아시아 태평양 예측 유지 관리 시장, 구성요소(솔루션, 서비스), 배포 모드(클라우드, 온프레미스), 조직 규모(대기업, 중소기업), 수직(제조, 에너지 및 유틸리티, 운송, 정부, 의료, 항공우주 및 방위, 기타), 이해 관계자(MRO, OEM/ODM, 기술 통합업체)별 – 산업 동향 및 2029년까지의 전망.

아시아 태평양 예측 유지 관리 시장 분석 및 규모
현재 여러 기업이 차세대 엔드 투 엔드 클라우드 기반 플랫폼을 출시하고 있습니다. 의사 결정에 대한 귀중한 통찰력을 얻기 위해 새롭게 부상하는 기술 적용이 증가하면서 산업 성장이 촉진되었습니다. 다양한 산업 분야의 최종 사용자들이 비용 절감과 다운타임을 점점 더 많이 추구하고 있으며, 이는 시장 성장을 촉진했습니다.
Data Bridge Market Research는 예측 유지보수 시장이 2021년 17억 3천만 달러 규모였으며, 예측 기간 동안 연평균 성장률 20.3%로 2029년에는 75억 9천만 달러 규모에 이를 것으로 전망했습니다. Data Bridge Market Research 팀이 엄선한 시장 보고서는 시장 가치, 성장률, 시장 부문, 지역별 적용 범위, 시장 참여자, 시장 시나리오 등 시장 통찰력 외에도 심층 전문가 분석, 수출입 분석, 가격 분석, 생산 소비 분석, 그리고 유봉 분석(pestle analysis)을 포함합니다.
아시아 태평양 예측 유지 관리 시장 범위 및 세분화
|
보고서 메트릭 |
세부 |
|
예측 기간 |
2022년부터 2029년까지 |
|
기준 연도 |
2021 |
|
역사적인 해 |
2020 (2014~2019년으로 맞춤 설정 가능) |
|
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 USD입니다. |
|
다루는 세그먼트 |
구성 요소(솔루션, 서비스), 배포 모드(클라우드, 온프레미스), 조직 규모(대기업, 중소기업), 수직(제조, 에너지 및 유틸리티, 운송, 정부, 의료, 항공우주 및 방위 , 기타), 이해 관계자(MRO, OEM/ODM, 기술 통합업체) |
|
포함 국가 |
일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀, 기타 아시아 태평양 지역 |
|
시장 참여자 포함 |
Microsoft(미국), IBM Corporation(미국), SAP SE(독일), SAS AG(독일), TIBCO Software Inc.(미국), Hewlett Packard Enterprise Development LP(미국), Altair Engineering Inc.(미국), Splunk Inc.(미국), Oracle(미국), Google LLC(미국), Amazon Web Services, Inc.(미국), General Electric(미국), Schneider Electric(프랑스), Hitachi, Ltd.(일본), PTC(미국), RapidMiner, Inc.(미국), Operational Excellence(OPEX) Group Ltd(영국), Dingo(호주), Factory5(러시아) |
|
기회 |
|
시장 정의
예측 유지보수 소프트웨어 시스템은 작동 중인 모든 계측기 또는 기계의 성능과 상태를 모니터링하는 데 사용됩니다. 이 소프트웨어 시스템은 첨단 기술을 사용하여 계측기를 모니터링하여 고장 발생 전에 기계를 정기적으로 유지보수할 수 있도록 합니다. 예측 유지보수 소프트웨어 시스템은 고조파 왜곡으로 인한 3상 전력 불균형 감지, 모터의 특정 전기 현상 스파이크 식별, 위험한 베어링으로 인한 발열 감지 등 다양한 분야에서 활용되고 있습니다.
예측 유지 관리 시장 동향
- 중소·중견산업 확대 추진
시장 성장을 견인하는 주요 요인 중 하나는 전 세계적으로 중소기업의 증가입니다. 즉, 은행, 금융 서비스 및 보험(BFSI), 정부 및 공공 부문, 의료 및 생명 과학, 제조, 소매 및 전자상거래, 통신, 정보 기술(IT) 산업의 증가가 시장 성장에 직접적인 영향을 미치고 있습니다.
