Global Ai Driven Pathology Tools Market
حجم السوق بالمليار دولار أمريكي
CAGR :
%
USD
156.82 Million
USD
529.70 Million
2024
2032
| 2025 –2032 | |
| USD 156.82 Million | |
| USD 529.70 Million | |
|
|
|
|
تجزئة سوق أدوات علم الأمراض العالمية المعتمدة على الذكاء الاصطناعي، حسب نوع المنتج (البرمجيات، الخدمات)، التكنولوجيا (التعلم الآلي، التعلم العميق، معالجة اللغة الطبيعية)، طريقة النشر (في الموقع، المستند إلى السحابة)، التطبيق (علم الأمراض التشخيصي، البحث وتطوير الأدوية، علم الأمراض الشرعي، الطب الشخصي)، المستخدم النهائي (المستشفيات والعيادات، مختبرات الأبحاث، مختبرات التشخيص، مؤسسات الطب الشرعي) - اتجاهات الصناعة والتوقعات حتى عام 2032
تحليل سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
يشهد سوق أدوات علم الأمراض العالمية التي تعتمد على الذكاء الاصطناعي نموًا سريعًا مدفوعًا بالتقدم في تقنيات التعلم الآلي والتعلم العميق والتعرف على الصور. تعمل أدوات الذكاء الاصطناعي على تحويل علم الأمراض من خلال تمكين التشخيصات الأكثر دقة وسرعة، وخاصة في الكشف عن السرطان، حيث أظهر الذكاء الاصطناعي دقة تشخيصية تزيد عن 90٪ في بعض الدراسات. على سبيل المثال، في سرطان الثدي، أظهرت أدوات علم الأمراض القائمة على الذكاء الاصطناعي معدل دقة بنسبة 96٪ في تحديد الأورام الخبيثة. يساهم انتشار السرطان المتزايد، مع ما يقدر بنحو 19.3 مليون حالة جديدة على مستوى العالم في عام 2020 وفقًا لمنظمة الصحة العالمية (WHO)، بشكل كبير في الطلب على هذه الأدوات. بالإضافة إلى ذلك، تتوسع تطبيقات الذكاء الاصطناعي في علم الأمراض في البحث وتطوير الأدوية، حيث تسهل أدوات الذكاء الاصطناعي عمليات اكتشاف الأدوية بشكل أسرع، كما يتضح من التحليلات التي تعتمد على الذكاء الاصطناعي في الدراسات الجينومية. مع زيادة التبني في كل من الإعدادات السريرية والبحثية، أصبحت أدوات الذكاء الاصطناعي جزءًا لا يتجزأ من تحسين نتائج المرضى والكفاءة التشغيلية في علم الأمراض.
حجم سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
تم تقييم حجم سوق أدوات علم الأمراض العالمية التي تعتمد على الذكاء الاصطناعي بـ 156.82 مليون دولار أمريكي في عام 2024 ومن المتوقع أن يصل إلى 529.70 مليون دولار أمريكي بحلول عام 2032، مع معدل نمو سنوي مركب بنسبة 16.40٪ خلال الفترة المتوقعة من 2025 إلى 2032. بالإضافة إلى الرؤى حول سيناريوهات السوق مثل القيمة السوقية ومعدل النمو والتجزئة والتغطية الجغرافية واللاعبين الرئيسيين، فإن تقارير السوق التي تم تنظيمها بواسطة Data Bridge Market Research تتضمن أيضًا تحليل الخبراء المتعمق وعلم الأوبئة للمرضى وتحليل خطوط الأنابيب وتحليل الأسعار والإطار التنظيمي.
