Relatório de análise do tamanho, quota e tendências do mercado de manutenção preditiva dos EUA – Visão geral e previsão do setor até 2032

Pedido de resumo Pedido de TOC Fale com Analista Fale com o analista Relatório de amostra grátis Relatório de amostra grátis Consulte antes Comprar Consulte antes  Comprar agora Comprar agora

Relatório de análise do tamanho, quota e tendências do mercado de manutenção preditiva dos EUA – Visão geral e previsão do setor até 2032

  • ICT
  • Upcoming Reports
  • Feb 2025
  • Country Level
  • 350 Páginas
  • Número de tabelas: 220
  • Número de figuras: 60

Us Predictive Maintenance Market

Tamanho do mercado em biliões de dólares

CAGR :  % Diagram

Chart Image USD 7.23 Billion USD 55.12 Billion 2024 2032
Diagram Período de previsão
2025 –2032
Diagram Tamanho do mercado (ano base )
USD 7.23 Billion
Diagram Tamanho do mercado ( Ano de previsão)
USD 55.12 Billion
Diagram CAGR
%
Diagram Principais participantes do mercado
  • Manequim1
  • Manequim2
  • Manequim3
  • Manequim4
  • Manequim5

Segmentação do mercado de manutenção preditiva dos EUA, por oferta (solução e serviços), modo de implantação (nuvem e local), aplicação (verificação da transmissão, mudança de óleo, inspeção de pneus, substituição de líquido de refrigeração, travão, filtro de ar do motor, filtro de habitáculo e mudança de correia), tamanho da empresa (organizações de grande dimensão e pequenas e médias), tipo de veículo (ligeiro de passageiros, veículo comercial e veículo todo-o-terreno), utilizador final (proprietários de frotas, FMS, fabricantes, FMC e particular) - tendências e previsões do setor até 32

Análise do mercado de manutenção preditiva dos EUA

O mercado de manutenção preditiva dos EUA está a assistir a um crescimento significativo impulsionado pela necessidade de reduzir os encargos operacionais através de serviços de apoio à manutenção, pela crescente procura de equipamentos baseados em projetos e pelo ritmo acelerado da inovação tecnológica, o que permite às empresas minimizar os riscos de depreciação e evitar perdas financeiras. No entanto, o mercado enfrenta restrições, como o elevado investimento de capital e a disponibilidade limitada de equipamento especializado. As oportunidades residem na formação de parcerias e colaborações com fornecedores de tecnologia, na adoção de iniciativas verdes e de sustentabilidade e na capitalização da crescente industrialização e adoção tecnológica. Apesar destas perspetivas, o mercado é desafiado por complexidades de gestão de stocks e concorrência intensa, levando à saturação do mercado.

Tamanho do mercado de manutenção preditiva dos EUA

O tamanho do mercado de manutenção preditiva dos EUA foi avaliado em 7,23 mil milhões de dólares em 2024 e está projetado para atingir 55,12 mil milhões de dólares até 2032, com um CAGR de 28,89% durante o período previsto de 2025 a 2032. Para além dos insights sobre cenários de mercado, tais como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research incluem também análises aprofundadas de especialistas, produção e capacidade representadas geograficamente por empresas, layouts de rede de distribuidores e parceiros, análise detalhada e atualizada das tendências de preços e análise do défice da cadeia de abastecimento e da procura.

Tendência do mercado de manutenção preditiva dos EUA

'Adoção de IoT e IA'

A adoção de dispositivos IoT permite a monitorização contínua dos equipamentos através da recolha de dados em tempo real sobre o desempenho e a integridade. Estes dados são depois analisados ​​utilizando algoritmos de IA para identificar padrões e prever possíveis falhas. Ao aproveitar a aprendizagem automática, as organizações podem melhorar a precisão das suas previsões de manutenção. Esta abordagem proativa minimiza o tempo de inatividade inesperado e melhora a eficiência operacional global. Em última análise, a integração da IoT e da IA ​​transforma a manutenção de reativa em preditiva, promovendo uma melhor gestão de recursos. .