- 미래 기술의 발전
빅데이터, 사물통신(M2M), 인공지능의 끊임없는 발전은 인공적인 수단에서 얻은 정보를 전달하는 새로운 길을 열어주었습니다. IoT 편향은 감지기, 카메라, 기타 연결된 편향 등 다양한 소스에서 막대한 데이터를 생성합니다. 그러나 이러한 데이터는 실행 가능한 맥락적 정보로 변환되지 않으면 아무런 가치가 없습니다. 빅데이터와 데이터 시각화 방법을 통해 약사는 일괄 처리 및 오프라인 분석을 통해 새로운 관점을 얻을 수 있습니다. 실시간 데이터 분석 및 의사 결정은 종종 수동으로 수행되지만, 확장성을 위해서는 자동으로 수행하는 것이 더 바람직합니다.
기회
- 고급 기계어 연산
거의 모든 수직적 환경에서 고급 자산 운영은 점점 더 바람직하지 않게 되고 있습니다. 연결된 편향으로 인해 AI와 ML을 갖춘 결과 제공자는 방대한 양의 고객 관련 데이터를 수집하고 의미 있는 통찰력으로 변환할 수 있습니다. 또한 AI는 IoT 편향과 결합하여 인간의 개입 없이 예측적 보존 및 품질 평가와 같은 서비스 제공의 다양한 측면을 최적화할 수 있습니다.
제약
- 숙련된 인력 부족
숙련된 인력은 AI 기반 IoT 기술과 역량을 구현하기 위해 최신 소프트웨어 시스템을 관리해야 합니다. 따라서 신규 시스템 및 업그레이드된 시스템 운영 방법에 대한 교육을 받아야 합니다. 또한, 신기술 도입에 있어 적극적인 자세를 보이고 있습니다. 하지만, 전문 인력 풀과 정식 인력의 부족에 직면해 있습니다. 대다수의 글로벌 기업이 예측 가능한 보존 시스템을 구축함에 따라, 전문 인력 풀에 대한 수요가 증가하고 있습니다. 기업들은 사이버 보안, 네트워킹, 운영 등의 분야에서 투지를 키워야 합니다.
이 예측 유지보수 시장 보고서는 최근 동향, 무역 규제, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 현지 시장 참여자의 영향, 신규 매출 창출 기회 분석, 시장 규제 변화, 전략적 시장 성장 분석, 시장 규모, 카테고리별 시장 성장, 적용 분야별 틈새 시장 및 시장 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장 기술 혁신 등에 대한 자세한 정보를 제공합니다. 예측 유지보수 시장에 대한 자세한 정보를 원하시면 Data Bridge Market Research에 문의하여 분석 브리핑을 요청하십시오. 저희 팀은 시장 성장을 위한 정보에 기반한 시장 결정을 내릴 수 있도록 도와드리겠습니다.
COVID-19가 예측 유지 관리 시장에 미치는 영향
COVID-19는 비즈니스 운영의 역학을 근본적으로 변화시켰습니다. COVID-19 발생은 여러 산업 분야의 비즈니스 모델의 결함을 드러냈지만, 봉쇄 기간 동안 AI, 분석, IoT, 블록체인과 같은 기술의 포기와 통합이 증가함에 따라 기업이 국경을 넘어 디지털화하고 확장할 수 있는 여러 기회를 제공하기도 했습니다. 2020년 첫 번째 및 두 번째 경제 위기 동안 소매 및 제조 부문은 사업 실적이 크게 감소했습니다. 그럼에도 불구하고 백신이 개발되고 전염병이 상당히 통제됨에 따라, 다양한 비즈니스 기능 전반에 걸쳐 예측 가능한 보존 결과가 증가함에 따라 이러한 부문은 향후 투자 증가를 보일 것으로 예상됩니다.
최근 개발
- SAS Institute는 2021년 5월 SAS Viya 플랫폼을 출시하여 새로운 데이터 운영 결과를 핵심적인 기본 SASViya 플랫폼에 통합하여 데이터와 논리적 성공을 위한 기반을 마련했습니다.