اتجاهات سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
"التركيز على تشخيص السرطان"
في علم الأورام، يركز الطلب على أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي بشكل متزايد على تحسين تشخيص السرطان. يتم دمج الذكاء الاصطناعي في سير عمل الكشف عن السرطان، مما يوفر تحسينات كبيرة في التشخيص المبكر وتصنيف الورم. تستخدم هذه الأدوات خوارزميات التعلم العميق لتحليل شرائح علم الأمراض وبيانات التصوير، وتحديد الأنماط التي قد يكون من الصعب على علماء الأمراض من البشر اكتشافها. من خلال تصنيف الأورام بدقة وتقييم خصائصها، تساعد أدوات الذكاء الاصطناعي في تحديد خطط العلاج الأكثر ملاءمة للمرضى. إن الانتشار المتزايد للسرطان على مستوى العالم، جنبًا إلى جنب مع التقدم في مجال الذكاء الاصطناعي، يجعل هذه الأدوات ضرورية في علم الأورام لتوفير تشخيصات أسرع وأكثر دقة، وهو أمر بالغ الأهمية لتحسين نتائج المرضى ومعدلات البقاء على قيد الحياة.
نطاق التقرير وتقسيم سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
|
صفات |
رؤى السوق الرئيسية لأدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي |
|
القطاعات المغطاة |
|
|
الدول المغطاة |
الولايات المتحدة الأمريكية، كندا، المكسيك، ألمانيا، فرنسا، المملكة المتحدة، هولندا، سويسرا، بلجيكا، روسيا، إيطاليا، إسبانيا، تركيا، بقية أوروبا، الصين، اليابان، الهند، كوريا الجنوبية، سنغافورة، ماليزيا، أستراليا، تايلاند، إندونيسيا، الفلبين، بقية دول آسيا والمحيط الهادئ، المملكة العربية السعودية، الإمارات العربية المتحدة، جنوب أفريقيا، مصر، إسرائيل، بقية دول الشرق الأوسط وأفريقيا، البرازيل، الأرجنتين، بقية دول أمريكا الجنوبية |
|
اللاعبون الرئيسيون في السوق |
PathAI, Inc. (الولايات المتحدة)، Ibex Medical Analytics Ltd. (إسرائيل)، Tempus Labs, Inc. (الولايات المتحدة)، Proscia Inc. (الولايات المتحدة)، DeepLens, Inc. (الولايات المتحدة)، Paige.AI, Inc. (الولايات المتحدة)، Vuno Inc. (كوريا الجنوبية)، FUJIFILM Corporation (اليابان)، Koninklijke Philips NV (هولندا)، IBM Corporation (الولايات المتحدة)، Zebra Medical Vision, Inc. (إسرائيل)، Pathcore Inc. (كندا)، DXC Technology Company (الولايات المتحدة)، Qure.ai Technologies Pvt. Ltd. (الهند)، Mindpeak GmbH (ألمانيا)، MetaSystems GmbH (ألمانيا)، Medical Informatics Corp. (الولايات المتحدة)، Huron Digital Pathology Inc. (كندا) وغيرها. |
|
فرص السوق |
|
|
مجموعات معلومات البيانات ذات القيمة المضافة |
بالإضافة إلى الرؤى حول سيناريوهات السوق مثل القيمة السوقية ومعدل النمو والتجزئة والتغطية الجغرافية واللاعبين الرئيسيين، فإن تقارير السوق التي تم تنظيمها بواسطة Data Bridge Market Research تتضمن أيضًا تحليلًا متعمقًا من الخبراء وعلم الأوبئة للمرضى وتحليل خطوط الأنابيب وتحليل التسعير والإطار التنظيمي. |
تعريف سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
تشير أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي إلى التقنيات المتقدمة التي تستخدم الذكاء الاصطناعي وخوارزميات التعلم الآلي لمساعدة علماء الأمراض في تشخيص الأمراض، وخاصة السرطان، من خلال تحليل شرائح علم الأمراض والصور الطبية. تعمل هذه الأدوات على أتمتة المهام مثل التعرف على الصور واكتشاف الأورام والتصنيف والتصنيف، مما يوفر نتائج أكثر دقة وكفاءة مقارنة بالطرق التقليدية. تساعد أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي في تحسين سرعة ودقة واتساق التشخيصات، مما يمكن علماء الأمراض من تحديد الأنماط التي قد يكون من الصعب اكتشافها يدويًا. يتم دمج هذه الأدوات في الإعدادات السريرية والبحثية لتحسين نتائج المرضى ودعم الطب الشخصي.
