تقرير تحليل حجم السوق العالمية للذكاء الاصطناعي في اكتشاف الأدوية، وحصتها، واتجاهاتها - نظرة عامة على الصناعة وتوقعاتها حتى عام 2032

Request for TOC طلب جدول المحتويات Speak to Analyst تحدث إلى المحلل Free Sample Report تقرير عينة مجاني Inquire Before Buying استفسر قبل Buy Now اشتري الآن

تقرير تحليل حجم السوق العالمية للذكاء الاصطناعي في اكتشاف الأدوية، وحصتها، واتجاهاتها - نظرة عامة على الصناعة وتوقعاتها حتى عام 2032

  • Healthcare
  • Upcoming Report
  • Mar 2025
  • Global
  • 350 الصفحات
  • عدد الجداول: 220
  • عدد الأرقام: 60
  • Author : Sachin Pawar

تجاوز تحديات الرسوم الجمركية من خلال استشارات سلسلة التوريد المرنة

تحليل نظام سلسلة التوريد أصبح الآن جزءًا من تقارير DBMR

Global Artificial Intelligence Ai In Drug Discovery Market

حجم السوق بالمليار دولار أمريكي

CAGR :  % Diagram

Chart Image USD 981.64 Million USD 1,483.82 Million 2024 2032
Diagram فترة التنبؤ
2025 –2032
Diagram حجم السوق (السنة الأساسية)
USD 981.64 Million
Diagram حجم السوق (سنة التنبؤ)
USD 1,483.82 Million
Diagram CAGR
%
Diagram Major Markets Players
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

تجزئة سوق الذكاء الاصطناعي العالمي في اكتشاف الأدوية، حسب التطبيق (الأدوية المرشحة الجديدة، تحسين الأدوية وإعادة استخدامها، الاختبارات والموافقات قبل السريرية، مراقبة الأدوية، اكتشاف أهداف ومسارات جديدة مرتبطة بأمراض، فهم آليات المرض، تجميع المعلومات وتوليفها، صياغة الفرضيات وتأهيلها، تصميم الأدوية الجديدة، اكتشاف أهداف دوائية لأدوية قديمة، وغيرها)، التكنولوجيا (التعلم الآلي، التعلم العميق، معالجة اللغات الطبيعية، وغيرها)، نوع الدواء (جزيء صغير وجزيء كبير)، العرض (البرمجيات والخدمات)، دواعي الاستعمال (علم الأورام المناعي، الأمراض العصبية التنكسية، أمراض القلب والأوعية الدموية، الأمراض الأيضية، وغيرها)، الاستخدام النهائي (منظمات البحوث التعاقدية، شركات الأدوية والتكنولوجيا الحيوية، مراكز البحوث والمعاهد الأكاديمية، وغيرها) - اتجاهات الصناعة والتوقعات حتى عام 2032

الذكاء الاصطناعي في سوق اكتشاف الأدوية

حجم سوق الذكاء الاصطناعي في اكتشاف الأدوية

  • بلغت قيمة سوق الذكاء الاصطناعي العالمي في اكتشاف الأدوية 981.64 مليون دولار أمريكي في عام 2024 ومن المتوقع أن تصل إلى 1483.82 مليون دولار أمريكي بحلول عام 2032
  • خلال الفترة المتوقعة من 2025 إلى 2032، من المرجح أن ينمو السوق بمعدل نمو سنوي مركب قدره 5.30٪، مدفوعًا في المقام الأول بالتوافر المتزايد لبيانات الرعاية الصحية
  • ويعود هذا النمو إلى عوامل مثل الانتشار المتزايد للأمراض المزمنة والتقدم في تقنيات الذكاء الاصطناعي التي تعزز عمليات اكتشاف الأدوية.

تحليل سوق الذكاء الاصطناعي في اكتشاف الأدوية

  • يشهد السوق نموًا سريعًا، مدفوعًا بالتقدم في تقنيات الذكاء الاصطناعي مثل التعلم الآلي والتعلم العميق، والتي تعمل على تبسيط عمليات اكتشاف الأدوية وخفض التكاليف.
  • يتم اعتماد الذكاء الاصطناعي على نطاق واسع لتحسين الأدوية وإعادة استخدامها والاختبارات السريرية وتصميم التجارب السريرية، مما يؤدي إلى تسريع الجدول الزمني لتطوير الأدوية بشكل كبير
  • تتصدر أمريكا الشمالية السوق بفضل قطاعها الدوائي القوي، في حين من المتوقع أن تنمو منطقة آسيا والمحيط الهادئ بسرعة، مدعومة بالاستثمارات المتزايدة في البحث والتطوير.

على سبيل المثال، يتم استخدام تقنيات الذكاء الاصطناعي مثل التعلم الآلي والتعلم العميق للتنبؤ بمعدلات النجاح في التجارب السريرية، وتحسين الأدوية المرشحة، وتحديد الأهداف العلاجية الجديدة، مما يقلل بشكل كبير من الوقت وتكلفة تطوير الأدوية.

  • يؤدي استخدام الذكاء الاصطناعي في اكتشاف الأدوية إلى إحداث ثورة في صناعة الأدوية من خلال معالجة التحديات مثل التكاليف المرتفعة والجداول الزمنية الطويلة ومعدلات النجاح المنخفضة في عمليات تطوير الأدوية التقليدية.