아시아 태평양 예측 유지 관리 시장 범위
예측 유지보수 시장은 구성 요소, 배포 방식, 조직 규모, 산업 분야, 그리고 이해관계자를 기준으로 세분화됩니다. 이러한 세그먼트의 성장은 산업 내 저조한 성장 세그먼트를 분석하고, 사용자에게 핵심 시장 애플리케이션을 파악하기 위한 전략적 의사 결정에 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 될 것입니다.
구성 요소
- 해결책
- 서비스
배포 모드
- 구름
- 온프레미스
조직 규모
- 대기업
- 중소기업
수직의
- 조작
- 에너지 및 유틸리티
- 운송
- 정부
- 헬스케어
- 항공우주
- 방어
- 기타
이해관계자
- 엠로
- OEM/ODM
- 기술 통합업체
예측 유지 관리 시장 지역 분석/통찰력
예측 유지 관리 시장을 분석하고, 위에 언급된 대로 국가, 구성 요소, 배포 모드, 조직 규모, 수직 및 이해 관계자별로 시장 규모에 대한 통찰력과 추세를 제공합니다.
예측 유지 관리 시장 보고서에서 다루는 국가는 일본, 중국, 인도, 한국, 호주, 싱가포르, 말레이시아, 태국, 인도네시아, 필리핀 및 기타 아시아 태평양 지역입니다.
중국은 클라우드 기반 분석 시스템을 통해 통신할 수 있는 스마트 센서와 온보드 전자 장치의 사용이 증가함에 따라 지배적인 지역으로, 제품 공급업체는 장비의 작동 상태와 서비스 요구 사항을 미리 평가할 수 있습니다.
보고서의 국가별 섹션은 현재 및 미래 시장 동향에 영향을 미치는 개별 시장 영향 요인과 시장 규제 변화도 제공합니다. 다운스트림 및 업스트림 가치 사슬 분석, 기술 동향, 포터의 5대 경쟁 요인 분석, 사례 연구 등의 데이터 포인트는 개별 국가의 시장 시나리오를 예측하는 데 활용됩니다. 또한, 아시아 태평양 지역 브랜드의 존재 및 가용성, 그리고 국내 및 국내 브랜드와의 경쟁 심화 또는 부족으로 인해 직면하는 과제, 국내 관세 및 무역 경로의 영향 등을 고려하여 국가별 데이터 예측 분석을 제공합니다.
경쟁 환경 및 예측 유지 관리 시장 점유율 분석
예측 유지보수 시장 경쟁 구도는 경쟁사별 세부 정보를 제공합니다. 여기에는 회사 개요, 회사 재무 상태, 창출된 매출, 시장 잠재력, 연구 개발 투자, 신규 시장 계획, 아시아 태평양 지역 진출 현황, 생산 시설 및 시설, 생산 능력, 회사의 강점과 약점, 제품 출시, 제품 종류 및 범위, 애플리케이션 지배력 등이 포함됩니다. 위에 제시된 데이터는 해당 회사들이 예측 유지보수 시장에 중점을 두고 있는 분야에만 적용됩니다.
예측 유지 관리 시장에서 활동하는 주요 기업은 다음과 같습니다.
