Global Artificial Intelligence Market
市场规模(十亿美元)
CAGR :
%
USD
116.42 Billion
USD
744.30 Billion
2024
2032
| 2025 –2032 | |
| USD 116.42 Billion | |
| USD 744.30 Billion | |
|
|
|
|
全球市場細分,按類型(物件儲存、文件儲存和區塊儲存)、組件類型(解決方案和服務)、部署模式(雲端和本地部署)、企業服務(中小企業和大型企業)、應用(前端和後端)、最終用戶(銀行、金融服務和保險 (BFSI)、零售和消費品、醫療保健和生命科學、媒體和娛樂產業年的預測
人工智慧市場規模
- 2024年全球人工智慧市場價值為1,164.2億美元,預計到2032年將達到7,443億美元。
- 在2025年至2032年的預測期內,該市場預計將以26.10%的複合年增長率成長,主要驅動力是各行業對人工智慧的日益普及。
- 這一增長是由效率提升和成本降低、數據爆炸式增長和分析以及個人化和客戶體驗等因素所驅動的。
人工智慧市場分析
- 人工智慧(AI)是指在機器中模擬人類智能,使其能夠執行學習、解決問題和決策等任務。人工智慧正日益融入各行業,提升效率、自動化程度和創新能力。
- 由於對自動化、數據驅動決策和提高營運效率的需求不斷增長,人工智慧市場正在迅速擴張。企業正在利用人工智慧來提升客戶體驗、優化供應鏈和簡化工作流程。
- 人工智慧市場正朝著更注重倫理人工智慧、透明度和永續性的方向發展。隨著人們對資料隱私和演算法偏見的擔憂日益加劇,企業正在加大對可解釋人工智慧和監管合規性的投入。此外,生成式人工智慧和邊緣運算的興起正在塑造人工智慧應用的未來。
- 例如,Google、微軟和OpenAI等大型科技公司不斷推動人工智慧驅動的解決方案,提供基於雲端的人工智慧工具、自動化軟體和大規模語言模型,以滿足企業和消費者的需求。
- 人工智慧市場有望實現顯著成長,這主要得益於各行業對人工智慧的日益普及、人工智慧演算法的進步以及在醫療保健、金融和自動駕駛系統等領域應用場景的不斷擴展。隨著人工智慧硬體和軟體的持續改進,預計未來幾年該市場將保持持續成長。
報告範圍和人工智慧市場細分
屬性 |
人工智慧關鍵市場洞察 |
|
涵蓋的領域 |
|
|
覆蓋國家/地區 |
北美洲
歐洲
亞太
中東和非洲
南美洲
|
|
主要市場參與者 |
|
|
市場機遇 |
|
|
加值資料資訊集 |
除了市場價值、成長率、市場細分、地理覆蓋範圍、市場參與者和市場狀況等市場洞察外,Data Bridge Market Research 團隊精心編制的市場報告還包括深入的專家分析、進出口分析、定價分析、生產消費分析和 PESTLE 分析。 |
人工智慧市場趨勢
“人工智慧與邊緣運算的融合日益加深”
- 全球人工智慧市場的一個顯著趨勢是人工智慧與邊緣運算的融合日益加深。
- 這一趨勢的驅動力在於對即時資料處理、降低延遲和增強安全性的日益增長的需求,各行各業都在採用人工智慧驅動的邊緣設備,以加快決策速度並最大限度地減少對雲端基礎設施的依賴。
- 例如,NVIDIA 和 Intel 等公司正在開發針對邊緣運算的 AI 最佳化晶片,使企業能夠將 AI 模型直接部署在物聯網設備、自主系統和智慧感測器上。
- 隨著各組織投資邊緣人工智慧解決方案以提高效率、優化營運並增強資料隱私,向去中心化人工智慧處理模式的轉變預計將會加速。
- 隨著競爭加劇,技術供應商將繼續在邊緣人工智慧硬體、軟體和框架方面進行創新。人工智慧在邊緣應用的日益普及,以及低功耗人工智慧晶片和5G連接的進步,將進一步推動市場擴張,鞏固人工智慧驅動的邊緣運算作為下一代智慧系統關鍵推動因素的地位。
人工智慧市場動態
司機
“自動化需求不斷增長”
- 對自動化日益增長的需求是人工智慧市場成長的關鍵驅動力。隨著企業尋求提高效率、降低營運成本和簡化工作流程,人工智慧驅動的自動化正成為各行各業不可或缺的工具,從製造和物流到客戶服務和財務運營,無所不包。
- 這種影響在醫療保健、零售和金融等行業尤其明顯,在這些行業中,人工智慧驅動的自動化提高了生產力,最大限度地減少了人為錯誤,並優化了決策過程。
- 隨著各組織機構將速度和準確性放在首位,人工智慧在自動化重複性任務、預測分析和智慧流程管理方面的應用也日益普及。