نطاق التقرير والذكاء الاصطناعي في تجزئة سوق اكتشاف الأدوية

صفات

الذكاء الاصطناعي في اكتشاف الأدوية: رؤى السوق الرئيسية

القطاعات المغطاة

  • حسب التطبيق : مرشحو الأدوية الجديدة، تحسين الأدوية وإعادة استخدامها، الاختبارات والموافقات السريرية المسبقة، مراقبة الأدوية، إيجاد أهداف ومسارات جديدة مرتبطة بالأمراض، فهم آليات المرض، تجميع المعلومات وتوليفها، تكوين وتأهيل الفرضيات، تصميم الأدوية الجديدة، إيجاد أهداف دوائية لدواء قديم، وغيرها
  • حسب التكنولوجيا:   التعلم الآلي، والتعلم العميق ، ومعالجة اللغة الطبيعية، وغيرها
  • حسب نوع الدواء:  جزيء صغير وجزيء كبير
  • من خلال تقديم:  البرمجيات والخدمات
  • حسب الإشارة : الأورام المناعية، والأمراض العصبية التنكسية، وأمراض القلب والأوعية الدموية، والأمراض الأيضية، وغيرها
  • حسب الاستخدام النهائي : منظمات الأبحاث التعاقدية (CROs)، وشركات الأدوية والتكنولوجيا الحيوية، ومراكز الأبحاث والمعاهد الأكاديمية، وغيرها

الدول المغطاة

أمريكا الشمالية

  • نحن
  • كندا
  • المكسيك

أوروبا

  • ألمانيا
  • فرنسا
  • المملكة المتحدة
  • هولندا
  • سويسرا
  • بلجيكا
  • روسيا
  • إيطاليا
  • إسبانيا
  • ديك رومى
  • بقية أوروبا

آسيا والمحيط الهادئ

  • الصين
  • اليابان
  • الهند
  • كوريا الجنوبية
  • سنغافورة
  • ماليزيا
  • أستراليا
  • تايلاند
  • أندونيسيا
  • فيلبيني
  • بقية منطقة آسيا والمحيط الهادئ

الشرق الأوسط وأفريقيا

  • المملكة العربية السعودية
  • الإمارات العربية المتحدة
  • جنوب أفريقيا
  • مصر
  • إسرائيل
  • بقية الشرق الأوسط وأفريقيا

أمريكا الجنوبية

  • البرازيل
  • الأرجنتين
  • بقية أمريكا الجنوبية

اللاعبون الرئيسيون في السوق

  • شركة NVIDIA (الولايات المتحدة)
  • شركة آي بي إم (الولايات المتحدة)
  • شركة أتوم وايز (الولايات المتحدة)
  • مايكروسوفت (الولايات المتحدة)
  • الذكاء الاصطناعي الخيري (المملكة المتحدة)
  • شركة آريا للأدوية (الولايات المتحدة)
  • الجينوميات العميقة (كندا)
  • إكسسينتيا (المملكة المتحدة)
  • الطب السيليكوني (هونغ كونغ)
  • سيكليكا (كندا)
  • شركة NuMedii، المحدودة (الولايات المتحدة)
  • إنفيزاجينيكس (الولايات المتحدة)
  • شركة أوكين (الولايات المتحدة)
  • شركة بيرج ذات المسؤولية المحدودة (الولايات المتحدة)
  • شركة شرودنجر (الولايات المتحدة)
  • شركة XtalPi (الصين)
  • شركة BIOAGE (الولايات المتحدة)

فرص السوق

  • ارتفاع استثمارات البحث والتطوير في صناعة الأدوية
  • النمذجة التنبؤية المحسنة للتجارب السريرية

مجموعات معلومات البيانات ذات القيمة المضافة

بالإضافة إلى الرؤى حول سيناريوهات السوق مثل القيمة السوقية ومعدل النمو والتجزئة والتغطية الجغرافية واللاعبين الرئيسيين، فإن تقارير السوق التي تم إعدادها بواسطة Data Bridge Market Research تشمل أيضًا تحليل الاستيراد والتصدير، ونظرة عامة على القدرة الإنتاجية، وتحليل استهلاك الإنتاج، وتحليل اتجاه الأسعار، وسيناريو تغير المناخ، وتحليل سلسلة التوريد، وتحليل سلسلة القيمة، ونظرة عامة على المواد الخام / المواد الاستهلاكية، ومعايير اختيار البائعين، وتحليل PESTLE، وتحليل بورتر، والإطار التنظيمي.

اتجاهات سوق الذكاء الاصطناعي في اكتشاف الأدوية

"الابتكارات القائمة على الذكاء الاصطناعي تُحدث ثورة في اكتشاف الأدوية"

  • أحد الاتجاهات البارزة في سوق الذكاء الاصطناعي في اكتشاف الأدوية هو التبني المتزايد لتقنيات التعلم الآلي والتعلم العميق لتبسيط عمليات تطوير الأدوية .
  • تعمل هذه التقنيات المتقدمة على تعزيز كفاءة ودقة اكتشاف الأدوية من خلال تحليل مجموعات البيانات الضخمة، والتنبؤ بخصائص ربط الجزيئات، وتحديد مرشحي الأدوية المحتملين.
  • على سبيل المثال، يتم استخدام المنصات المدعومة بالذكاء الاصطناعي لإعادة استخدام الأدوية الحالية في مجالات علاجية جديدة، مما يقلل بشكل كبير من الوقت والتكلفة المرتبطة بأساليب اكتشاف الأدوية التقليدية.
  • ويسمح دمج الذكاء الاصطناعي أيضًا بتصميم أفضل للتجارب السريرية من خلال التنبؤ بمعدلات النجاح وتحديد مجموعات المرضى، مما يحسن النجاح العام لتطوير الأدوية.
  • ويساهم هذا الاتجاه في تحويل صناعة الأدوية، وتسريع تطوير العلاجات المبتكرة، ومعالجة الاحتياجات الطبية غير الملباة، وبالتالي دفع الطلب على الحلول التي تعتمد على الذكاء الاصطناعي في السوق.

الذكاء الاصطناعي في ديناميكيات سوق اكتشاف الأدوية

سائق

"ارتفاع استثمارات البحث والتطوير في صناعة الأدوية"

  • تعمل شركات الأدوية على زيادة ميزانياتها المخصصة للبحث والتطوير لتطوير أدوية وعلاجات جديدة، مما يضمن بقائها قادرة على المنافسة وتلبية احتياجات المرضى المتطورة.
  • يتم دمج أدوات الذكاء الاصطناعي في عمليات البحث والتطوير لتعزيز اكتشاف الأدوية، وتمكين التعرف بشكل أسرع على مرشحي الأدوية، وتحسين معدلات النجاح، وتحسين الأبحاث في المراحل المبكرة.
  • يتيح الذكاء الاصطناعي إجراء فحص عالي الإنتاجية، مما يؤدي إلى تسريع عملية اختبار المركبات بشكل كبير وتحديد المرشحين الواعدين لمزيد من التطوير.
  • يمكن للذكاء الاصطناعي معالجة مجموعات كبيرة من البيانات من علم الجينوم والتجارب السريرية والتركيبة السكانية للمرضى لاكتشاف الأنماط المخفية، مما يؤدي إلى تسريع تحديد الأهداف العلاجية الجديدة.
  • بفضل خوارزميات الذكاء الاصطناعي التي تعمل على تحسين عملية تجنيد المرضى وتصميم التجارب، يمكن لشركات الأدوية إجراء تجارب سريرية أكثر كفاءة، مما يقلل الوقت والتكلفة.

