Global Artificial Intelligence Ai In Drug Discovery Market
حجم السوق بالمليار دولار أمريكي
CAGR :
%
USD
981.64 Million
USD
1,483.82 Million
2024
2032
| 2025 –2032 | |
| USD 981.64 Million | |
| USD 1,483.82 Million | |
|
|
|
تجزئة سوق الذكاء الاصطناعي العالمي في اكتشاف الأدوية، حسب التطبيق (الأدوية المرشحة الجديدة، تحسين الأدوية وإعادة استخدامها، الاختبارات والموافقات قبل السريرية، مراقبة الأدوية، اكتشاف أهداف ومسارات جديدة مرتبطة بأمراض، فهم آليات المرض، تجميع المعلومات وتوليفها، صياغة الفرضيات وتأهيلها، تصميم الأدوية الجديدة، اكتشاف أهداف دوائية لأدوية قديمة، وغيرها)، التكنولوجيا (التعلم الآلي، التعلم العميق، معالجة اللغات الطبيعية، وغيرها)، نوع الدواء (جزيء صغير وجزيء كبير)، العرض (البرمجيات والخدمات)، دواعي الاستعمال (علم الأورام المناعي، الأمراض العصبية التنكسية، أمراض القلب والأوعية الدموية، الأمراض الأيضية، وغيرها)، الاستخدام النهائي (منظمات البحوث التعاقدية، شركات الأدوية والتكنولوجيا الحيوية، مراكز البحوث والمعاهد الأكاديمية، وغيرها) - اتجاهات الصناعة والتوقعات حتى عام 2032
حجم سوق الذكاء الاصطناعي في اكتشاف الأدوية
- بلغت قيمة سوق الذكاء الاصطناعي العالمي في اكتشاف الأدوية 981.64 مليون دولار أمريكي في عام 2024 ومن المتوقع أن تصل إلى 1483.82 مليون دولار أمريكي بحلول عام 2032
- خلال الفترة المتوقعة من 2025 إلى 2032، من المرجح أن ينمو السوق بمعدل نمو سنوي مركب قدره 5.30٪، مدفوعًا في المقام الأول بالتوافر المتزايد لبيانات الرعاية الصحية
- ويعود هذا النمو إلى عوامل مثل الانتشار المتزايد للأمراض المزمنة والتقدم في تقنيات الذكاء الاصطناعي التي تعزز عمليات اكتشاف الأدوية.
تحليل سوق الذكاء الاصطناعي في اكتشاف الأدوية
- يشهد السوق نموًا سريعًا، مدفوعًا بالتقدم في تقنيات الذكاء الاصطناعي مثل التعلم الآلي والتعلم العميق، والتي تعمل على تبسيط عمليات اكتشاف الأدوية وخفض التكاليف.
- يتم اعتماد الذكاء الاصطناعي على نطاق واسع لتحسين الأدوية وإعادة استخدامها والاختبارات السريرية وتصميم التجارب السريرية، مما يؤدي إلى تسريع الجدول الزمني لتطوير الأدوية بشكل كبير
- تتصدر أمريكا الشمالية السوق بفضل قطاعها الدوائي القوي، في حين من المتوقع أن تنمو منطقة آسيا والمحيط الهادئ بسرعة، مدعومة بالاستثمارات المتزايدة في البحث والتطوير.
على سبيل المثال، يتم استخدام تقنيات الذكاء الاصطناعي مثل التعلم الآلي والتعلم العميق للتنبؤ بمعدلات النجاح في التجارب السريرية، وتحسين الأدوية المرشحة، وتحديد الأهداف العلاجية الجديدة، مما يقلل بشكل كبير من الوقت وتكلفة تطوير الأدوية.
- يؤدي استخدام الذكاء الاصطناعي في اكتشاف الأدوية إلى إحداث ثورة في صناعة الأدوية من خلال معالجة التحديات مثل التكاليف المرتفعة والجداول الزمنية الطويلة ومعدلات النجاح المنخفضة في عمليات تطوير الأدوية التقليدية.