- 마이크로소프트(미국)
- IBM Corporation(미국)
- SAP SE(독일)
- SAS AG(독일)
- TIBCO 소프트웨어 주식회사(미국)
- 휴렛팩커드 엔터프라이즈 개발 LP(미국)
- 알테어 엔지니어링 주식회사(미국)
- 스플렁크 주식회사(미국)
- 오라클(미국)
- Google LLC(미국)
- Amazon Web Services, Inc.(미국)
- 제너럴 일렉트릭(미국)
- 슈나이더 일렉트릭(프랑스)
- 히타치 주식회사(일본)
- PTC(미국)
- RapidMiner, Inc. (미국)
- 운영 우수성(OPEX) 그룹 유한회사(영국)
- 딩고(호주)
- Factory5(러시아)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
목차
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MARKET GUIDE
2.6 MULTIVARIATE MODELLING
2.7 TOP TO BOTTOM ANALYSIS
2.8 STANDARDS OF MEASUREMENT
2.9 VENDOR SHARE ANALYSIS
2.1 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.11 DATA POINTS FROM KEY SECONDARY DATABASES
2.12 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET: RESEARCH SNAPSHOT
2.13 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET, BY TYPE
5.1 OVERVIEW
5.2 SOLUTIONS
5.2.1 INTEGRATED
5.2.2 STANDALONE
5.3 SERVICE
5.3.1 MANAGED SERVICES
5.3.2 PROFESSIONAL SERVICES
5.3.2.1. SYSTEM INTEGRATION
5.3.2.2. SUPPORT AND MAINTENANCE
5.3.2.3. CONSULTING
6 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET, BY DEPLOYMENT MODE
6.1 OVERVIEW
6.2 ON-PREMISES
6.3 CLOUD
6.3.1 PUBLIC CLOUD
6.3.2 PRIVATE CLOUD
6.3.3 HYBRID CLOUD
7 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET, BY ORGANISATION SIZE
7.1 OVERVIEW
7.2 LARGE ENTERPRISE
7.3 SMALL AND MEDIUM SIZED ENTERPRISES
8 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET, BY VERTICAL
8.1 OVERVIEW
8.2 GOVERNMENT AND DEFENSE
8.2.1 SOLUTIONS
8.2.1.1. INTEGRATED
8.2.1.2. STANDALONE
8.2.2 SERVICE
8.2.2.1. MANAGED SERVICES
8.2.2.2. PROFESSIONAL SERVICES
8.2.2.2.1. SYSTEM INTEGRATION
8.2.2.2.2. SUPPORT AND MAINTENANCE
8.2.2.2.3. CONSULTING
8.3 MANUFACTURING
8.3.1 SOLUTIONS
8.3.1.1. INTEGRATED
8.3.1.2. STANDALONE
8.3.2 SERVICE
8.3.2.1. MANAGED SERVICES
8.3.2.2. PROFESSIONAL SERVICES
8.3.2.2.1. SYSTEM INTEGRATION
8.3.2.2.2. SUPPORT AND MAINTENANCE
8.3.2.2.3. CONSULTING
8.4 ENERGY AND UTILITIES
8.4.1 SOLUTIONS
8.4.1.1. INTEGRATED
8.4.1.2. STANDALONE
8.4.2 SERVICE
8.4.2.1. MANAGED SERVICES
8.4.2.2. PROFESSIONAL SERVICES
8.4.2.2.1. SYSTEM INTEGRATION
8.4.2.2.2. SUPPORT AND MAINTENANCE
8.4.2.2.3. CONSULTING
8.5 TRANSPORTATION AND LOGISTICS
8.5.1 SOLUTIONS
8.5.1.1. INTEGRATED
8.5.1.2. STANDALONE
8.5.2 SERVICE
8.5.2.1. MANAGED SERVICES
8.5.2.2. PROFESSIONAL SERVICES
8.5.2.2.1. SYSTEM INTEGRATION
8.5.2.2.2. SUPPORT AND MAINTENANCE
8.5.2.2.3. CONSULTING
8.6 HEALTHCARE AND LIFE SCIENCES
8.6.1 SOLUTIONS
8.6.1.1. INTEGRATED
8.6.1.2. STANDALONE
8.6.2 SERVICE
8.6.2.1. MANAGED SERVICES
8.6.2.2. PROFESSIONAL SERVICES
8.6.2.2.1. SYSTEM INTEGRATION
8.6.2.2.2. SUPPORT AND MAINTENANCE
8.6.2.2.3. CONSULTING
9 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET, BY GEOGRAPHY
9.1 ASIA-PACIFIC PREDICTIVE MAINTENANCES MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