Âmbito do relatório e mercado de manutenção preditiva dos EUA

Atributos

Principais insights de mercado sobre a manutenção preditiva nos EUA 

Segmentos abrangidos

  • Ao oferecer  : Soluções e Serviços
  • Por modo de implantação : Cloud e local
  • Por aplicação : Verificação da transmissão, mudança de óleo e pneus
  • Por inspeção , substituição do líquido de refrigeração, travão, filtro de ar do motor, filtro do habitáculo e substituição da correia
  • Por dimensão da empresa : Organizações de grande dimensão e organizações de pequena e média dimensão
  • Por tipo de veículo  : automóvel ligeiro de passageiros, veículo comercial e veículo todo-o-terreno
  • Por utilizador final : proprietários de frotas, FMS, fabricantes, FMC e particulares

Principais participantes do mercado

AISIN CORPORATION (Japão), PHINIA Inc. (China), KPIT (Índia), Microsoft (EUA), Aptiv (Irlanda), Continental AG (Alemanha), Robert Bosch GmbH (Alemanha), Siemens AG (Alemanha), SAP SE (Alemanha), ZF Friedrichshafen AG (Alemanha), Valeo Corporation (França), IBM (EUA), Teletrac Navman (EUA), Garrett Motion Inc. (EUA), pstream Security Ltd. (Reino Unido), Verizon (EUA), Infineon Technologies AG (Alemanha), Uptake technologies inc. (EUA), Fluke Corporation (EUA), PTC (EUA), Rockwell Automation (EUA), Embitel (Índia), Altair Engineering Inc. (EUA), Honeywell International Inc. (EUA), NEC Corporation (Japão), Emerson (EUA), C3.AI (EUA), Progress (EUA), Fiix by Rockwell Automation Inc. (EUA) e Ansys (EUA), entre outros

Oportunidades de Mercado

  • Crescente procura por sustentabilidade
  • Colaboração com fabricantes de pneus para pneus inteligentes

Conjuntos de informações de dados de valor acrescentado

Para além dos insights sobre os cenários de mercado, tais como o valor de mercado, a taxa de crescimento, a segmentação, a cobertura geográfica e os principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research incluem também análises aprofundadas de especialistas, produção e capacidade da empresa representada geograficamente, layouts de rede de distribuidores e parceiros, análises detalhadas e atualizadas das tendências de preços e análises de défice da cadeia de abastecimento e da procura.

Definição do mercado de manutenção preditiva dos EUA

A manutenção preditiva na indústria automóvel refere-se à utilização de análises baseadas em dados e tecnologias de monitorização em tempo real para prever quando os componentes de um veículo, como motores, travões ou pneus, necessitarão de manutenção. Ao utilizar sensores, telemática e sistemas IoT, a manutenção preditiva identifica padrões e sinais precoces de desgaste ou potencial falha, permitindo que sejam programadas reparações ou substituições de peças antes que ocorram avarias. Esta abordagem proativa minimiza o tempo de inatividade inesperado do veículo, aumenta a segurança, reduz os custos de manutenção e prolonga a vida útil global dos componentes automóveis.

Dinâmica do mercado de manutenção preditiva dos EUA

Motorista

  • Adoção crescente da IoT nas operações industriais

A crescente adoção da IoT nas operações industriais é um impulsionador significativo para o mercado de manutenção preditiva, uma vez que permite a monitorização em tempo real e a recolha de dados de equipamentos e máquinas em vários setores.  Os sensores IoT  capturam continuamente dados operacionais críticos, como temperatura, vibração, pressão e desgaste, que são depois analisados ​​utilizando algoritmos preditivos avançados para identificar possíveis falhas no equipamento antes que estas ocorram. Esta abordagem proativa permite às empresas otimizar os horários de manutenção, reduzir o tempo de inatividade inesperado, prolongar a vida útil do equipamento e reduzir os custos operacionais. À medida que as indústrias adotam cada vez mais a IoT para uma fabricação inteligente, gestão de energia e otimização da cadeia de abastecimento, a manutenção preditiva torna-se essencial para garantir a eficiência, produtividade e fiabilidade dos ativos em ambientes habilitados para IoT.

