Глубокое обучение в машинном зрении имеет решающее значение для таких приложений, как системы автономного вождения. Используя глубокие нейронные сети, эти системы могут обрабатывать данные с камер, LiDAR и датчиков в режиме реального времени. Они точно обнаруживают и классифицируют такие объекты, как пешеходы, транспортные средства и дорожные знаки, что имеет решающее значение для безопасной навигации в сложных условиях. Эта технология позволяет транспортным средствам принимать обоснованные решения автономно, что значительно повышает как надежность, так и безопасность автономного вождения. В результате глубокое обучение в машинном зрении не только производит революцию в транспортных системах, но и находит применение в таких областях, как распознавание изображений и медицинская визуализация, где точный анализ и принятие решений на основе визуальных данных имеют решающее значение.
Ожидается, что мировой рынок глубокого обучения в машинном зрении будет расти среднегодовыми темпами в 12,5% в прогнозируемый период с 2022 по 2029 год.
Чтобы узнать больше, посетите https://www.databridgemarketresearch.com/reports/global-deep-learning-in-machine-vision-market
Ниже представлены ведущие компании в области глубокого обучения в области машинного зрения со значительной долей рынка :
Классифицировать
|
Компания
|
Обзор
|
Портфолио продуктов
|
География продаж
|
Разработки
|
1.
|
Корпорация Cognex
|
Cognex — ведущий поставщик систем машинного зрения и программного обеспечения. Они интегрируют технологии глубокого обучения в свои системы зрения для таких приложений, как автоматизированный осмотр и контроль качества в различных отраслях, включая производство и логистику. Их решения известны высокой точностью и надежностью в сложных условиях.
|
|
Америка, Европа, Ближний Восток и Азиатско-Тихоокеанский регион
|
В июле 2021 года корпорация Cognex запустила программное обеспечение Cognex VisionPro. Ключевой особенностью запуска этого программного обеспечения было разрушение барьеров между глубоким обучением и традиционным зрением, что позволило клиентам объединить инструменты глубокого обучения и традиционного зрения в одном приложении. Благодаря этому компания предложила своим потребителям качественные продукты.
|
2.
|
Корпорация Intel
|
Intel играет важную роль в глубоком обучении на рынке машинного зрения, разрабатывая процессоры, оптимизированные для задач ИИ и машинного обучения. Они предоставляют аппаратные решения, такие как ЦП и ГП, которые обеспечивают работу алгоритмов глубокого обучения в приложениях машинного зрения, позволяя обрабатывать и анализировать изображения в реальном времени.
|
|
Северная Америка, Южная Америка, Европа и Азиатско-Тихоокеанский регион
|
В феврале корпорация Intel объявила о запуске будущих поколений Intel Xeon. Это новая двухдорожечная дорожная карта продуктов на основе Performance-core и Efficient-core, переходящая от двух оптимизированных платформ к одной общей, определяющей отрасль платформе. Таким образом, с помощью этого нового продукта компания сможет нацелиться на новую клиентскую базу по требованиям рынка.
|
3.
|
НАЦИОНАЛЬНАЯ ИНСТРУМЕНТАЛЬНАЯ КОРПОРАЦИЯ.
|
National Instruments предлагает программные и аппаратные платформы, поддерживающие приложения машинного зрения, в том числе использующие глубокое обучение. Их продукты позволяют разработчикам интегрировать алгоритмы ИИ для таких задач, как обнаружение объектов и классификация изображений в промышленной автоматизации и научных исследованиях.
|
|
Европа, Южная Америка, Ближний Восток, Северная Америка и Азиатско-Тихоокеанский регион
|
В июле 2020 года NATIONAL INSTRUMENTS CORP. приобрела Optimal Plus за 365 миллионов долларов США. Являясь мировым лидером в области программного обеспечения для анализа данных для полупроводниковой, автомобильной и электронной промышленности, поскольку они используются в различных новых технологиях, таких как возможности датчиков, искусственный интеллект и машинное обучение. Благодаря их приобретению компания смогла усилить свои подразделения машинного зрения, поскольку эти технологии широко используются
|
4.
|
БОЛЬНОЙ АГ
|
Компания SICK AG специализируется на сенсорных технологиях для промышленной автоматизации, включая системы машинного зрения. Они внедряют возможности глубокого обучения в свои сенсоры и системы зрения для таких приложений, как робототехника и логистика. Их решения повышают эффективность и надежность автоматизированных процессов с помощью передовых методов обработки изображений.
|
|
Европа, Ближний Восток и Африка, Южная Америка, Северная Америка, и Азия
|
В декабре 2021 года SICK AG объявила о приобретении хорватской ИТ-компании mobilisis. Таким образом, благодаря этому новому приобретению компания сможет получить экспертизу в области беспроводных сетей промышленных устройств IoT.
|
5.
|
Datalogic SpA
|
Datalogic предоставляет решения для автоматического сбора данных и промышленной автоматизации, включая системы машинного зрения. Они используют технологии глубокого обучения для повышения точности и скорости выполнения таких задач, как считывание штрихкодов и распознавание объектов в производственных и логистических средах, повышая производительность и эффективность работы.
|
|
Европа, Ближний Восток и Африка, Северная Америка, Южная Америка и Азиатско-Тихоокеанский регион
|
В марте 2021 года Datalogic SpA представила свои технологии машинного зрения в Шанхайском новом международном выставочном центре (SNIEC), Китай. Это было сделано стратегически, чтобы привлечь потребителей на азиатском рынке, поскольку технологии машинного зрения становятся чрезвычайно популярными в Азии. Представленные технологии машинного зрения включали интеллектуальную камеру серии P, процессоры серии MX, Impact Advanced OCR и другие. Благодаря этому компания расширила свой рынок в азиатском регионе
|
Заключение
На растущем мировом рынке глубокого обучения в машинном зрении такие компании, как Cognex, Intel, National Instruments Corp., SICK AG и Datalogic, играют ключевую роль со своими инновационными технологиями и решениями. Эти компании являются движущей силой прогресса в области автоматизированного контроля, контроля качества и промышленной автоматизации, интегрируя алгоритмы глубокого обучения в свои системы зрения. Их вклад не только повышает точность и эффективность обработки визуальных данных, но и производит революцию в таких отраслях, как производство, логистика и здравоохранение. Поскольку рынок продолжает расширяться, эти лидеры готовы формировать будущее машинного зрения с помощью своих передовых возможностей и приверженности технологическому совершенству.
