스페인 서비스 시장으로서의 머신 러닝, 서비스별(관리 서비스, 전문가, 전문 서비스), 비즈니스 기능(인사, 영업 및 마케팅, 재무 및 운영), 배포 모델(클라우드, 온프레미스), 조직 규모(대형 조직, 중소 규모 조직), 애플리케이션(약물 발견, 사기 탐지 및 위험 관리, 자연어 처리, 마케팅 및 광고, 보안 및 감시, 이미지 인식 , 예측 분석, 데이터 마이닝, 증강 및 가상 현실), 최종 사용자(은행, 금융 서비스 및 보험, IT 및 통신, 연구 및 학술, 정부 및 공공 부문, 소매 및 전자 상거래, 제조, 의료 및 제약, 여행 및 물류, 에너지 및 유틸리티, 미디어 및 엔터테인먼트) - 산업 동향 및 2029년까지의 예측
시장 분석 및 규모
서비스로서의 머신 러닝 시장 내의 회사들은 코로나바이러스 사태 이후 안정적인 수익 흐름을 확보하기 위해 헬스테크, BFSI , 통신과 같은 필수 산업에 집중하고 있습니다. 그러나 기술적 오류와 머신 러닝 경험이 있는 전문가의 부족은 조직에서 머신 러닝을 도입하는 데 있어 주요 제한 요인 중 하나로 보입니다. 이는 서비스로서의 머신 러닝 플랫폼을 구현하는 데 장애물이 될 수 있습니다. 또한 장비 부족으로 인한 지식 보안 부족은 시장 확장에 부정적인 영향을 미칩니다. 따라서 서비스로서의 머신 러닝 시장 참여자는 정부 및 제한 기관과 협력하여 서비스로서의 머신 러닝 사업을 표준화해야 합니다.
Data Bridge Market Research에 따르면, 2021년 54억 5천만 달러였던 서비스로서의 머신러닝 시장 가치는 2029년까지 793억 4천만 달러에 도달할 것으로 예상되며, 2022~2029년의 예측 기간 동안 연평균 성장률은 39.76%가 될 것으로 예상됩니다.
시장 정의
머신 러닝은 컴퓨터가 다양한 데이터 세트에 노출되었을 때 기본적인 기능을 학습하고 변경할 수 있는 능력을 제공하는 기술입니다. 머신 러닝은 비즈니스에 가장 중요한 도구가 되었습니다. Amazon과 Google과 같은 기술 거대 기업은 고객 기반을 늘리고 강화하기 위해 막대한 비용을 지출하고 있습니다.
보고 범위 및 시장 세분화
|
보고서 메트릭 |
세부 |
|
예측 기간 |
2022년부터 2029년까지 |
|
기준 연도 |
2021 |
|
역사적 연도 |
2020 (2019-2014까지 사용자 정의 가능) |
|
양적 단위 |
매출은 10억 달러, 볼륨은 단위, 가격은 10억 달러 |
|
다루는 세그먼트 |
서비스(관리 서비스, 전문가, 전문 서비스), 비즈니스 기능(인사, 영업 및 마케팅, 재무 및 운영), 배포 모델(클라우드, 온프레미스), 조직 규모(대형 조직, 중소 규모 조직), 애플리케이션(약물 발견, 사기 탐지 및 위험 관리, 자연어 처리, 마케팅 및 광고, 보안 및 감시, 이미지 인식, 예측 분석, 데이터 마이닝, 증강 및 가상 현실), 최종 사용자(은행, 금융 서비스 및 보험, IT 및 통신, 연구 및 학술, 정부 및 공공 부문, 소매 및 전자 상거래, 제조, 의료 및 제약, 여행 및 물류, 에너지 및 유틸리티, 미디어 및 엔터테인먼트) |
|
시장 참여자 포함 |
Google(미국), Microsoft(미국), IBM(미국), SAP(독일), Amazon Web Services, Inc.(미국) |
|
시장 기회 |
|
스페인 머신러닝 서비스 시장 역학
이 섹션에서는 시장 동인, 이점, 기회, 제약 및 과제를 이해하는 것을 다룹니다. 이 모든 내용은 아래와 같이 자세히 논의됩니다.