نطاق التقرير والذكاء الاصطناعي في تجزئة سوق اكتشاف الأدوية
|
صفات |
الذكاء الاصطناعي في اكتشاف الأدوية: رؤى السوق الرئيسية |
|
القطاعات المغطاة |
|
|
الدول المغطاة |
أمريكا الشمالية
أوروبا
آسيا والمحيط الهادئ
الشرق الأوسط وأفريقيا
أمريكا الجنوبية
|
|
اللاعبون الرئيسيون في السوق |
|
|
فرص السوق |
|
|
مجموعات معلومات البيانات ذات القيمة المضافة |
بالإضافة إلى الرؤى حول سيناريوهات السوق مثل القيمة السوقية ومعدل النمو والتجزئة والتغطية الجغرافية واللاعبين الرئيسيين، فإن تقارير السوق التي تم إعدادها بواسطة Data Bridge Market Research تشمل أيضًا تحليل الاستيراد والتصدير، ونظرة عامة على القدرة الإنتاجية، وتحليل استهلاك الإنتاج، وتحليل اتجاه الأسعار، وسيناريو تغير المناخ، وتحليل سلسلة التوريد، وتحليل سلسلة القيمة، ونظرة عامة على المواد الخام / المواد الاستهلاكية، ومعايير اختيار البائعين، وتحليل PESTLE، وتحليل بورتر، والإطار التنظيمي. |
اتجاهات سوق الذكاء الاصطناعي في اكتشاف الأدوية
"الابتكارات القائمة على الذكاء الاصطناعي تُحدث ثورة في اكتشاف الأدوية"
- أحد الاتجاهات البارزة في سوق الذكاء الاصطناعي في اكتشاف الأدوية هو التبني المتزايد لتقنيات التعلم الآلي والتعلم العميق لتبسيط عمليات تطوير الأدوية .
- تعمل هذه التقنيات المتقدمة على تعزيز كفاءة ودقة اكتشاف الأدوية من خلال تحليل مجموعات البيانات الضخمة، والتنبؤ بخصائص ربط الجزيئات، وتحديد مرشحي الأدوية المحتملين.
- على سبيل المثال، يتم استخدام المنصات المدعومة بالذكاء الاصطناعي لإعادة استخدام الأدوية الحالية في مجالات علاجية جديدة، مما يقلل بشكل كبير من الوقت والتكلفة المرتبطة بأساليب اكتشاف الأدوية التقليدية.
- ويسمح دمج الذكاء الاصطناعي أيضًا بتصميم أفضل للتجارب السريرية من خلال التنبؤ بمعدلات النجاح وتحديد مجموعات المرضى، مما يحسن النجاح العام لتطوير الأدوية.
- ويساهم هذا الاتجاه في تحويل صناعة الأدوية، وتسريع تطوير العلاجات المبتكرة، ومعالجة الاحتياجات الطبية غير الملباة، وبالتالي دفع الطلب على الحلول التي تعتمد على الذكاء الاصطناعي في السوق.
الذكاء الاصطناعي في ديناميكيات سوق اكتشاف الأدوية
سائق
"ارتفاع استثمارات البحث والتطوير في صناعة الأدوية"
- تعمل شركات الأدوية على زيادة ميزانياتها المخصصة للبحث والتطوير لتطوير أدوية وعلاجات جديدة، مما يضمن بقائها قادرة على المنافسة وتلبية احتياجات المرضى المتطورة.
- يتم دمج أدوات الذكاء الاصطناعي في عمليات البحث والتطوير لتعزيز اكتشاف الأدوية، وتمكين التعرف بشكل أسرع على مرشحي الأدوية، وتحسين معدلات النجاح، وتحسين الأبحاث في المراحل المبكرة.
- يتيح الذكاء الاصطناعي إجراء فحص عالي الإنتاجية، مما يؤدي إلى تسريع عملية اختبار المركبات بشكل كبير وتحديد المرشحين الواعدين لمزيد من التطوير.
- يمكن للذكاء الاصطناعي معالجة مجموعات كبيرة من البيانات من علم الجينوم والتجارب السريرية والتركيبة السكانية للمرضى لاكتشاف الأنماط المخفية، مما يؤدي إلى تسريع تحديد الأهداف العلاجية الجديدة.
- بفضل خوارزميات الذكاء الاصطناعي التي تعمل على تحسين عملية تجنيد المرضى وتصميم التجارب، يمكن لشركات الأدوية إجراء تجارب سريرية أكثر كفاءة، مما يقلل الوقت والتكلفة.