على سبيل المثال،

  • تعاونت سانوفي مع إكسينتيا ، مستخدمةً الذكاء الاصطناعي لتصميم أدوية جديدة مرشحة، مما سرّع من وتيرة التجارب السريرية. وفي أحد تعاوناتهما، حددا دواءً واعدًا لعلاج أمراض المناعة الذاتية في وقت أقصر بكثير من الوقت الذي كان سيستغرقه العلاج بالطرق التقليدية.
  • تتعاون شركة جلاكسو سميث كلاين (GSK) وشركة 24M لتطبيق الذكاء الاصطناعي لتحسين عملية البحث والتطوير، بما في ذلك تحديد أهداف الأدوية الجديدة وتسريع تطوير علاجات جديدة، مثل تلك الخاصة بالأمراض النادرة.
  • إن الاستثمارات المتزايدة في البحث والتطوير، إلى جانب قوة الذكاء الاصطناعي، تعمل على تعزيز قدرة صناعة الأدوية على اكتشاف أدوية جديدة بشكل أسرع وأكثر فعالية من حيث التكلفة وبأعلى قدر من الدقة.

فرصة

"النمذجة التنبؤية المُحسَّنة للتجارب السريرية"

  • يمكن للذكاء الاصطناعي تحسين تصميمات التجارب السريرية من خلال تحديد معايير التجربة الأكثر ملاءمة، مثل حجم العينة ونقاط النهاية وأنظمة العلاج، مما يؤدي إلى دراسات أكثر كفاءة وفعالية.
  • من خلال تحليل السجلات الصحية الإلكترونية والبيانات الأخرى، يمكن للذكاء الاصطناعي المساعدة في تحديد المرضى المناسبين للتجارب السريرية بناءً على معايير الإدراج/الاستبعاد المحددة، مما يحسن سرعة ودقة التوظيف.
  • يمكن لنماذج الذكاء الاصطناعي التنبؤ بنجاح أو فشل التجارب السريرية بناءً على البيانات التاريخية والرؤى في الوقت الفعلي، مما يسمح بإجراء تعديلات مبكرة على بروتوكولات التجربة وزيادة فرص النجاح.
  • باستخدام التحليلات التنبؤية، يمكن للذكاء الاصطناعي تحديد المرضى المعرضين لخطر الانقطاع عن الدراسة واقتراح التدخلات لإبقائهم منخرطين، وبالتالي تقليل عدد التجارب غير المكتملة.
  • إن قدرة الذكاء الاصطناعي على تبسيط عملية التجارب السريرية، من اختيار المشاركين إلى التنبؤ بالنتائج، يمكن أن تقلل بشكل كبير من التكاليف المرتبطة بأساليب التجارب التقليدية.

على سبيل المثال،

  • استخدمت شركة فايزر الذكاء الاصطناعي بالشراكة مع IBM Watson Health لتعزيز استقطاب المشاركين في التجارب السريرية وتحسين تصميم التجارب لتطوير علاج لمرض نادر. ساهم نهجها القائم على الذكاء الاصطناعي في تسريع استقطاب المشاركين وتحسين نتائج التجارب.
  • استخدمت نوفارتس الذكاء الاصطناعي للتنبؤ باستجابات المرضى وتحسين تصميم التجارب لعلاجاتها الجينية. وقد أدى هذا النهج المُعزز بالذكاء الاصطناعي إلى علاجات أكثر استهدافًا وتجارب سريرية أكثر فعالية.
  • إن قدرة الذكاء الاصطناعي على تعزيز النمذجة التنبؤية في التجارب السريرية توفر مزايا كبيرة، بما في ذلك تصميمات التجارب الأكثر كفاءة، وتجنيد المرضى بشكل أسرع، وخفض التكاليف، وتحسين نتائج التجارب، مما يؤدي في نهاية المطاف إلى تسريع تطوير علاجات جديدة.

ضبط النفس/التحدي

"تكاليف الاستثمار الأولية المرتفعة"

  • تتطلب الأدوات التي تعتمد على الذكاء الاصطناعي بنية تحتية تكنولوجية باهظة الثمن، بما في ذلك أنظمة الحوسبة القوية، وحلول تخزين البيانات، والبرامج المتخصصة، مما يجعل الاستثمار الأولي مرتفعًا.
  • إن توظيف المتخصصين المهرة مثل علماء البيانات وخبراء الذكاء الاصطناعي والباحثين في مجال الأدوية الحيوية الذين لديهم المعرفة في كل من الذكاء الاصطناعي واكتشاف الأدوية أمر مكلف، مما يزيد من العبء المالي المتمثل في تنفيذ الذكاء الاصطناعي في البحث والتطوير.
  • يتطلب دمج أدوات الذكاء الاصطناعي في سير عمل اكتشاف الأدوية الحالية، وخاصة في الأنظمة القديمة، موارد مالية كبيرة للتكيف والتدريب والتحسين.
  • تتطلب تقنيات الذكاء الاصطناعي الصيانة المستمرة وتحديثات البرامج وترقيات الأجهزة لمواكبة التطورات في التعلم الآلي وتحليلات البيانات، مما يساهم في تكاليف التشغيل على المدى الطويل.
  • تعتمد أنظمة الذكاء الاصطناعي في اكتشاف الأدوية على مجموعات بيانات ضخمة وعالية الجودة، وقد يكون الحصول على مثل هذه المجموعات من البيانات أو ترخيصها مكلفًا للشركات الصغيرة أو الشركات الناشئة، مما يزيد من تكلفة تنفيذ الذكاء الاصطناعي.