운전자:
- 기술의 발전
빠른 발전과 혁신이 제재 기술에서 일어나고 있습니다. 많은 솔루션 공급업체가 이 분야에서 많은 노력을 기울이고 있습니다. 예를 들어, Affectiva는 최근 200만 개가 넘는 얼굴 비디오의 가장 큰 지식 저장소를 보유한 감정 분석 기술을 출시하여 구매자가 타의 추종을 불허하는 통찰력으로 높은 정확도를 달성하도록 제재했습니다. 그 외에도 Cognitec System, Emotient, Gesturetek, Saffron, Palantir와 같은 소규모 업체와 같은 대체 업체가 제스처 인식, 얼굴 인식, 심리적 특징 컴퓨팅 및 체세포 분석 분야에서 중요한 발전을 이루고 있습니다. 이러한 발전은 향후 몇 년 동안 시장 성장을 촉진할 것으로 예상됩니다.
- 데이터 저장 및 보관
딥 러닝 알고리즘에서 정보 저장 및 보관 패키지는 엄청나게 진보된 문제에 대한 해결책을 예측하는 데 중요한 역할을 합니다. 딥 러닝 알고리즘 프로그램은 여러 층으로 구성된 합성 신경망을 다루기 때문에 결과를 제공하기 위해 엄청난 양의 정보 집합이 필요합니다. 딥 러닝 알고리즘 프로그램은 정보 저장 및 보관 패키지를 사용하여 인공 신경망 내의 고급 기능에 집중합니다.
- 모델러 및 처리
지난 10년 동안 머신 러닝 기술은 통계, 산술, 신경생물학, 컴퓨팅과 함께 다양한 분야에서 개발된 "알고리즘"으로 진화하여 상업적으로 실행 가능하고 계산적으로 견고해졌습니다. 음성 인식, 사기 탐지, 네트워크 개선과 같은 오늘날 제공되는 여러 응용 프로그램은 분류, 회귀, 추정을 지원하는 다양한 머신 러닝 기술을 사용하여 구조화된 지식 집합을 방법화합니다.
- 클라우드 및 웹 기반 애플리케이션 프로그래밍 인터페이스(APIS)
머신 러닝 규칙에서 정보 수요는 중요한 입력 매개변수입니다. 은행 및 금융 서비스와 같은 여러 비즈니스 수직 분야는 시장 행동을 예측하기 위해 엄청난 양의 정보를 즉시 원합니다. 머신 러닝 알고리즘은 정보 저장 및 보관 소프트웨어 패키지에서 정보를 수집할 때 솔루션을 예측하는 데 매우 적은 시간을 얻습니다. 이러한 품질을 이기기 위해 머신 러닝 알고리즘은 클라우드와 애플리케이션 플랫폼 간의 인터페이스를 생성합니다.
기회:
- 의료 산업에 대한 투자 증가
의학 분야에서는 방대한 양의 어려운 통계를 계산하기 위해 방대한 정보가 배치되어 관심 사업 내 애플리케이션에 중요한 추세와 패턴을 제공합니다. 방대한 정보는 의사가 문제가 발생하기 전에 문제를 예상하는 데 도움이 됩니다. Elsevier Health Analytics 클러스터는 방대한 정보를 배치하여 FRG의 환자 치료에 혁명을 일으켰습니다. 이 회사는 허용 가능한 치료에 대한 증거 중심 정보를 성장시키기 위해 건강 경제학자, 의사, 통계학자, IT 전문가 및 분석가와 긴밀히 협력합니다. 이는 종종 관심의 방대한 정보에 의해 관리되고 AI의 도움을 받아 의료 전문가가 적절하게 사용합니다. 관심의 방대한 정보 준비는 독일의 머신 러닝 시장 확장을 크게 증가시켰습니다.