على سبيل المثال،
- تعاونت سانوفي مع إكسينتيا ، مستخدمةً الذكاء الاصطناعي لتصميم أدوية جديدة مرشحة، مما سرّع من وتيرة التجارب السريرية. وفي أحد تعاوناتهما، حددا دواءً واعدًا لعلاج أمراض المناعة الذاتية في وقت أقصر بكثير من الوقت الذي كان سيستغرقه العلاج بالطرق التقليدية.
- تتعاون شركة جلاكسو سميث كلاين (GSK) وشركة 24M لتطبيق الذكاء الاصطناعي لتحسين عملية البحث والتطوير، بما في ذلك تحديد أهداف الأدوية الجديدة وتسريع تطوير علاجات جديدة، مثل تلك الخاصة بالأمراض النادرة.
- إن الاستثمارات المتزايدة في البحث والتطوير، إلى جانب قوة الذكاء الاصطناعي، تعمل على تعزيز قدرة صناعة الأدوية على اكتشاف أدوية جديدة بشكل أسرع وأكثر فعالية من حيث التكلفة وبأعلى قدر من الدقة.
فرصة
"النمذجة التنبؤية المُحسَّنة للتجارب السريرية"
- يمكن للذكاء الاصطناعي تحسين تصميمات التجارب السريرية من خلال تحديد معايير التجربة الأكثر ملاءمة، مثل حجم العينة ونقاط النهاية وأنظمة العلاج، مما يؤدي إلى دراسات أكثر كفاءة وفعالية.
- من خلال تحليل السجلات الصحية الإلكترونية والبيانات الأخرى، يمكن للذكاء الاصطناعي المساعدة في تحديد المرضى المناسبين للتجارب السريرية بناءً على معايير الإدراج/الاستبعاد المحددة، مما يحسن سرعة ودقة التوظيف.
- يمكن لنماذج الذكاء الاصطناعي التنبؤ بنجاح أو فشل التجارب السريرية بناءً على البيانات التاريخية والرؤى في الوقت الفعلي، مما يسمح بإجراء تعديلات مبكرة على بروتوكولات التجربة وزيادة فرص النجاح.
- باستخدام التحليلات التنبؤية، يمكن للذكاء الاصطناعي تحديد المرضى المعرضين لخطر الانقطاع عن الدراسة واقتراح التدخلات لإبقائهم منخرطين، وبالتالي تقليل عدد التجارب غير المكتملة.
- إن قدرة الذكاء الاصطناعي على تبسيط عملية التجارب السريرية، من اختيار المشاركين إلى التنبؤ بالنتائج، يمكن أن تقلل بشكل كبير من التكاليف المرتبطة بأساليب التجارب التقليدية.
على سبيل المثال،
- استخدمت شركة فايزر الذكاء الاصطناعي بالشراكة مع IBM Watson Health لتعزيز استقطاب المشاركين في التجارب السريرية وتحسين تصميم التجارب لتطوير علاج لمرض نادر. ساهم نهجها القائم على الذكاء الاصطناعي في تسريع استقطاب المشاركين وتحسين نتائج التجارب.
- استخدمت نوفارتس الذكاء الاصطناعي للتنبؤ باستجابات المرضى وتحسين تصميم التجارب لعلاجاتها الجينية. وقد أدى هذا النهج المُعزز بالذكاء الاصطناعي إلى علاجات أكثر استهدافًا وتجارب سريرية أكثر فعالية.
- إن قدرة الذكاء الاصطناعي على تعزيز النمذجة التنبؤية في التجارب السريرية توفر مزايا كبيرة، بما في ذلك تصميمات التجارب الأكثر كفاءة، وتجنيد المرضى بشكل أسرع، وخفض التكاليف، وتحسين نتائج التجارب، مما يؤدي في نهاية المطاف إلى تسريع تطوير علاجات جديدة.
ضبط النفس/التحدي
"تكاليف الاستثمار الأولية المرتفعة"
- تتطلب الأدوات التي تعتمد على الذكاء الاصطناعي بنية تحتية تكنولوجية باهظة الثمن، بما في ذلك أنظمة الحوسبة القوية، وحلول تخزين البيانات، والبرامج المتخصصة، مما يجعل الاستثمار الأولي مرتفعًا.