- 人工智慧驅動的聊天機器人、機器人流程自動化(RPA)和機器學習模型正在重塑企業的營運方式,使企業能夠在保持高準確率和高響應速度的同時高效擴展業務規模。
- 企業正增加對人工智慧驅動的自動化工具的投資,以改善客戶互動、優化供應鏈並增強營運韌性。
例如,
- UiPath 和 Automation Anywhere 等公司開發了基於人工智慧的 RPA 解決方案,幫助企業實現日常工作流程自動化,從而降低成本並提高效率。
- 各大金融機構和電商平台正在利用人工智慧驅動的詐欺偵測和個人化推薦系統來提升安全性和客戶參與度。
- 隨著人工智慧能力的不斷提升、機器學習在自動化工具中整合度的不斷提高以及各行業應用的日益廣泛,人工智慧驅動的自動化市場預計將進一步擴張,鞏固其作為數位轉型根本驅動力的地位。
機會
“開發行業專用人工智慧解決方案”
- 行業特定人工智慧解決方案的開發為市場成長帶來了巨大的機會。隨著企業尋求客製化的人工智慧應用來應對各自行業的獨特挑戰,醫療保健、金融和製造業等行業對專業人工智慧技術的需求日益增長。
- 人工智慧解決方案正在透過提高效率、改進決策和優化營運來變革這些行業。在醫療保健領域,人工智慧能夠實現疾病的早期檢測、個人化治療方案的發展以及改善患者的治療效果。在金融領域,人工智慧驅動的詐欺偵測、風險評估和自動化交易正在重塑整個產業。在製造業領域,人工智慧正在優化生產流程、預測性維護和品質控制,從而提高生產效率並降低成本。
- 人工智慧能夠提供符合行業特定需求的精準解決方案,這推動了其廣泛應用,因為各組織都認識到它在提升績效和競爭力方面的潛力。
例如,
- IBM Watson Health 和 Tempus 等公司正在利用人工智慧進行先進的醫療診斷和精準醫療,從而徹底改變病患照護方式。
- 摩根大通和萬事達卡等金融機構正在整合人工智慧技術,以增強詐欺偵測能力、實現合規自動化並改善客戶體驗。
- 隨著各產業持續擁抱人工智慧驅動的創新,對特定產業人工智慧應用的投資將會加速。人工智慧開發者與產業領袖之間的合作將擴大市場覆蓋範圍,推動人工智慧的普及應用,並將其打造為重塑各產業業務營運的根本力量。
克制/挑戰
“資料隱私和安全問題”
- 資料隱私和安全問題對人工智慧市場構成重大挑戰。由於人工智慧系統依賴大量的個人敏感數據,資料外洩、未經授權的存取和濫用風險引發了嚴重的監管和倫理問題。
- 在醫療保健、金融和執法等關鍵領域,對人工智慧決策的依賴日益加深,這凸顯了健全的資料保護措施的重要性。人工智慧模型,尤其是那些使用深度學習和大型數據集的模型,可能會無意中洩露機密信息,從而導致隱私洩露和合規風險。
- 人工智慧模型持續學習和演進的特性使得預測和控制其資料處理和儲存方式變得困難。人工智慧驅動決策的複雜性也帶來了透明度方面的挑戰,因為各組織機構難以確保人工智慧產生結果的問責性和可解釋性。
例如,
- 歐盟《一般資料保護規範》(GDPR) 和《加州消費者隱私法案》(CCPA) 等法規對人工智慧驅動的資料收集和使用施加了嚴格的指導方針,要求企業實施更強大的安全協議和透明的資料處理規範。
- 隨著人工智慧應用的不斷普及,解決隱私和安全問題仍然是建立信任和確保合規性的關鍵因素。企業必須投資先進的加密技術、聯邦學習和符合倫理的人工智慧框架,以降低風險並增強消費者對人工智慧技術的信心。
人工智慧市場範圍
市場按類型、元件類型、部署模式、企業服務、應用程式和最終用戶進行細分。
|
分割 |
子細分 |
|
按類型 |
|
|
按組件類型 |
|
|
按部署模式 |
|
|
企業服務
|
|
|
透過申請 |
|
|
由最終用戶 |
|
人工智慧市場區域分析
“北美是人工智慧市場的主導地區”
- 北美在人工智慧市場佔據主導地位,這得益於政府的有利政策、強大的人工智慧研究基礎設施以及廣泛的產業應用。該地區受益於人工智慧研發方面的大量投資、支持創新的監管框架以及政府機構、私人企業和學術機構之間的合作。
- 美國佔據了相當大的份額,這主要歸功於Google、微軟、IBM 和英偉達等科技巨頭的存在,它們正在推動各行業人工智慧應用的發展。
- 人工智慧在醫療保健、金融、汽車和零售等領域的日益普及是推動需求的關鍵因素。人工智慧驅動的個人化醫療、詐欺偵測、自動駕駛汽車和智慧零售解決方案正在迅速改變產業格局。
- 雲端運算和人工智慧即服務 (AIaaS) 的擴展進一步加速了人工智慧的普及,使各種規模的企業都能在無需大量基礎設施投資的情況下整合人工智慧技術。隨著機器學習、深度學習和人工智慧驅動的自動化技術的不斷進步,北美有望繼續保持其在人工智慧市場的領先地位。