على سبيل المثال،

  • استثمرت شركة BenevolentAI بكثافة في منصات اكتشاف الأدوية المعتمدة على الذكاء الاصطناعي، وفي خبراتها لتبسيط عملية تطوير الأدوية، مع التركيز على علم الأورام. ورغم الاستثمار الأولي الكبير، فقد مكّن نهجها من تسريع اكتشاف الأدوية وتحسين معدلات النجاح.
  • تطلبت شركة Insilico Medicine ، وهي شركة ناشئة تستفيد من الذكاء الاصطناعي لاكتشاف الأدوية، استثمارًا أوليًا كبيرًا لبناء منصتها التي تعتمد على الذكاء الاصطناعي، مما سمح لها بتسريع تطوير الأدوية لأمراض مثل التليف والسرطان، لكن التكاليف كانت مرتفعة وتشكل تحديًا للمنافسين الأصغر حجمًا لمواكبتها.
  • تُشكّل التكاليف الاستثمارية الأولية المرتفعة في الذكاء الاصطناعي لاكتشاف الأدوية عائقًا أمام الشركات الصغيرة والناشئة، مما يحدّ من قدرتها على منافسة المؤسسات الأكبر القادرة على تحمل تكاليف هذه التقنيات. قد يتطلّب التغلب على هذا التحدي نماذج تمويل مبتكرة أو شراكات لجعل الذكاء الاصطناعي في متناول شريحة أوسع من الجهات الفاعلة في صناعة الأدوية.

نطاق سوق الذكاء الاصطناعي في اكتشاف الأدوية

يتم تقسيم السوق على أساس التطبيق ونوع المنتج والتكنولوجيا ونوع التكبير والمستخدم النهائي وقناة التوزيع.

التجزئة

التجزئة الفرعية

حسب الطلب

  • مرشحو الأدوية الجديدة
  • تحسين الأدوية وإعادة استخدامها
  • الاختبارات والموافقة قبل السريرية
  • مراقبة الأدوية
  • إيجاد أهداف ومسارات جديدة مرتبطة بالأمراض
  • فهم آليات المرض
  • تجميع المعلومات وتلخيصها
  • تكوين الفرضيات وتأهيلها
  • تصميم دواء جديد
  • العثور على أهداف دوائية لدواء قديم
  • آحرون

حسب التكنولوجيا

  • التعلم الآلي
  • التعلم العميق
  • معالجة اللغة الطبيعية
  • آحرون

حسب نوع الدواء

  • جزيء صغير
  • جزيء كبير

عن طريق العرض

  • برمجة
  • خدمات

حسب الإشارة

  • علم الأورام المناعي
  • الأمراض التنكسية العصبية
  • أمراض القلب والأوعية الدموية
  • الأمراض الأيضية
  • آحرون

حسب الاستخدام النهائي

 

  • منظمات البحوث التعاقدية (CROs)
  • شركات الأدوية والتكنولوجيا الحيوية
  • مراكز الأبحاث والمعاهد الأكاديمية
  • آحرون

تحليل إقليمي لسوق الذكاء الاصطناعي في اكتشاف الأدوية

"أمريكا الشمالية هي المنطقة المهيمنة في سوق الذكاء الاصطناعي في اكتشاف الأدوية"

  • تهيمن أمريكا الشمالية على سوق الذكاء الاصطناعي في اكتشاف الأدوية ، مدفوعة بالبنية التحتية المتقدمة للرعاية الصحية، والتبني العالي للتقنيات الطبية المتطورة، والحضور القوي للاعبين الرئيسيين في السوق.
  • الولايات المتحدة موطنٌ لبعضٍ من أكبر شركات الأدوية، مثل فايزر ، وجونسون آند جونسون ، وميرك ، وإيلي ليلي ، وهي شركاتٌ رائدةٌ في تبني الذكاء الاصطناعي في اكتشاف الأدوية. تستثمر هذه الشركات بكثافة في الذكاء الاصطناعي لتبسيط عملية تطوير الأدوية وتحسين النتائج.
  • تتمتع أمريكا الشمالية بمنظومة تكنولوجية راسخة، حيث تقود شركات رائدة في مجال الذكاء الاصطناعي، مثل IBM Watson Health و Google DeepMind ، الابتكار في مجال اكتشاف الأدوية. وتتصدر هذه الشركات أبحاث الذكاء الاصطناعي، وتوفر أدوات ذكاء اصطناعي فعّالة للبحث والتطوير الدوائي.
  • تستثمر أمريكا الشمالية باستمرار جزءًا كبيرًا من ناتجها المحلي الإجمالي في البحث والتطوير. يُحفّز هذا التمويل اعتماد تقنيات الذكاء الاصطناعي المتقدمة في اكتشاف الأدوية، حيث تسعى الشركات إلى إيجاد سبل لتسريع اكتشاف أدوية وعلاجات جديدة.
  • شهدت أمريكا الشمالية شراكات عديدة بين شركات الأدوية وشركات الذكاء الاصطناعي الناشئة أو شركات التكنولوجيا. على سبيل المثال، تُبرز شراكات مثل شراكة نوفارتس مع مايكروسوفت لاستخدام الذكاء الاصطناعي في اكتشاف الأدوية، ريادة المنطقة في تسخير الذكاء الاصطناعي للابتكار في تطوير الأدوية.