Por exemplo, em setembro de 2024, a MachineQ da Comcast lançou uma solução de monitorização de energia baseada em IoT com o objetivo de ajudar as empresas a gerir o consumo de energia e aumentar a eficiência operacional. Esta solução facilitou a manutenção preditiva ao detetar anomalias no uso de energia, permitindo a manutenção proativa de equipamentos críticos, como congeladores de temperatura ultrabaixa. O sensor MQpower CT forneceu dados em tempo real, oferecendo uma visão abrangente do consumo de energia e insights acionáveis. Esta inovação apoiou a crescente adoção da IoT nas operações industriais, permitindo às empresas otimizar a utilização dos ativos e reduzir os custos globais, ao mesmo tempo que contribuíam para os esforços de sustentabilidade.

  • Crescente procura por soluções de Big Data e Analytics

A crescente procura por soluções de big data e analítica está a moldar significativamente o mercado de manutenção preditiva, à medida que as organizações reconhecem cada vez mais o valor dos insights baseados em dados na otimização da eficiência operacional. Ao tirar partido da análise avançada, as empresas podem processar grandes quantidades de dados em tempo real de sensores IoT e outras fontes, permitindo-lhes identificar padrões, prever falhas de equipamento e tomar decisões informadas sobre a manutenção. Esta abordagem proativa minimiza o tempo de inatividade não planeado, reduz os custos de manutenção e melhora o desempenho global dos ativos, gerando mais investimentos em tecnologias de big data. À medida que as indústrias continuam a adotar a análise de dados como um componente essencial das suas estratégias de manutenção, espera-se que o mercado da manutenção preditiva experimente um crescimento substancial, impulsionado pela necessidade de maior fiabilidade e eficácia operacional. Por exemplo,

Em abril de 2024, a Databricks lançou a Plataforma de Inteligência de Dados para Energia, concebida para integrar recursos de IA em todo o setor energético. Esta plataforma utiliza uma arquitetura de lakehouse aberta, permitindo às organizações gerir grandes volumes de dados de energia, mantendo a privacidade dos dados. Permite a gestão do desempenho dos ativos em tempo real e a manutenção proativa, ajudando as empresas a reduzir o tempo de inatividade não planeado e a aumentar a eficiência operacional. À medida que o setor energético migra para sistemas mais limpos e fiáveis, a plataforma suporta a crescente procura por soluções de big data e analítica, capacitando as organizações para otimizar a sua infraestrutura e implementar estratégias de manutenção preditiva de forma eficaz.

 Oportunidade

  • Crescente procura por sustentabilidade

A crescente procura de sustentabilidade apresenta uma oportunidade significativa para o mercado de manutenção preditiva. À medida que as indústrias procuram reduzir o consumo de energia, minimizar o desperdício e melhorar a eficiência dos recursos, as tecnologias de manutenção preditiva podem desempenhar um papel crucial ao otimizar o desempenho dos equipamentos e evitar avarias inesperadas. Ao permitir a deteção precoce de possíveis problemas, estas soluções ajudam a prolongar a vida útil das máquinas, a reduzir o tempo de inatividade e a diminuir o impacto ambiental das operações. Isto está alinhado com o impulso mais amplo para práticas sustentáveis, tornando a manutenção preditiva uma opção atraente para as empresas que procuram atingir metas de sustentabilidade e, ao mesmo tempo, melhorar a eficiência operacional.