“亞太地區預計將實現最高成長率”
- 亞太地區預計將成為人工智慧市場成長最快的地區,這主要得益於快速的數位轉型、不斷增長的人工智慧投資以及人工智慧解決方案的廣泛應用。
- 中國引領亞太地區的人工智慧發展,政府大力推行「新一代人工智慧發展計畫」等舉措,並對人工智慧新創企業、機器人技術和智慧城市計畫進行大量投資。百度、阿里巴巴和騰訊等公司正在推動自然語言處理(NLP)、人臉辨識和人工智慧自動化等領域的人工智慧進步。
- 人工智慧在金融服務和醫療保健領域的應用日益廣泛,進一步加速了市場擴張。基於人工智慧的詐欺檢測、風險評估和自動化交易正在重塑金融業,而人工智慧驅動的診斷、機器人手術和遠距醫療正在革新醫療保健產業。
- 人工智慧研發投入的不斷增長,以及政府的支持性政策和舉措,正為該地區的人工智慧供應商創造豐厚的機會。隨著亞太地區持續擁抱人工智慧驅動的創新,市場蓄勢待發,可望迎來顯著擴張,吸引本地和全球科技企業。
人工智慧市場佔有率
市場競爭格局部分按競爭對手提供詳細信息,包括公司概況、財務狀況、收入、市場潛力、研發投入、新市場拓展計劃、全球佈局、生產基地及設施、產能、公司優勢與劣勢、產品發布、產品線寬度與廣度以及應用領域優勢。以上數據僅與各公司在市場上的業務重點相關。
市場上的主要市場領導者包括:
- 美國超微半導體公司
- AiCure(美國)
- Arm有限公司(英國)
- Atomwise 公司(美國)
- 百度公司(中國)
- ClariFI(美國)
- Cyrcadia Health(美國)
- Enlitic(美國)
- H2O.ai(美國)
- Google LLC(美國)
- HyperVerge公司(美國)
- IBM(美國)
- 英特爾公司(美國)
- IRIS AI AS(挪威)
- 微軟(美國)
- 英偉達公司(美國)
- Sensely公司(美國)
全球人工智慧市場最新發展
- 2025年3月,亞馬遜推出了「興趣」(Interests)功能,這項人工智慧驅動的功能旨在透過自動識別和推薦符合用戶興趣愛好的產品,從而提升個人化購物體驗。這項創新利用機器學習和行為分析來優化產品發現,簡化購物流程並提高使用者參與度。隨著人工智慧推薦成為線上零售的關鍵差異化因素,亞馬遜此舉有望樹立新的產業標桿,推動人工智慧在電子商務領域的更廣泛應用,並鞏固機器學習在變革數位商務中的重要作用。
- 2024年3月,微軟和英偉達宣布合作,旨在推動人工智慧在醫療保健和生命科學領域的應用。此次合作將結合兩家公司的優勢:微軟Azure提供雲端基礎設施和先進的運算能力,英偉達則貢獻其DGX Cloud和Clara套件。合作目標是加速臨床研究和藥物發現等領域的創新,最終改善病患照護。
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
研究方法
数据收集和基准年分析是使用具有大样本量的数据收集模块完成的。该阶段包括通过各种来源和策略获取市场信息或相关数据。它包括提前检查和规划从过去获得的所有数据。它同样包括检查不同信息源中出现的信息不一致。使用市场统计和连贯模型分析和估计市场数据。此外,市场份额分析和关键趋势分析是市场报告中的主要成功因素。要了解更多信息,请请求分析师致电或下拉您的询问。
DBMR 研究团队使用的关键研究方法是数据三角测量,其中包括数据挖掘、数据变量对市场影响的分析和主要(行业专家)验证。数据模型包括供应商定位网格、市场时间线分析、市场概览和指南、公司定位网格、专利分析、定价分析、公司市场份额分析、测量标准、全球与区域和供应商份额分析。要了解有关研究方法的更多信息,请向我们的行业专家咨询。
可定制
Data Bridge Market Research 是高级形成性研究领域的领导者。我们为向现有和新客户提供符合其目标的数据和分析而感到自豪。报告可定制,包括目标品牌的价格趋势分析、了解其他国家的市场(索取国家列表)、临床试验结果数据、文献综述、翻新市场和产品基础分析。目标竞争对手的市场分析可以从基于技术的分析到市场组合策略进行分析。我们可以按照您所需的格式和数据样式添加您需要的任意数量的竞争对手数据。我们的分析师团队还可以为您提供原始 Excel 文件数据透视表(事实手册)中的数据,或者可以帮助您根据报告中的数据集创建演示文稿。