من المتوقع أن تسجل منطقة آسيا والمحيط الهادئ أعلى معدل نمو

  • من المتوقع أن تشهد منطقة آسيا والمحيط الهادئ أعلى معدل نمو في الذكاء الاصطناعي في اكتشاف الأدوية ، مدفوعًا بالتوسع السريع في البنية التحتية للرعاية الصحية، وزيادة الوعي بصحة العين، وارتفاع أحجام العمليات الجراحية.
  • تستثمر دول مثل الصين والهند واليابان بكثافة في الذكاء الاصطناعي والتكنولوجيا الحيوية ، بهدف تعزيز قطاعاتها الدوائية وتلبية احتياجات الرعاية الصحية المتزايدة. تُسرّع هذه الاستثمارات اعتماد الذكاء الاصطناعي في اكتشاف الأدوية.
  • تعمل حكومات منطقة آسيا والمحيط الهادئ بنشاط على تعزيز الرعاية الصحية الرقمية ودمج الذكاء الاصطناعي من خلال مبادرات متنوعة. على سبيل المثال، طبّقت الصين استراتيجيات وطنية لدمج الذكاء الاصطناعي في الرعاية الصحية، مما عزز نمو الذكاء الاصطناعي في مجال اكتشاف الأدوية.
  • تتميز دول منطقة آسيا والمحيط الهادئ بكثافة سكانية عالية وكميات هائلة من البيانات الصحية التي يمكن الاستفادة منها لاكتشاف الأدوية المدعومة بالذكاء الاصطناعي. وتدعم البنية التحتية الرقمية المتينة في المنطقة دمج تقنيات الذكاء الاصطناعي في تطوير الأدوية.
  • تعد منطقة آسيا والمحيط الهادئ (APAC) الأسرع نموًا في سوق الذكاء الاصطناعي في اكتشاف الأدوية، مدفوعة بالاستثمارات المتزايدة، والسياسات الحكومية الداعمة، ومجموعة كبيرة من البيانات، وتوسع شركات التكنولوجيا الحيوية التي تستفيد من تكنولوجيا الذكاء الاصطناعي.

حصة سوق الذكاء الاصطناعي في اكتشاف الأدوية

يُقدم المشهد التنافسي في السوق تفاصيل لكل منافس. تشمل هذه التفاصيل لمحة عامة عن الشركة، وبياناتها المالية، وإيراداتها المحققة، وإمكانياتها السوقية، والاستثمار في البحث والتطوير، ومبادراتها التسويقية الجديدة، وحضورها العالمي، ومواقع ومرافق الإنتاج، وقدراتها الإنتاجية، ونقاط قوتها وضعفها، وإطلاق المنتجات، ونطاقها، وهيمنة تطبيقاتها. تتعلق نقاط البيانات المذكورة أعلاه فقط بتركيز الشركات على السوق.

الشركات الرائدة الرئيسية العاملة في السوق هي:

  • شركة NVIDIA (الولايات المتحدة)
  • شركة آي بي إم (الولايات المتحدة)
  • شركة أتوم وايز (الولايات المتحدة)
  • مايكروسوفت (الولايات المتحدة)
  • الذكاء الاصطناعي الخيري (المملكة المتحدة)
  • شركة آريا للأدوية (الولايات المتحدة)
  • الجينوميات العميقة (كندا)
  • إكسسينتيا (المملكة المتحدة)
  • الطب السيليكوني (هونغ كونغ)
  • سيكليكا (كندا)
  • شركة NuMedii، المحدودة (الولايات المتحدة)
  • إنفيزاجينيكس (الولايات المتحدة)
  • شركة أوكين (الولايات المتحدة)
  • شركة بيرج ذات المسؤولية المحدودة (الولايات المتحدة)
  • شركة شرودنجر (الولايات المتحدة)
  • شركة XtalPi (الصين)
  • شركة BIOAGE (الولايات المتحدة)

أحدث التطورات في سوق الذكاء الاصطناعي العالمي في اكتشاف الأدوية

  • في مايو 2024، كشفت جوجل ديب مايند عن الإصدار الثالث من نموذج الذكاء الاصطناعي AlphaFold، المصمم لتعزيز تطوير الأدوية وتحسين استهداف الأمراض. يُمكّن هذا الإصدار المتقدم الباحثين في ديب مايند ومختبرات إيزومورفيك من تحليل سلوك جميع الجزيئات، بما في ذلك الحمض النووي البشري.
  • في أبريل 2024، حصلت شركة Xaira Therapeutics، وهي شركة مبتكرة متخصصة في اكتشاف وتطوير الأدوية باستخدام الذكاء الاصطناعي، على أكثر من مليون دولار أمريكي خلال جولة تمويلية تعاونية مع ARCH Venture Partners وForesite Labs. باستخدام تقنيات التعلم الآلي ونماذج توليد البيانات وتطوير المنتجات العلاجية، تركز الشركة على معالجة أهداف دوائية كانت عادةً صعبة المنال.
  • في ديسمبر 2023، أطلقت MilliporeSigma، قسم علوم الحياة في شركة Merck، برنامج AIDDISON، وهو برنامج متطور لاكتشاف الأدوية. يسد هذا البرنامج الفجوة بين تصميم الجزيئات الافتراضي وقابلية التصنيع في العالم الحقيقي من خلال دمج واجهة برمجة تطبيقات برنامج Synthia للتخليق الرجعي. يجمع البرنامج بين الذكاء الاصطناعي التوليدي والتعلم الآلي وتصميم الأدوية بمساعدة الحاسوب لتبسيط عمليات تطوير الأدوية.
  • في مايو 2023، أطلقت جوجل أداتين مبتكرتين تعتمدان على الذكاء الاصطناعي، تهدفان إلى مساعدة شركات التكنولوجيا الحيوية والأدوية على تسريع اكتشاف الأدوية وتطوير الطب الدقيق. صُممت هذه الحلول لتقليل الوقت والتكلفة اللازمين لطرح علاجات جديدة في السوق الأمريكية. ومن أوائل الشركات التي اعتمدت هذه الأدوات: سيريفيل ثيرابيوتكس، وفايزر، وكولوسال بيوساينسز .