Por exemplo, em maio de 2023, de acordo com um artigo publicado pela Software GmbH, a Internet das Coisas (IoT) transformou significativamente a indústria transformadora, melhorando os esforços de sustentabilidade. A IoT permite aos fabricantes implementar a manutenção preditiva, que utiliza dados de sensores para prever falhas de equipamentos. Esta abordagem proativa ajuda a reduzir o tempo de inatividade não planeado, os custos de manutenção e as emissões de carbono. A manutenção preditiva pode aumentar a produtividade em 25% e diminuir as avarias em 70%. À medida que os fabricantes enfrentam uma pressão crescente para atingir os objetivos de sustentabilidade, a procura por soluções de manutenção preditiva deverá crescer. Ao otimizar os processos de produção e minimizar o desperdício, a manutenção preditiva apoia diretamente a crescente procura de sustentabilidade, tornando-se um aspeto vital do fabrico moderno

  • Colaboração com fabricantes de pneus para pneus inteligentes

A colaboração com fabricantes de pneus para pneus inteligentes representa uma oportunidade valiosa para o mercado de manutenção preditiva. À medida que a indústria automóvel migra cada vez mais para tecnologias inteligentes, a integração de soluções de manutenção preditiva com sistemas de pneus inteligentes pode melhorar o desempenho e a segurança dos veículos. Estes pneus inteligentes, equipados com sensores que monitorizam a saúde, a pressão e a temperatura dos pneus em tempo real, fornecem dados essenciais que os sistemas de manutenção preditiva podem analisar. Ao aproveitar estes dados, os operadores de frotas e os proprietários de veículos podem abordar proactivamente possíveis problemas, reduzir o tempo de inatividade e melhorar a eficiência global do veículo. Esta colaboração não só fortalece o mercado de manutenção preditiva, como também está alinhada com a crescente procura por soluções automóveis inteligentes e sustentáveis.

Por exemplo, em setembro de 2023, a Revvo e a Smartcar introduziram uma solução de pneus conectados com o objetivo de transformar a gestão de pneus para manutenção preditiva. A parceria permitiu aos retalhistas de pneus, frotas e particulares integrar a telemática dos veículos e automatizar alertas de manutenção preditiva, reduzindo o tempo de inatividade e otimizando os recursos. Ao tirar partido desta plataforma, os fornecedores de pneus podem lidar com o aumento dos custos dos pneus e melhorar o serviço ao cliente com soluções de manutenção proativas. Esta colaboração marcou um avanço significativo no mercado de manutenção preditiva, permitindo uma alocação mais inteligente de recursos e menos reparações de emergência através da monitorização de dados em tempo real e de fluxos de trabalho automatizados.

Restrição/Desafio

  • Integrando dados de alta qualidade para a manutenção preditiva automóvel

O elevado investimento de capital necessário para os equipamentos de teste e medição cria uma barreira para os novos participantes no mercado. O significativo desembolso financeiro necessário para construir um inventário competitivo impede a entrada de novos participantes no setor. Esta falta de nova concorrência pode levar a um mercado dominado por poucas empresas estabelecidas, reduzindo a inovação e limitando as opções para os clientes. Consequentemente, a elevada exigência de capital não só restringe o crescimento e a diversificação das empresas de locação e leasing, como também dificulta o dinamismo geral do mercado e a escolha do cliente.

Por exemplo, em março de 2024, de acordo com a KHL Group LLP, a United Rentals investiu 1,1 mil milhões de dólares para adquirir o negócio de estradas temporárias da A-Plant, sediada no Reino Unido, expandindo as suas ofertas nos setores das infraestruturas e da construção. Esta aquisição estratégica teve como objetivo reforçar o seu portefólio com equipamentos e serviços especializados, reforçando a sua posição no mercado de renting. A mudança está alinhada com a estratégia da United Rentals de diversificar e reforçar as suas capacidades de serviço a nível global