- إن توظيف المتخصصين المهرة مثل علماء البيانات وخبراء الذكاء الاصطناعي والباحثين في مجال الأدوية الحيوية الذين لديهم المعرفة في كل من الذكاء الاصطناعي واكتشاف الأدوية أمر مكلف، مما يزيد من العبء المالي المتمثل في تنفيذ الذكاء الاصطناعي في البحث والتطوير.
- يتطلب دمج أدوات الذكاء الاصطناعي في سير عمل اكتشاف الأدوية الحالية، وخاصة في الأنظمة القديمة، موارد مالية كبيرة للتكيف والتدريب والتحسين.
- تتطلب تقنيات الذكاء الاصطناعي الصيانة المستمرة وتحديثات البرامج وترقيات الأجهزة لمواكبة التطورات في التعلم الآلي وتحليلات البيانات، مما يساهم في تكاليف التشغيل على المدى الطويل.
- تعتمد أنظمة الذكاء الاصطناعي في اكتشاف الأدوية على مجموعات بيانات ضخمة وعالية الجودة، وقد يكون الحصول على مثل هذه المجموعات من البيانات أو ترخيصها مكلفًا للشركات الصغيرة أو الشركات الناشئة، مما يزيد من تكلفة تنفيذ الذكاء الاصطناعي.
على سبيل المثال،
- استثمرت شركة BenevolentAI بكثافة في منصات اكتشاف الأدوية المعتمدة على الذكاء الاصطناعي، وفي خبراتها لتبسيط عملية تطوير الأدوية، مع التركيز على علم الأورام. ورغم الاستثمار الأولي الكبير، فقد مكّن نهجها من تسريع اكتشاف الأدوية وتحسين معدلات النجاح.
- تطلبت شركة Insilico Medicine ، وهي شركة ناشئة تستفيد من الذكاء الاصطناعي لاكتشاف الأدوية، استثمارًا أوليًا كبيرًا لبناء منصتها التي تعتمد على الذكاء الاصطناعي، مما سمح لها بتسريع تطوير الأدوية لأمراض مثل التليف والسرطان، لكن التكاليف كانت مرتفعة وتشكل تحديًا للمنافسين الأصغر حجمًا لمواكبتها.
- تُشكّل التكاليف الاستثمارية الأولية المرتفعة في الذكاء الاصطناعي لاكتشاف الأدوية عائقًا أمام الشركات الصغيرة والناشئة، مما يحدّ من قدرتها على منافسة المؤسسات الأكبر القادرة على تحمل تكاليف هذه التقنيات. قد يتطلّب التغلب على هذا التحدي نماذج تمويل مبتكرة أو شراكات لجعل الذكاء الاصطناعي في متناول شريحة أوسع من الجهات الفاعلة في صناعة الأدوية.
نطاق سوق الذكاء الاصطناعي في اكتشاف الأدوية
يتم تقسيم السوق على أساس التطبيق ونوع المنتج والتكنولوجيا ونوع التكبير والمستخدم النهائي وقناة التوزيع.
|
التجزئة |
التجزئة الفرعية |
|
حسب الطلب |
|
|
حسب التكنولوجيا |
|
|
حسب نوع الدواء |
|
|
عن طريق العرض |
|
|
حسب الإشارة |
|
|
حسب الاستخدام النهائي
|
|
تحليل إقليمي لسوق الذكاء الاصطناعي في اكتشاف الأدوية
"أمريكا الشمالية هي المنطقة المهيمنة في سوق الذكاء الاصطناعي في اكتشاف الأدوية"
- تهيمن أمريكا الشمالية على سوق الذكاء الاصطناعي في اكتشاف الأدوية ، مدفوعة بالبنية التحتية المتقدمة للرعاية الصحية، والتبني العالي للتقنيات الطبية المتطورة، والحضور القوي للاعبين الرئيسيين في السوق.
- الولايات المتحدة موطنٌ لبعضٍ من أكبر شركات الأدوية، مثل فايزر ، وجونسون آند جونسون ، وميرك ، وإيلي ليلي ، وهي شركاتٌ رائدةٌ في تبني الذكاء الاصطناعي في اكتشاف الأدوية. تستثمر هذه الشركات بكثافة في الذكاء الاصطناعي لتبسيط عملية تطوير الأدوية وتحسين النتائج.