ديناميكيات سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
السائقين
- ارتفاع معدل انتشار الأمراض المزمنة والسرطان
إن الانتشار المتزايد للأمراض المزمنة، وخاصة السرطان، يدفع بشكل كبير الطلب على أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي. ومع تزايد حالات الإصابة بالسرطان على مستوى العالم، يتم دمج أدوات الذكاء الاصطناعي بشكل متزايد في سير عمل علم الأمراض للمساعدة في التشخيص المبكر، وتصنيف الأورام بشكل أكثر دقة، وتطوير خطط علاج مخصصة. يمكن لهذه الأدوات تحليل الصور الطبية المعقدة، واكتشاف حتى أصغر التشوهات التي قد تتغاضى عنها العين البشرية، وبالتالي المساعدة في الكشف المبكر عندما تكون العلاجات أكثر فعالية. تلعب الأدوات التي تعتمد على الذكاء الاصطناعي أيضًا دورًا حاسمًا في تصنيف الأورام، وتوفير تقييمات أكثر دقة لمراحل السرطان، مما يؤثر بشكل مباشر على قرارات العلاج. مع استمرار ارتفاع معدل الإصابة بالأمراض المزمنة، وخاصة السرطان، أصبحت أدوات الذكاء الاصطناعي لا غنى عنها في تحسين كفاءة التشخيص ودقته.
إن العبء المتزايد للأمراض المزمنة، إلى جانب التقدم في مجال الذكاء الاصطناعي، يعيد تشكيل مشهد علم الأمراض، ويعزز التشخيص المبكر والرعاية الشخصية لتحقيق نتائج أفضل للمرضى.
- التطورات في الذكاء الاصطناعي والتعلم الآلي
إن التطورات في الذكاء الاصطناعي والتعلم الآلي تعمل على إحداث ثورة في مجال علم الأمراض، مما يؤدي إلى تطوير أدوات أكثر تطوراً قادرة على تحليل مجموعات البيانات الكبيرة وتعزيز دقة التشخيص. ومع تطور تقنيات الذكاء الاصطناعي والتعلم الآلي، يمكن لأدوات علم الأمراض الآن معالجة كميات هائلة من الصور الطبية بدقة أكبر، وتحديد حتى أكثر التشوهات دقة والتي قد يغفل عنها علماء الأمراض من البشر. تمكن هذه التطورات الأدوات التي تعتمد على الذكاء الاصطناعي من تحسين مجالات مثل اكتشاف الأورام وتصنيفها وتوقعها بشكل كبير، مما يوفر رؤى أكثر تفصيلاً ودقة للأطباء. علاوة على ذلك، يمكن لخوارزميات الذكاء الاصطناعي أتمتة المهام الروتينية مثل تصنيف الصور، مما يقلل من عبء العمل على علماء الأمراض ويسمح لهم بالتركيز على الحالات الأكثر تعقيدًا. مع استمرار تقدم هذه التقنيات، من المتوقع أن يزداد دمج أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي في سير العمل السريري، مما يحسن كل من سرعة وجودة التشخيص. تعمل التطورات في الذكاء الاصطناعي والتعلم الآلي على تعزيز قدرات أدوات علم الأمراض، مما يجعلها ضرورية لتشخيص المرض بشكل أكثر كفاءة ودقة.