  • Disponibilidade limitada de equipamento especializado

Os participantes do mercado de manutenção preditiva automóvel dos EUA enfrentam desafios significativos na integração de dados de alta qualidade. À medida que os veículos se tornam cada vez mais complexos, equipados com sensores avançados e tecnologias conectadas, a quantidade de dados gerados é vasta e diversificada. Isto dificulta a consolidação de informações de várias fontes, como telemática, diagnósticos de bordo e registos históricos de manutenção. Se a integração de dados for ineficaz, isto pode levar a avaliações incompletas ou imprecisas da saúde do veículo, prejudicando a eficácia das estratégias de manutenção preditiva. Além disso, a integração de sistemas legados com tecnologias modernas complica ainda mais a situação. Muitas empresas automóveis ainda dependem de software desatualizado, incompatível com a análise avançada de dados necessária para a manutenção preditiva. Esta lacuna impede o fluxo contínuo de dados de alta qualidade necessários para a previsão precisa das necessidades de manutenção. Consequentemente, a incapacidade de integrar dados de forma eficaz pode prejudicar o sucesso global das iniciativas de manutenção preditiva, impactando não só a fiabilidade do veículo, mas também a eficiência operacional.

Por exemplo, os sistemas Tesla Autopilot e Full Self-Driving apresentam desafios significativos devido à complexidade do processamento de dados em tempo real de vários sensores e câmaras. A dependência de dados precisos para características como o Cruise Control com Alerta de Tráfego e a Mudança Automática de Faixa significa que quaisquer discrepâncias podem levar a problemas de segurança e ineficiências operacionais. Além disso, a necessidade de atualizações contínuas de software e calibração do sistema complica o processo de integração, tornando essencial manter um fluxo contínuo de dados de alta qualidade para um desempenho ideal do veículo.

Este relatório de mercado fornece detalhes dos novos desenvolvimentos recentes, regulamentos comerciais, análise de importação e exportação, análise de produção, otimização da cadeia de valor, quota de mercado, impacto dos participantes do mercado nacional e localizado, analisa as oportunidades em termos de bolsas de receitas emergentes, alterações nas regulamentações do mercado, análise do crescimento estratégico do mercado, tamanho do mercado, crescimento do mercado de categorias, nichos de aplicação e dominância, aprovações de produtos, lançamentos de produtos, expansões geográficas, inovações tecnológicas no mercado. Para mais informações sobre o mercado, contacte a Data Bridge Market Research para obter um briefing de analista.

Âmbito do mercado de manutenção preditiva dos EUA

O mercado é segmentado com base no modo de implementação, aplicação, dimensão da empresa, tipo de veículo e utilizador final. O crescimento entre estes segmentos irá ajudá-lo a analisar segmentos de baixo crescimento nos setores e fornecerá aos utilizadores uma visão geral e informações valiosas do mercado para os ajudar a tomar decisões estratégicas para identificar as principais aplicações do mercado.

Oferta

  • Solução
  • Serviços

Modo de Implantação

  • Nuvem
  • No local

Aplicação

  • Verificação da transmissão
  • Troca de óleo
  • Inspeção de pneus
  • Substituição do líquido de refrigeração
  • Freio
  • Filtro de ar do motor
  • Filtro de habitáculo
  • Belt Change

Enterprise Size

  • Large Size Organizations
  • Small & Medium Sized Organization

Vehicle Type

  • Passenger Car
  • Commercial Vehicle
  • Off Road Vehicle

End User

  • Fleet Owners
  • FMS
  • Manufacturers
  • FMC
  • Individual

U.S. Predictive Maintenance Market Share

Global predictive maintenance market competitive landscape provides details of competitors. Details included are company overview, company financials, revenue generated, market potential, investment in R&D, new market initiatives, production sites and facilities, company strengths and weaknesses, product launch, product approvals, product width and breadth, application dominance, and product type lifeline curve. The above data points provided are only related to the company’s focus on Predictive Maintenance the market.