- تتمتع أمريكا الشمالية بمنظومة تكنولوجية راسخة، حيث تقود شركات رائدة في مجال الذكاء الاصطناعي، مثل IBM Watson Health و Google DeepMind ، الابتكار في مجال اكتشاف الأدوية. وتتصدر هذه الشركات أبحاث الذكاء الاصطناعي، وتوفر أدوات ذكاء اصطناعي فعّالة للبحث والتطوير الدوائي.
- تستثمر أمريكا الشمالية باستمرار جزءًا كبيرًا من ناتجها المحلي الإجمالي في البحث والتطوير. يُحفّز هذا التمويل اعتماد تقنيات الذكاء الاصطناعي المتقدمة في اكتشاف الأدوية، حيث تسعى الشركات إلى إيجاد سبل لتسريع اكتشاف أدوية وعلاجات جديدة.
- شهدت أمريكا الشمالية شراكات عديدة بين شركات الأدوية وشركات الذكاء الاصطناعي الناشئة أو شركات التكنولوجيا. على سبيل المثال، تُبرز شراكات مثل شراكة نوفارتس مع مايكروسوفت لاستخدام الذكاء الاصطناعي في اكتشاف الأدوية، ريادة المنطقة في تسخير الذكاء الاصطناعي للابتكار في تطوير الأدوية.
من المتوقع أن تسجل منطقة آسيا والمحيط الهادئ أعلى معدل نمو
- من المتوقع أن تشهد منطقة آسيا والمحيط الهادئ أعلى معدل نمو في الذكاء الاصطناعي في اكتشاف الأدوية ، مدفوعًا بالتوسع السريع في البنية التحتية للرعاية الصحية، وزيادة الوعي بصحة العين، وارتفاع أحجام العمليات الجراحية.
- تستثمر دول مثل الصين والهند واليابان بكثافة في الذكاء الاصطناعي والتكنولوجيا الحيوية ، بهدف تعزيز قطاعاتها الدوائية وتلبية احتياجات الرعاية الصحية المتزايدة. تُسرّع هذه الاستثمارات اعتماد الذكاء الاصطناعي في اكتشاف الأدوية.
- تعمل حكومات منطقة آسيا والمحيط الهادئ بنشاط على تعزيز الرعاية الصحية الرقمية ودمج الذكاء الاصطناعي من خلال مبادرات متنوعة. على سبيل المثال، طبّقت الصين استراتيجيات وطنية لدمج الذكاء الاصطناعي في الرعاية الصحية، مما عزز نمو الذكاء الاصطناعي في مجال اكتشاف الأدوية.
- تتميز دول منطقة آسيا والمحيط الهادئ بكثافة سكانية عالية وكميات هائلة من البيانات الصحية التي يمكن الاستفادة منها لاكتشاف الأدوية المدعومة بالذكاء الاصطناعي. وتدعم البنية التحتية الرقمية المتينة في المنطقة دمج تقنيات الذكاء الاصطناعي في تطوير الأدوية.
- تعد منطقة آسيا والمحيط الهادئ (APAC) الأسرع نموًا في سوق الذكاء الاصطناعي في اكتشاف الأدوية، مدفوعة بالاستثمارات المتزايدة، والسياسات الحكومية الداعمة، ومجموعة كبيرة من البيانات، وتوسع شركات التكنولوجيا الحيوية التي تستفيد من تكنولوجيا الذكاء الاصطناعي.
حصة سوق الذكاء الاصطناعي في اكتشاف الأدوية
يُقدم المشهد التنافسي في السوق تفاصيل لكل منافس. تشمل هذه التفاصيل لمحة عامة عن الشركة، وبياناتها المالية، وإيراداتها المحققة، وإمكانياتها السوقية، والاستثمار في البحث والتطوير، ومبادراتها التسويقية الجديدة، وحضورها العالمي، ومواقع ومرافق الإنتاج، وقدراتها الإنتاجية، ونقاط قوتها وضعفها، وإطلاق المنتجات، ونطاقها، وهيمنة تطبيقاتها. تتعلق نقاط البيانات المذكورة أعلاه فقط بتركيز الشركات على السوق.