فرص
- التكامل مع علم الجينوم والطب الشخصي
إن دمج أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي مع علم الجينوم والطب الشخصي يوفر فرصة كبيرة لتطوير الرعاية الصحية. ومن خلال الجمع بين الذكاء الاصطناعي والبيانات الجينية وتحليل المؤشرات الحيوية، يمكن لهذه الأدوات أن تساعد في إنشاء خطط علاجية أكثر تفصيلاً ودقة للمرضى الأفراد. وهذا أمر بالغ الأهمية بشكل خاص في علم الأورام، حيث تلعب الطفرات الجينية والملف الجزيئي دورًا رئيسيًا في تحديد العلاجات الأكثر فعالية. يمكن للذكاء الاصطناعي تحليل كميات هائلة من المعلومات الجينية جنبًا إلى جنب مع بيانات علم الأمراض، وتحديد الأنماط والارتباطات التي قد يكون من الصعب على الأطباء اكتشافها يدويًا. ونتيجة لذلك، يتيح هذا التكامل تطوير علاجات أفضل استهدافًا، وتحسين نتائج العلاج وتقليل الآثار الجانبية. بالإضافة إلى ذلك، يساعد في تسهيل التحول نحو الطب الدقيق، حيث يتم تخصيص الرعاية بناءً على الملف الجيني والسريري الفريد للمريض.
إن التآزر بين أدوات علم الأمراض المدعومة بالذكاء الاصطناعي وعلم الجينوم لديه القدرة على تعزيز الرعاية الصحية الشخصية بشكل كبير، وخاصة في علاج الأمراض المعقدة مثل السرطان.
- التعاون مع شركات الأدوية والتكنولوجيا الحيوية
إن التعاون بين أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي وشركات الأدوية أو التكنولوجيا الحيوية يوفر فرصًا قيمة لتعزيز عمليات تطوير الأدوية. ومن خلال الاستفادة من أدوات الذكاء الاصطناعي، يمكن لهذه الشركات تسريع اكتشاف أهداف جديدة للأدوية وتحسين نتائج التجارب السريرية. يمكن للذكاء الاصطناعي تبسيط تحليل صور علم الأمراض وعينات الأنسجة، مما يساعد في تحديد المؤشرات الحيوية الرئيسية وأنماط الأمراض التي قد تمر دون أن يلاحظها أحد. هذه القدرة مهمة بشكل خاص في مرحلة مبكرة من تطوير الأدوية، حيث يمكن للذكاء الاصطناعي المساعدة في اختيار مجموعات المرضى المناسبة والتنبؤ بالاستجابات للعلاجات. في التجارب السريرية، يمكن لأدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي أيضًا تعزيز دقة البيانات، مما يتيح تقييمات أسرع وأكثر موثوقية لفعالية الدواء وسلامته. بالإضافة إلى ذلك، يمكن لهذه الأدوات دعم اكتشاف المؤشرات الحيوية، وهو أمر ضروري لتطوير علاجات مخصصة.
على سبيل المثال،
- في نوفمبر 2024، وفقًا لمقال نشرته شركة Deep Bio Inc.، دخلت شركة Deep Bio Inc. في شراكة مع PathAI لدمج حل تحليل سرطان البروستاتا DeepDx الخاص بها مع نظام إدارة الصور AISight1 من PathAI. يجمع هذا التعاون بين تقنية الذكاء الاصطناعي من Deep Bio ومنصة PathAI، مما يعزز الوصول إلى أدوات التشخيص المتقدمة لسرطان البروستاتا. إنه يقدم فرصة لكلا الشركتين لمزيد من المشاركة مع شركات الأدوية والتكنولوجيا الحيوية، والمساعدة في تطوير الأدوية والتجارب السريرية من خلال تحسين القدرات التشخيصية
إن الشراكة مع شركات الأدوية والتكنولوجيا الحيوية تسمح لأدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي بلعب دور محوري في تطوير أبحاث الأدوية والتجارب السريرية والطب الشخصي، وتحسين كفاءة تطوير الأدوية بشكل عام.