제한 사항/과제:
서비스 시장으로서의 머신 러닝에 투입할 확실한 노동력이 부족한 것은 세계 머신 러닝 서비스 시장의 성장을 정확히 어느 정도 방해할 핵심 문제가 될 수 있습니다. 또한, 기업은 MLaaS 플랫폼에서 구현할 특정 기능을 사용자 정의할 수 있는 숙련된 서비스를 원할 것입니다. 엄격한 규정 준수 문제는 대상 시장을 제한할 것으로 예상되는 또 다른 문제입니다.
이 머신 러닝 서비스 시장 보고서는 최근의 새로운 개발, 무역 규정, 수출입 분석, 생산 분석, 가치 사슬 최적화, 시장 점유율, 국내 및 지역 시장 참여자의 영향, 새로운 수익 창출처, 시장 규정의 변화, 전략적 시장 성장 분석, 시장 규모, 범주 시장 성장, 응용 분야 틈새 시장 및 지배력, 제품 승인, 제품 출시, 지리적 확장, 시장의 기술 혁신에 대한 분석 기회를 제공합니다. 머신 러닝 서비스 시장에 대한 자세한 정보를 얻으려면 Data Bridge Market Research에 연락하여 분석가 브리핑을 받으세요. 저희 팀은 시장 성장을 달성하기 위한 정보에 입각한 시장 결정을 내리는 데 도움을 드립니다.
머신러닝 서비스 시장 에 대한 COVID-19의 영향
COVID-19 팬데믹은 전 세계가 사회적 거리두기 기술을 실행함에 따라 머신 러닝에 대한 관심을 촉진했습니다. 머신 러닝을 서비스 시장으로 통합하는 것은 통합의 양과 특성에 따라 모든 소프트웨어 시스템과 서비스를 통해 가능해야 합니다. 열 카메라와 클러스터 식별 프레임워크의 활용은 공항, 기차역 및 완전히 다른 대중 방문 장소에서 일반화되었습니다. 이로 인해 머신 러닝이 서비스 시장으로 주목받게 되었고, 이는 차례로 대상 시장을 향상시킬 것으로 예상됩니다. 또한, COVID 치료 센터와 관련된 클리닉에서 제한된 구역에 있는 사람들의 존재를 인식하기 위해 AI를 사용하는 것은 세계 머신 러닝 서비스 시장에 긍정적인 영향을 미칩니다. AI와 조사에 사용되는 계산은 머신 러닝 서비스 시장에서 운영되는 플레이어/공급업체에게 역동적인 기회를 만드는 좋은 추적을 통해 개선되었습니다.
스페인 머신러닝 서비스 시장 범위
서비스로서의 머신 러닝 시장은 서비스, 비즈니스 기능 배포 모델, 조직 규모, 애플리케이션, 최종 사용자를 기준으로 세분화됩니다. 이러한 세그먼트의 성장은 업계에서 성장이 미미한 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 의사 결정을 내리는 데 도움이 됩니다.
서비스
- 관리 서비스
- 전문적인
- 전문적인 서비스
사업 기능
- 인적자원
- 영업 및 마케팅
- 재무 및 운영
배포 모델
- 구름
- 온 프레미스
조직 규모
- 대규모 조직
- 소규모 및 중규모 조직
애플리케이션
- 약물 발견
- 사기 탐지 및 위험 관리
- 자연어 처리
- 마케팅 및 광고
- 보안 및 감시
- 이미지 인식
- 예측 분석
- 데이터 마이닝
- 증강현실과 가상현실
최종 사용자
- 은행 및 금융 서비스
- 보험
- IT 및 통신
- 연구 및 학술
- 정부 및 공공 부문
- 소매 및 전자 상거래
- Manufacturing
- Healthcare and Pharmaceuticals
- Travel and Logistics
- Energy and Utility
- Media and Entertainment
Competitive Landscape and Machine Learning as a Service Market Share Analysis
The machine learning as a Service market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to machine learning as a Service market.
Some of the major players operating in the machine learning as a service market are:
- Google (US),
- Microsoft (US),
- IBM (US),
- SAP (Germany),
- Amazon Web Services, Inc. (US)
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
목차
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.