Predictive maintenance market players operating in the market are:

  • AISIN CORPORATION (Japan)
  • PHINIA Inc. (China)
  • KPIT (India)
  • Microsoft (U.S.)
  • Aptiv (Ireland)
  • Continental AG (Germany)
  • Robert bosch gmbh (Germany)
  • Siemens ag (Germany)
  • SAP se (Germany)
  • ZF friedrichshafen ag (Germany)
  • Valeo corporation (France)
  • IBM (U.S.)
  • Teletrac navman (U.S.)
  • Garrett motion inc. (U.S.)
  • Upstream Security Ltd. (U.K.)
  • Verizon (U.S.)
  • Infineon Technologies AG (Germany)
  • Uptake technologies inc. (U.S.)
  • Fluke Corporation (U.S.)
  • PTC (U.S.)
  • Rockwell Automation (U.S.)
  • Embitel (India)
  • Altair Engineering Inc. (U.S.)
  • Honeywell International Inc. (U.S.)
  • NEC Corporation (Japan)
  • Emerson (U.S.)
  • C3.AI (U.S.)
  • Progress (U.S.)
  • Fiix by Rockwell Automation Inc. (U.S.)
  • Ansys (U.S.)

Latest Developments in U.S. Predictive Maintenance Market

  • In July 2024, Fluke Reliability has teamed up with Augmentir to merge their connected worker platform with Fluke's AI-driven enterprise asset management solution, which aims to boost productivity and enhance Maintenance, Repair, and Operations (MRO) for industrial clients. This collaboration allows Fluke Corporation's customers to implement predictive maintenance strategies, enabling them to evaluate asset health and leverage AI diagnostics to anticipate faults up to six months ahead, thereby reducing unplanned downtime and streamlining maintenance processes
  • In February 2023, Uptake has partnered with Daimler Truck North America to improve its predictive maintenance technology using a data-as-a-service model, granting DTNA customers access to datadriven insights that reduce unplanned fleet downtime and maintenance costs. This collaboration enables Uptake to utilize DTNA's streaming data, enhancing its predictive maintenance capabilities for more accurate vehicle issue predictions, optimized vehicle lifecycles, and tailored repair schedules, thereby minimizing unplanned maintenance events for customers


SKU-

Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo

  • Painel interativo de análise de dados
  • Painel de análise da empresa para oportunidades de elevado potencial de crescimento
  • Acesso de analista de pesquisa para personalização e customização. consultas
  • Análise da concorrência com painel interativo
  • Últimas notícias, atualizações e atualizações Análise de tendências
  • Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Pedido de demonstração

Metodologia de Investigação

A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados ​​e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.

A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis ​​de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.

Personalização disponível

A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

Perguntas frequentes

Growing Adoption of IOT in Industrial Operations, Growing Demand for Big Data and Analytics Solutions, Stringent vehicle safety regulations, and Increased Adoption of Telematics in Fleet Management are the major growth driving factors.
AISIN CORPORATION (Japan), PHINIA Inc. (China), KPIT (India), Microsoft (U.S.), Aptiv (Ireland), Continental AG (Germany), Robert bosch gmbh (Germany), Siemens ag (Germany), SAP se (Germany), ZF friedrichshafen ag (Germany), Valeo corporation (France), IBM (U.S.), Teletrac navman (U.S.), Garrett motion inc. (U.S.), pstream Security Ltd. (United Kingdom), Verizon (U.S.), Infineon Technologies AG (Germany), Uptake technologies inc. (U.S.), Fluke Corporation (U.S.), PTC (U.S.), Rockwell Automation (U.S.), Embitel (India), Altair Engineering Inc. (U.S.), Honeywell International Inc. (U.S.), NEC Corporation (Japan), Emerson (U.S.), C3.AI (U.S.), Progress (U.S.), Fiix by Rockwell Automation Inc. (U.S.), Ansys (U.S.) among others.
The countries covered in the market are U.S. .
Testimonial