القيود/التحديات
- ارتفاع تكلفة التنفيذ
إن التكلفة العالية للتنفيذ تشكل قيدًا كبيرًا في سوق أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي. يتطلب تطوير ودمج وصيانة الأنظمة التي تعمل بالذكاء الاصطناعي استثمارًا كبيرًا في التكنولوجيا والبنية الأساسية والموظفين المهرة. قد تكافح مؤسسات الرعاية الصحية، وخاصة تلك الموجودة في الأسواق الناشئة أو المناطق ذات الموارد المحدودة، لتوفير الأدوات والبرامج الباهظة الثمن اللازمة لدمج الذكاء الاصطناعي. تمتد التكاليف الأولية أيضًا إلى تدريب أخصائيي علم الأمراض والمتخصصين في الرعاية الصحية لاستخدام هذه الأنظمة المتقدمة بشكل فعال. بالإضافة إلى ذلك، تساهم التحديثات المنتظمة وصيانة النظام والحاجة إلى موظفين متخصصين لتشغيل أدوات الذكاء الاصطناعي في زيادة النفقات الجارية. يمكن أن يؤدي هذا العبء المالي إلى إبطاء تبني أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي، وخاصة في المستشفيات والعيادات ذات الميزانيات المحدودة.
تشكل التكاليف المرتفعة المرتبطة بتنفيذ الذكاء الاصطناعي والتدريب عليه عائقًا أمام نمو السوق، وخاصة في البيئات ذات الموارد المحدودة، مما يحد من الاستخدام الواسع النطاق لهذه التقنيات في علم الأمراض.
- مخاوف بشأن خصوصية البيانات وأمنها
تمثل مخاوف الخصوصية والأمان الخاصة بالبيانات تحديًا كبيرًا لسوق أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي. تعتمد هذه الأدوات على جمع وتحليل وتخزين بيانات المرضى الحساسة، مثل الصور الطبية والمعلومات الجينية، مما يزيد من خطر الخروقات المحتملة والوصول غير المصرح به. مع الاستخدام المتزايد للذكاء الاصطناعي في الرعاية الصحية، يصبح حماية هذه البيانات من التهديدات السيبرانية أمرًا بالغ الأهمية. يجب على مؤسسات الرعاية الصحية الالتزام باللوائح الصارمة، مثل اللائحة العامة لحماية البيانات في أوروبا وقانون التأمين الصحي المحمول والمساءلة في الولايات المتحدة، لضمان التعامل مع بيانات المرضى بأمان. ومع ذلك، فإن تعقيد وتكلفة تنفيذ تدابير الامتثال هذه يمكن أن يشكل عائقًا. علاوة على ذلك، يثير دمج أنظمة الذكاء الاصطناعي في البنى التحتية للرعاية الصحية الحالية مخاوف إضافية بشأن نقل وتخزين بيانات المرضى بشكل آمن. يمكن أن يؤدي خرق الأمان إلى مشكلات قانونية وفقدان ثقة المريض، وفي النهاية يعيق تبني أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي. إن معالجة تحديات أمن البيانات هذه أمر حيوي لضمان النمو الناجح وتبني الذكاء الاصطناعي في علم الأمراض.
نطاق سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
يتم تقسيم السوق على أساس نوع المنتج والتكنولوجيا وطريقة النشر والتطبيق والمستخدم النهائي. سيساعدك النمو بين هذه القطاعات على تحليل قطاعات النمو الضئيلة في الصناعات وتزويد المستخدمين بنظرة عامة قيمة على السوق ورؤى السوق لمساعدتهم على اتخاذ قرارات استراتيجية لتحديد تطبيقات السوق الأساسية.
نوع المنتج
- برمجة
- خدمات
تكنولوجيا
- التعلم الآلي
- التعلم العميق
- معالجة اللغة الطبيعية
طريقة النشر
- في الموقع
- مبني على السحابة
طلب
- علم الأمراض التشخيصي
- البحث وتطوير الأدوية
- الطب الشرعي
- الطب الشخصي
المستخدم النهائي
- المستشفيات والعيادات
- مختبرات الأبحاث
- المختبرات التشخيصية
- المؤسسات الشرعية
تحليل إقليمي لسوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
يتم تحليل السوق وتوفير رؤى حول حجم السوق واتجاهاته حسب البلد ونوع المنتج والتكنولوجيا وطريقة النشر والتطبيق والمستخدم النهائي كما هو مذكور أعلاه.