SKU-

احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم

  • لوحة معلومات تحليل البيانات التفاعلية
  • لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
  • إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
  • تحليل المنافسين باستخدام لوحة معلومات تفاعلية
  • آخر الأخبار والتحديثات وتحليل الاتجاهات
  • استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
طلب التجريبي

Table of Content

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 MARKETS COVERED

2.5 GEOGRAPHIC SCOPE

2.6 YEARS CONSIDERED FOR THE STUDY

2.7 RESEARCH METHODOLOGY

2.8 TECHNOLOGY LIFE LINE CURVE

2.9 MULTIVARIATE MODELLING

2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.11 DBMR MARKET POSITION GRID

2.12 MARKET APPLICATION COVERAGE GRID

2.13 DBMR MARKET CHALLENGE MATRIX

2.14 SECONDARY SOURCES

2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT

2.16 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

5.1 PESTEL ANALYSIS

5.2 PORTER’S FIVE FORCES MODEL

6 INDUSTRY INSIGHTS

6.1 MICRO AND MACRO ECONOMIC FACTORS

6.2 PENETRATION AND GROWTH PROSPECT MAPPING

6.3 KEY PRICING STRATEGIES

6.4 INTERVIEWS WITH SPECIALIST

6.5 ANALYIS AND RECOMMENDATION

7 INTELLECTUAL PROPERTY (IP) PORTFOLIO

7.1 PATENT QUALITY AND STRENGTH

7.2 PATENT FAMILIES

7.3 LICENSING AND COLLABORATIONS

7.4 COMPETITIVE LANDSCAPE

7.5 IP STRATEGY AND MANAGEMENT

7.6 OTHER

8 COST ANALYSIS BREAKDOWN

9 TECHNONLOGY ROADMAP

10 INNOVATION TRACKER AND STRATEGIC ANALYSIS

10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS

10.1.1 JOINT VENTURES

10.1.2 MERGERS AND ACQUISITIONS

10.1.3 LICENSING AND PARTNERSHIP

10.1.4 TECHNOLOGY COLLABORATIONS

10.1.5 STRATEGIC DIVESTMENTS

10.2 NUMBER OF PRODUCTS IN DEVELOPMENT

10.3 STAGE OF DEVELOPMENT

10.4 TIMELINES AND MILESTONES

10.5 INNOVATION STRATEGIES AND METHODOLOGIES

10.6 RISK ASSESSMENT AND MITIGATION

10.7 FUTURE OUTLOOK

11 REGULATORY COMPLIANCE

11.1 REGULATORY AUTHORITIES

11.2 REGULATORY CLASSIFICATIONS

11.2.1 CLASS I

11.2.2 CLASS II

11.2.3 CLASS III

11.3 REGULATORY SUBMISSIONS

11.4 INTERNATIONAL HARMONIZATION

11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS

11.6 REGULATORY CHALLENGES AND STRATEGIES

12 REIMBURSEMENT FRAMEWORK

13 OPPUTUNITY MAP ANALYSIS

14 VALUE CHAIN ANALYSIS

15 HEALTHCARE ECONOMY

15.1 HEALTHCARE EXPENDITURE

15.2 CAPITAL EXPENDITURE

15.3 CAPEX TRENDS

15.4 CAPEX ALLOCATION

15.5 FUNDING SOURCES

15.6 INDUSTRY BENCHMARKS

15.7 GDP RATION IN OVERALL GDP

15.8 HEALTHCARE SYSTEM STRUCTURE

15.9 GOVERNMENT POLICIES

15.1 ECONOMIC DEVELOPMENT

16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING

16.1 OVERVIEW

16.2 SOFTWARE

16.2.1 INTEGRATED

16.2.2 STANDALONE

16.3 SERVICES

17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY

17.1 OVERVIEW

17.2 MACHINE LEARNING (ML)

17.2.1 SUPERVISED LEARNING

17.2.2 UNSUPERVISED LEARNING

17.2.3 REINFORCEMENT LEARNING

17.3 DEEP LEARNING

17.4 NATURAL LANGUAGE PROCESSING (NLP)

17.5 OTHERS

18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE

18.1 OVERVIEW

18.2 SMALL MOLECULE

18.3 LARGE MOLECULE

19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION

19.1 OVERVIEW

19.2 NOVEL DRUG CANDIDATES

19.2.1 IDENTIFY BIOLOGICS TARGET

19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE

19.2.3 OTHERS

19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL

19.4 DRUG MONITORING

19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS

19.6 UNDERSTANDING DISEASE MECHANISMS

19.7 AGGREGATING AND SYNTHESIZING INFORMATION

19.8 FORM ATION & QUALIFICATION OF HYPOTHESES

19.9 DE NOVO DRUG DESIGN

19.1 FINDING DRUG TARGETS OF AN OLD DRUG

19.11 OTHERS

20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION

20.1 OVERVIEW

20.2 IMMUNO-ONCOLOGY

20.2.1 PROSTATE CANCER

20.2.2 BREAST CANCER

20.2.3 BRAIN CANCER

20.2.4 LUNG CANCER

20.2.5 PANCREATIC CANCER

20.2.6 COLORECTAL CANCER

20.2.7 LEUKEMIA

20.2.8 OTHERS

20.3 NEURODEGENERATIVE DISEASES

20.4 CARDIOVASCULAR DISEASES

20.5 METABOLIC DISEASES

20.6 OTHERS

21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER

21.1 OVERVIEW

21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES

21.3 CONTRACT RESEARCH ORGANIZATIONS

21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES

21.5 OTHERS

22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)

GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

22.1 OVERVIEW

22.2 NORTH AMERICA

22.2.1 U.S.

22.2.2 CANADA

22.2.3 MEXICO

22.3 EUROPE

22.3.1 GERMANY

22.3.2 U.K.

22.3.3 ITALY

22.3.4 FRANCE

22.3.5 SPAIN

22.3.6 SWITZERLAND

22.3.7 RUSSIA

22.3.8 TURKEY

22.3.9 BELGIUM

22.3.10 NETHERLANDS

22.3.11 REST OF EUROPE

22.4 ASIA-PACIFIC

22.4.1 JAPAN

22.4.2 CHINA

22.4.3 SOUTH KOREA

22.4.4 INDIA

22.4.5 AUSTRALIA & NEW ZEALAND

22.4.6 SINGAPORE

22.4.7 THAILAND

22.4.8 INDONESIA

22.4.9 MALAYSIA

22.4.10 PHILIPPINES

22.4.11 REST OF ASIA-PACIFIC

22.5 SOUTH AMERICA

22.5.1 BRAZIL

22.5.2 ARGENTINA

22.5.3 REST OF SOUTH AMERICA

22.6 MIDDLE EAST AND AFRICA

22.6.1 SOUTH AFRICA

22.6.2 EGYPT

22.6.3 SAUDI ARABIA

22.6.4 UNITED ARAB EMIRATES

22.6.5 ISRAEL

22.6.6 REST OF MIDDLE EAST AND AFRICA

23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE

23.1 COMPANY SHARE ANALYSIS: GLOBAL

23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

23.3 COMPANY SHARE ANALYSIS: EUROPE

23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

23.5 MERGERS & ACQUISITIONS

23.6 NEW PRODUCT DEVELOPMENT & APPROVALS

23.7 EXPANSIONS

23.8 REGULATORY CHANGES

23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES

24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS

25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE

25.1 MICROSOFT

25.1.1 COMPANY OVERVIEW

25.1.2 REVENUE ANALYSIS

25.1.3 PRODUCT PORTFOLIO

25.1.4 RECENT DEVELOPMENTS

25.2 SHANGHAI MEDICILON INC.

25.2.1 COMPANY OVERVIEW

25.2.2 REVENUE ANALYSIS

25.2.3 PRODUCT PORTFOLIO

25.2.4 RECENT DEVELOPMENTS

25.3 NVIDIA CORPORATION + ASTRAZENECA

25.3.1 COMPANY OVERVIEW

25.3.2 REVENUE ANALYSIS

25.3.3 PRODUCT PORTFOLIO

25.3.4 RECENT DEVELOPMENTS

25.4 ATOMWISE INC.

25.4.1 COMPANY OVERVIEW

25.4.2 REVENUE ANALYSIS

25.4.3 PRODUCT PORTFOLIO

25.4.4 RECENT DEVELOPMENTS

25.5 DEEP GENOMICS

25.5.1 COMPANY OVERVIEW

25.5.2 REVENUE ANALYSIS

25.5.3 PRODUCT PORTFOLIO

25.5.4 RECENT DEVELOPMENTS

25.6 CLOUD PHARMACEUTICALS INC.

25.6.1 COMPANY OVERVIEW

25.6.2 REVENUE ANALYSIS

25.6.3 PRODUCT PORTFOLIO

25.6.4 RECENT DEVELOPMENTS

25.7 INSILICO MEDICINE

25.7.1 COMPANY OVERVIEW

25.7.2 REVENUE ANALYSIS

25.7.3 PRODUCT PORTFOLIO

25.7.4 RECENT DEVELOPMENTS

25.8 BENEVOLENTAI

25.8.1 COMPANY OVERVIEW

25.8.2 REVENUE ANALYSIS

25.8.3 PRODUCT PORTFOLIO

25.8.4 RECENT DEVELOPMENTS

25.9 EXSCIENTIA

25.9.1 COMPANY OVERVIEW

25.9.2 REVENUE ANALYSIS

25.9.3 PRODUCT PORTFOLIO

25.9.4 RECENT DEVELOPMENTS

25.1 CYCLICA

25.10.1 COMPANY OVERVIEW

25.10.2 REVENUE ANALYSIS

25.10.3 PRODUCT PORTFOLIO

25.10.4 RECENT DEVELOPMENTS

25.11 OWKIN, INC

25.11.1 COMPANY OVERVIEW

25.11.2 REVENUE ANALYSIS

25.11.3 PRODUCT PORTFOLIO

25.11.4 RECENT DEVELOPMENTS

25.12 ENVISAGENICS

25.12.1 COMPANY OVERVIEW

25.12.2 REVENUE ANALYSIS

25.12.3 PRODUCT PORTFOLIO

25.12.4 RECENT DEVELOPMENTS

25.13 NUMEDII, INC.

25.13.1 COMPANY OVERVIEW

25.13.2 REVENUE ANALYSIS

25.13.3 PRODUCT PORTFOLIO

25.13.4 RECENT DEVELOPMENTS

25.14 BIOSYNTAGMA

25.14.1 COMPANY OVERVIEW

25.14.2 REVENUE ANALYSIS

25.14.3 PRODUCT PORTFOLIO

25.14.4 RECENT DEVELOPMENTS

25.15 COLLABORATIONS PHARMACEUTICALS, INC.

25.15.1 COMPANY OVERVIEW

25.15.2 REVENUE ANALYSIS

25.15.3 PRODUCT PORTFOLIO

25.15.4 RECENT DEVELOPMENTS

25.16 INVENIAI LLC

25.16.1 COMPANY OVERVIEW

25.16.2 REVENUE ANALYSIS

25.16.3 PRODUCT PORTFOLIO

25.16.4 RECENT DEVELOPMENTS

25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION

25.17.1 COMPANY OVERVIEW

25.17.2 REVENUE ANALYSIS

25.17.3 PRODUCT PORTFOLIO

25.17.4 RECENT DEVELOPMENTS

25.18 VALO HEALTH

25.18.1 COMPANY OVERVIEW

25.18.2 REVENUE ANALYSIS

25.18.3 PRODUCT PORTFOLIO

25.18.4 RECENT DEVELOPMENTS

25.19 AIFORIA

25.19.1 COMPANY OVERVIEW

25.19.2 REVENUE ANALYSIS

25.19.3 PRODUCT PORTFOLIO

25.19.4 RECENT DEVELOPMENTS

25.2 CHEMALIVE

25.20.1 COMPANY OVERVIEW

25.20.2 REVENUE ANALYSIS

25.20.3 PRODUCT PORTFOLIO

25.20.4 RECENT DEVELOPMENTS

25.21 DEEPMATTER GROUP LIMITED

25.21.1 COMPANY OVERVIEW

25.21.2 REVENUE ANALYSIS

25.21.3 PRODUCT PORTFOLIO

25.21.4 RECENT DEVELOPMENTS

25.22 MABSILICO.

25.22.1 COMPANY OVERVIEW

25.22.2 REVENUE ANALYSIS

25.22.3 PRODUCT PORTFOLIO

25.22.4 RECENT DEVELOPMENTS

25.23 OPTIBRIUM, LTD.

25.23.1 COMPANY OVERVIEW

25.23.2 REVENUE ANALYSIS

25.23.3 PRODUCT PORTFOLIO

25.23.4 RECENT DEVELOPMENTS

25.24 ABBVIE AND BIGHAT BIOSCIENCES

25.24.1 COMPANY OVERVIEW

25.24.2 REVENUE ANALYSIS

25.24.3 PRODUCT PORTFOLIO

25.24.4 RECENT DEVELOPMENTS

25.25 ADAGENE

25.25.1 COMPANY OVERVIEW

25.25.2 REVENUE ANALYSIS

25.25.3 PRODUCT PORTFOLIO

25.25.4 RECENT DEVELOPMENTS

25.26 PEPTICOM LTD.

25.26.1 COMPANY OVERVIEW

25.26.2 REVENUE ANALYSIS

25.26.3 PRODUCT PORTFOLIO

25.26.4 RECENT DEVELOPMENTS

25.27 DEARGEN INC.

25.27.1 COMPANY OVERVIEW

25.27.2 REVENUE ANALYSIS

25.27.3 PRODUCT PORTFOLIO

25.27.4 RECENT DEVELOPMENTS

25.28 GERO.AI

25.28.1 COMPANY OVERVIEW

25.28.2 REVENUE ANALYSIS

25.28.3 PRODUCT PORTFOLIO

25.28.4 RECENT DEVELOPMENTS

25.29 3BIGS CO. LTD.

25.29.1 COMPANY OVERVIEW

25.29.2 REVENUE ANALYSIS

25.29.3 PRODUCT PORTFOLIO

25.29.4 RECENT DEVELOPMENTS

25.3 BPGBIO INC.

25.30.1 COMPANY OVERVIEW

25.30.2 REVENUE ANALYSIS

25.30.3 PRODUCT PORTFOLIO

25.30.4 RECENT DEVELOPMENTS