9.1.1 ASIA PACIFIC
9.1.1.1. JAPAN
9.1.1.2. CHINA
9.1.1.3. SOUTH KOREA
9.1.1.4. INDIA
9.1.1.5. AUSTRALIA
9.1.1.6. SINGAPORE
9.1.1.7. THAILAND
9.1.1.8. MALAYSIA
9.1.1.9. INDONESIA
9.1.1.10. PHILIPPINES
9.1.1.11. REST OF ASIA PACIFIC
9.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
10 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET, COMPANY LANDSCAPE
10.1 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
10.2 MERGERS & ACQUISITIONS
10.3 NEW PRODUCT DEVELOPMENT & APPROVALS
10.4 EXPANSIONS
10.5 REGULATORY CHANGES
10.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
11 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET, SWOT ANALYSIS
12 ASIA-PACIFIC PREDICTIVE MAINTENANCE MARKET, COMPANY PROFILE
12.1 MICROSOFT
12.1.1 COMPANY SNAPSHOT
12.1.2 REVENUE ANALYSIS
12.1.3 GEOGRAPHIC PRESENCE
12.1.4 PRODUCT PORTFOLIO
12.1.5 RECENT DEVELOPMENTS
12.2 IBM
12.2.1 COMPANY SNAPSHOT
12.2.2 REVENUE ANALYSIS
12.2.3 GEOGRAPHIC PRESENCE
12.2.4 PRODUCT PORTFOLIO
12.2.5 RECENT DEVELOPMENTS
12.3 SAP
12.3.1 COMPANY SNAPSHOT
12.3.2 REVENUE ANALYSIS
12.3.3 GEOGRAPHIC PRESENCE
12.3.4 PRODUCT PORTFOLIO
12.3.5 RECENT DEVELOPMENTS
12.4 SAS INSTITUTE
12.4.1 COMPANY SNAPSHOT
12.4.2 REVENUE ANALYSIS
12.4.3 GEOGRAPHIC PRESENCE
12.4.4 PRODUCT PORTFOLIO
12.4.5 RECENT DEVELOPMENTS
12.5 SOFTWARE AG
12.5.1 COMPANY SNAPSHOT
12.5.2 REVENUE ANALYSIS
12.5.3 GEOGRAPHIC PRESENCE
12.5.4 PRODUCT PORTFOLIO
12.5.5 RECENT DEVELOPMENTS
12.6 TIBCO SOFTWARE
12.6.1 COMPANY SNAPSHOT
12.6.2 REVENUE ANALYSIS
12.6.3 GEOGRAPHIC PRESENCE
12.6.4 PRODUCT PORTFOLIO
12.6.5 RECENT DEVELOPMENTS
12.7 HPE
12.7.1 COMPANY SNAPSHOT
12.7.2 REVENUE ANALYSIS
12.7.3 GEOGRAPHIC PRESENCE
12.7.4 PRODUCT PORTFOLIO
12.7.5 RECENT DEVELOPMENTS
12.8 ORACLE
12.8.1 COMPANY SNAPSHOT
12.8.2 REVENUE ANALYSIS
12.8.3 GEOGRAPHIC PRESENCE
12.8.4 PRODUCT PORTFOLIO
12.8.5 RECENT DEVELOPMENTS
12.9 AWS
12.9.1 COMPANY SNAPSHOT
12.9.2 REVENUE ANALYSIS
12.9.3 GEOGRAPHIC PRESENCE
12.9.4 PRODUCT PORTFOLIO
12.9.5 RECENT DEVELOPMENTS
12.1 GOOGLE
12.10.1 COMPANY SNAPSHOT
12.10.2 REVENUE ANALYSIS
12.10.3 GEOGRAPHIC PRESENCE
12.10.4 PRODUCT PORTFOLIO
12.10.5 RECENT DEVELOPMENTS
12.11 SCHNEIDER ELECTRIC
12.11.1 COMPANY SNAPSHOT
12.11.2 REVENUE ANALYSIS
12.11.3 GEOGRAPHIC PRESENCE
12.11.4 PRODUCT PORTFOLIO
12.11.5 RECENT DEVELOPMENTS
12.12 HITACHI
12.12.1 COMPANY SNAPSHOT
12.12.2 REVENUE ANALYSIS
12.12.3 GEOGRAPHIC PRESENCE
12.12.4 PRODUCT PORTFOLIO
12.12.5 RECENT DEVELOPMENTS
12.13 OPEX GROUP
12.13.1 COMPANY SNAPSHOT
12.13.2 REVENUE ANALYSIS
12.13.3 GEOGRAPHIC PRESENCE
12.13.4 PRODUCT PORTFOLIO
12.13.5 RECENT DEVELOPMENTS
*NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
13 RELATED REPORTS
14 QUESTIONNAIRE
15 ABOUT DATA BRIDGE MARKET RESEARCH
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.