الدول التي يغطيها السوق هي الولايات المتحدة وكندا والمكسيك وألمانيا وفرنسا والمملكة المتحدة وهولندا وسويسرا وبلجيكا وروسيا وإيطاليا وإسبانيا وتركيا وبقية أوروبا والصين واليابان والهند وكوريا الجنوبية وسنغافورة وماليزيا وأستراليا وتايلاند وإندونيسيا والفلبين وبقية دول آسيا والمحيط الهادئ والمملكة العربية السعودية والإمارات العربية المتحدة وجنوب أفريقيا ومصر وإسرائيل وبقية دول الشرق الأوسط وأفريقيا والبرازيل والأرجنتين وبقية دول أمريكا الجنوبية.
ومن المتوقع أن تهيمن أمريكا الشمالية على السوق بفضل بنيتها التحتية المتقدمة في مجال الرعاية الصحية ومعدلات التبني العالية لتقنيات الذكاء الاصطناعي والحضور القوي للاعبين الرئيسيين في المنطقة.
ومن المتوقع أن تكون منطقة آسيا والمحيط الهادئ هي المنطقة الأسرع نمواً بسبب زيادة الاستثمارات في الرعاية الصحية، وارتفاع معدل انتشار الأمراض المزمنة، والاعتماد المتزايد على التقنيات المتقدمة في دول مثل الصين والهند.
يقدم قسم الدولة في التقرير أيضًا عوامل التأثير الفردية على السوق والتغييرات في التنظيم في السوق محليًا والتي تؤثر على الاتجاهات الحالية والمستقبلية للسوق. نقاط البيانات مثل تحليل سلسلة القيمة المصب والمصب، والاتجاهات الفنية وتحليل قوى بورتر الخمس، ودراسات الحالة هي بعض المؤشرات المستخدمة للتنبؤ بسيناريو السوق للدول الفردية. أيضًا، يتم النظر في وجود وتوافر العلامات التجارية العالمية والتحديات التي تواجهها بسبب المنافسة الكبيرة أو النادرة من العلامات التجارية المحلية والمحلية، وتأثير التعريفات الجمركية المحلية وطرق التجارة أثناء تقديم تحليل توقعات لبيانات الدولة.
حصة سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي
يوفر المشهد التنافسي للسوق تفاصيل حسب المنافس. وتشمل التفاصيل نظرة عامة على الشركة، والبيانات المالية للشركة، والإيرادات المولدة، وإمكانات السوق، والاستثمار في البحث والتطوير، ومبادرات السوق الجديدة، والحضور العالمي، ومواقع الإنتاج والمرافق، والقدرات الإنتاجية، ونقاط القوة والضعف في الشركة، وإطلاق المنتج، وعرض المنتج ونطاقه، وهيمنة التطبيق. وتتعلق نقاط البيانات المذكورة أعلاه فقط بتركيز الشركات فيما يتعلق بالسوق.