25.31 SCHRÖDINGER, INC.

25.31.1 COMPANY OVERVIEW

25.31.2 REVENUE ANALYSIS

25.31.3 PRODUCT PORTFOLIO

25.31.4 RECENT DEVELOPMENTS

25.32 XTALPI INC.

25.32.1 COMPANY OVERVIEW

25.32.2 REVENUE ANALYSIS

25.32.3 PRODUCT PORTFOLIO

25.32.4 RECENT DEVELOPMENTS

25.33 BIOAGE INC.

25.33.1 COMPANY OVERVIEW

25.33.2 REVENUE ANALYSIS

25.33.3 PRODUCT PORTFOLIO

25.33.4 RECENT DEVELOPMENTS

26 RELATED REPORTS

27 QUESTIONNAIRE

28 CONCLUSION

29 ABOUT DATA BRIDGE MARKET RESEARCH

View Detailed Information Right Arrow

منهجية البحث

يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.

منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.

التخصيص متاح

تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.

Frequently Asked Questions

The global artificial intelligence (ai) in drug discovery market size was valued at USD 981.64 million in 2024.
The global artificial intelligence (ai) in drug discovery market is to grow at a CAGR of 5.30 % during the forecast period of 2025 to 2032.
The artificial intelligence (ai) in drug discovery market is segmented on the basis of application, technology, drug type, offering, indication, and end use. On the basis of application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation and qualification of hypotheses, de novo drug design, finding drug targets of an old drug and others. On the basis of technology, the market is segmented into machine learning, deep learning, natural language processing, and others. On the basis of drug type, the market is segmented into small molecule and large molecule. On the basis of offering, the market is segmented into software and services. On the basis of indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others. On the basis of end use, the market is segmented into direct contract research organizations (CROS), pharmaceutical and biotechnology companies, research centers and academic institutes, and others.
Companies such as NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.) are the major companies in the artificial intelligence (ai) in drug discovery market.
In January 2025, Bausch + Lomb Corporation, a global leader in eye health, has announced the commercial launch of its enVista Aspire monofocal and toric intraocular lenses (IOLs) in the European Union, following the receipt of a CE Mark. In September 2024, Haag-Streit announced the launch of METIS, its cutting-edge ophthalmic microscope system, which brings superior optical performance into the operating room with exceptional clarity, a brilliant coaxial red reflex, and optimized optics for precise color reproduction, high light transmission, and an expansive depth of field, making it ideal for delicate ophthalmic procedures. It will be officially launched in Q1 2025
The countries covered in the artificial intelligence (ai) in drug discovery market are U.S., Canada, Mexico, Germany, France, U.K., Italy, Spain, Russia, Turkey, Netherlands, Switzerland, Austria, Poland, Norway, Ireland, Hungary, Lithuania, rest of Europe, China, Japan, India, South Korea, Australia, Taiwan, Philippines, Thailand, Malaysia, Vietnam, Indonesia, Singapore, rest of Asia-Pacific, Brazil, Argentina, Chili, Colombia, Peru, Venezuela, Ecuador, Uruguay, Paraguay ,Bolivia, Trinidad And Tobago, Curaçao, rest Of South America, South Africa, Saudi Arabia, U.A.E, Egypt, Israel, Kuwait, rest of Middle East and Africa, Guatemala, Costa Rica, Honduras, EL Salvador, Nicaragua, and rest of Central America.
The Asia-Pacific (APAC) region is projected to be the fastest-growing market for artificial intelligence (AI) in drug discovery, with a notable compound annual growth rate (CAGR) expected in the coming years. This growth is driven by increasing investments in healthcare infrastructure, rising adoption of AI technologies, and a growing focus on drug discovery and development in the region.
U.S. is expected to dominate the artificial intelligence (AI) in drug discovery market. This is due to its well-established pharmaceutical and biotechnology sectors, significant investments in AI research, and strong collaborations between tech companies and healthcare organizations.
North America holds the largest share in the global artificial intelligence (AI) in drug discovery market. This dominance is attributed to its well-established pharmaceutical industry, significant investments in AI research, and the presence of leading pharmaceutical and biotechnology companies.
China, is expected to witness the highest compound annual growth rate (CAGR) in the artificial intelligence (AI) in drug discovery market. This growth is driven by increasing investments in AI technologies, expanding pharmaceutical industries, and government initiatives supporting innovation in healthcare.
AI-Driven innovations revolutionizing drug discovery, is emerging as a pivotal trend driving the global artificial intelligence (AI) in drug discovery market.
The major factors driving the growth of the artificial intelligence (ai) in drug discovery market is rising R&D investments in pharmaceutical industry.
The primary challenges include high initial investment costs.
The oncology segment is currently dominating the artificial intelligence (AI) in drug discovery market.
Testimonial