーストラリア)
- ウィルコクソンセンシングテクノロジーズ(米国)
- ロックウェル・オートメーション社(米国)
- パーカー・ハネフィン社(米国)
- シェフラー AGSYMPHONY AZIMAAI、ブリュエル・ケアー (ドイツ)
- フルーク社(米国)
- メギットPLC(英国)
- PCBピエゾトロニクス社(米国)
- FLIR Systems, Inc.(米国)
- SPM Instrument AB(スウェーデン)
- アナログ・デバイセズ社(米国)
- マシンセーバー(米国)
- 3d SignalsLogiLube, LLC(カナダ)
- ペタセンス社(米国)
- Senseye Ltd.(英国)
米国機械状態監視市場の最新動向
- SKFは2023年6月、予知保全技術の大きな進歩となる次世代のワイヤレス状態監視システム「Enlight Collect IMx-1」を発表しました。このシステムは、機械データの自動収集、リアルタイム診断、AIベースの分析を可能にし、産業およびエネルギーアプリケーション全体にわたるパフォーマンスに関する洞察を強化します。エッジコンピューティングと無線通信を統合することで、手作業による検査の労力を削減し、機器の稼働時間を向上させます。この開発により、SKFはスマート製造分野における地位を強化し、接続されたデータ駆動型のメンテナンスエコシステムへの需要の高まりに対応しました。
- 2022年9月、ハネウェルはシェル・グローバル・ソリューションズと戦略的パートナーシップを締結し、高度な資産パフォーマンス管理(APM)および機械状態監視技術の共同開発に取り組みました。この協業は、ハネウェルのデジタルトランスフォーメーションおよび自動化能力と、シェルのエネルギー分野における深い運用専門知識を統合することに重点を置いています。このパートナーシップは、データに基づく洞察を通じて、予知保全の効率性向上、資産の信頼性向上、そして持続可能性目標の達成を支援することを目指しています。また、この取り組みは、拡張可能な産業デジタル化ソリューションの提供におけるハネウェルの役割を強化します。
- シーメンスは2022年1月、AIを活用した予知保全ソフトウェアを専門とする英国企業Senseyeの買収を完了しました。この買収により、Senseyeの高度な機械学習アルゴリズムをシーメンスの産業IoTエコシステムに統合することで、シーメンスのデジタルインダストリーズポートフォリオが拡大しました。これにより、シーメンスは世界中の産業顧客に包括的な予測分析と資産健全性監視機能を提供できるようになります。この買収は、インテリジェントな監視を通じてデジタル化された保守を推進し、設備のパフォーマンスを最適化するというシーメンスのコミットメントを強化するものです。
- 2021年3月、エマソンは、ローズマウント4390シリーズの腐食・浸食ワイヤレストランスミッターとPlantweb Insight非侵入型腐食アプリケーションを含むデジタルソリューションスイートを発表しました。これらのイノベーションは、リアルタイム監視、予知保全、プラント最適化を提供し、オペレーターが腐食・浸食リスクを積極的に管理することを可能にします。これらのソリューションは、プラントの信頼性と運用効率を向上させ、早期の障害検出とメンテナンスによるダウンタイムの削減を通じて、産業界のコスト削減に貢献します。
- GEヘルスケアは2020年4月、人工呼吸器を装着したCOVID-19患者のリアルタイム遠隔モニタリングを支援するため、Microsoft Azure上にMural Virtual Careソリューションを導入しました。このプラットフォームにより、臨床医は患者の状態を追跡し、病状の悪化を予測し、パンデミック中の臨床リソースを最適化することができました。クラウドベースの分析と医療モニタリングシステムを統合することで、このソリューションは対応の効率性と患者ケアの質を向上させました。この開発は、状態モニタリング技術を医療および救命救急環境に拡大するための重要な一歩となりました。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。