الشركات الرائدة في سوق أدوات علم الأمراض التي تعتمد على الذكاء الاصطناعي والتي تعمل في السوق هي:
- PathAI, Inc. (الولايات المتحدة)
- شركة إيبكس للتحليلات الطبية المحدودة (إسرائيل)
- مختبرات تيمبوس، المحدودة (الولايات المتحدة)
- شركة بروشيا (الولايات المتحدة)
- شركة DeepLens، (الولايات المتحدة)
- شركة Paige.AI (الولايات المتحدة)
- شركة فونو (كوريا الجنوبية)
- شركة فوجي فيلم (اليابان)
- كونينكليكي فيليبس إن في (هولندا)
- شركة آي بي إم (الولايات المتحدة)
- شركة زيبرا للرؤية الطبية (إسرائيل)
- شركة باثكور (كندا)
- شركة DXC للتكنولوجيا (الولايات المتحدة)
- شركة Qure.ai Technologies Pvt. Ltd. (الهند)
- Mindpeak GmbH (ألمانيا)
- شركة ميتا سيستمز المحدودة (ألمانيا)
- شركة المعلوماتية الطبية (الولايات المتحدة)
- شركة هورون ديجيتال لعلم الأمراض (كندا)
أحدث التطورات في سوق أدوات علم الأمراض المعتمدة على الذكاء الاصطناعي على مستوى العالم
- في نوفمبر 2024، قامت PathAI بدمج منتجات الذكاء الاصطناعي من شركات رائدة مثل Deep Bio وDoMore Diagnostics وPaige وVisiopharm في نظام إدارة الصور AISight1 (IMS). يعزز هذا التعاون من تنوع AISight وموثوقيته وقابلية التشغيل البيني، مما يسمح لـ PathAI بتقديم حل أكثر شمولاً وسلاسة، مما يعزز مكانتها في السوق
- في نوفمبر 2024، دخلت Deep Bio في شراكة مع PathAI لدمج حل DeepDx Prostate لتحليل سرطان البروستاتا مع نظام إدارة الصور AISight1 من PathAI (IMS). يجمع هذا التعاون بين تقنية الذكاء الاصطناعي من Deep Bio ومنصة PathAI، مما يعزز الوصول إلى أدوات التشخيص المتقدمة لسرطان البروستاتا، ويعزز مكانة الشركتين في سوق علم الأمراض الرقمي
- في نوفمبر 2024، شكلت Aiforia وPaige شراكة غير حصرية لدمج تطبيقات الذكاء الاصطناعي التشخيصي من Paige في منصة Aiforia، مما يعزز الوظائف والأداء. سيعمل هذا التعاون على تحسين كفاءة المختبر ودقة التشخيص ورعاية المرضى، مما يساعد الشركتين على تقديم حلول متقدمة مدعومة بالذكاء الاصطناعي لعملائهما. تعمل هذه الشراكة على تعزيز حضورهما في السوق وتوفر أدوات تشخيصية أكثر شمولاً
- في نوفمبر 2024، وسعت شركة رويال فيليبس تعاونها الاستراتيجي مع أمازون ويب سيرفيسز (AWS) لتقديم مجموعة التشخيص المتكاملة الخاصة بها، بما في ذلك الأشعة، وعلم الأمراض الرقمي، وأمراض القلب، وحلول الذكاء الاصطناعي، في السحابة. سيعمل هذا التعاون على تبسيط سير عمل التشخيص، وتعزيز الوصول إلى الرؤى الحاسمة، وتحسين النتائج السريرية، مما يعزز مكانة فيليبس في سوق تكنولوجيا الرعاية الصحية.
- في يونيو 2024، أكملت شركة Quest Diagnostics عملية الاستحواذ على شركة PathAI Diagnostics لتسريع تبني الذكاء الاصطناعي وعلم الأمراض الرقمي في تشخيص السرطان والأمراض. سيعمل هذا الاستحواذ على تعزيز قدرات Quest التشخيصية، مما يتيح الكشف عن الأمراض بشكل أكثر دقة وكفاءة من خلال تقنيات الذكاء الاصطناعي المتقدمة
- في فبراير 2024، أبرمت شركة F. Hoffmann-La Roche Ltd اتفاقية حصرية مع PathAI لتطوير خوارزميات علم الأمراض الرقمية المدعومة بالذكاء الاصطناعي للتشخيصات المرافقة من خلال Roche Tissue Diagnostics (RTD). وبينما ستتعاون RTD فقط مع PathAI بشأن هذه الخوارزميات، فإنها تحتفظ بالقدرة على تطوير خوارزمياتها الداخلية الخاصة. ستعمل هذه الشراكة على تعزيز قدرات Roche التشخيصية وتسريع تطوير العلاجات الشخصية من خلال حلول متقدمة مدعومة بالذكاء الاصطناعي
SKU-
احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم
- لوحة معلومات تحليل البيانات التفاعلية
- لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
- إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
- تحليل المنافسين باستخدام لوحة معلومات تفاعلية
- آخر الأخبار والتحديثات وتحليل الاتجاهات
- استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
منهجية البحث
يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.
منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.
التخصيص متاح
تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.