الشركات الرائدة الرئيسية العاملة في السوق هي:
- شركة NVIDIA (الولايات المتحدة)
- شركة آي بي إم (الولايات المتحدة)
- شركة أتوم وايز (الولايات المتحدة)
- مايكروسوفت (الولايات المتحدة)
- الذكاء الاصطناعي الخيري (المملكة المتحدة)
- شركة آريا للأدوية (الولايات المتحدة)
- الجينوميات العميقة (كندا)
- إكسسينتيا (المملكة المتحدة)
- الطب السيليكوني (هونغ كونغ)
- سيكليكا (كندا)
- شركة NuMedii، المحدودة (الولايات المتحدة)
- إنفيزاجينيكس (الولايات المتحدة)
- شركة أوكين (الولايات المتحدة)
- شركة بيرج ذات المسؤولية المحدودة (الولايات المتحدة)
- شركة شرودنجر (الولايات المتحدة)
- شركة XtalPi (الصين)
- شركة BIOAGE (الولايات المتحدة)
أحدث التطورات في سوق الذكاء الاصطناعي العالمي في اكتشاف الأدوية
- في مايو 2024، كشفت جوجل ديب مايند عن الإصدار الثالث من نموذج الذكاء الاصطناعي AlphaFold، المصمم لتعزيز تطوير الأدوية وتحسين استهداف الأمراض. يُمكّن هذا الإصدار المتقدم الباحثين في ديب مايند ومختبرات إيزومورفيك من تحليل سلوك جميع الجزيئات، بما في ذلك الحمض النووي البشري.
- في أبريل 2024، حصلت شركة Xaira Therapeutics، وهي شركة مبتكرة متخصصة في اكتشاف وتطوير الأدوية باستخدام الذكاء الاصطناعي، على أكثر من مليون دولار أمريكي خلال جولة تمويلية تعاونية مع ARCH Venture Partners وForesite Labs. باستخدام تقنيات التعلم الآلي ونماذج توليد البيانات وتطوير المنتجات العلاجية، تركز الشركة على معالجة أهداف دوائية كانت عادةً صعبة المنال.
- في ديسمبر 2023، أطلقت MilliporeSigma، قسم علوم الحياة في شركة Merck، برنامج AIDDISON، وهو برنامج متطور لاكتشاف الأدوية. يسد هذا البرنامج الفجوة بين تصميم الجزيئات الافتراضي وقابلية التصنيع في العالم الحقيقي من خلال دمج واجهة برمجة تطبيقات برنامج Synthia للتخليق الرجعي. يجمع البرنامج بين الذكاء الاصطناعي التوليدي والتعلم الآلي وتصميم الأدوية بمساعدة الحاسوب لتبسيط عمليات تطوير الأدوية.
- في مايو 2023، أطلقت جوجل أداتين مبتكرتين تعتمدان على الذكاء الاصطناعي، تهدفان إلى مساعدة شركات التكنولوجيا الحيوية والأدوية على تسريع اكتشاف الأدوية وتطوير الطب الدقيق. صُممت هذه الحلول لتقليل الوقت والتكلفة اللازمين لطرح علاجات جديدة في السوق الأمريكية. ومن أوائل الشركات التي اعتمدت هذه الأدوات: سيريفيل ثيرابيوتكس، وفايزر، وكولوسال بيوساينسز .
SKU-
احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم
- لوحة معلومات تحليل البيانات التفاعلية
- لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
- إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
- تحليل المنافسين باستخدام لوحة معلومات تفاعلية
- آخر الأخبار والتحديثات وتحليل الاتجاهات
- استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
Table of Content
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 MARKETS COVERED
2.5 GEOGRAPHIC SCOPE
2.6 YEARS CONSIDERED FOR THE STUDY
2.7 RESEARCH METHODOLOGY
2.8 TECHNOLOGY LIFE LINE CURVE
2.9 MULTIVARIATE MODELLING
2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.11 DBMR MARKET POSITION GRID
2.12 MARKET APPLICATION COVERAGE GRID
2.13 DBMR MARKET CHALLENGE MATRIX
2.14 SECONDARY SOURCES
2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT
2.16 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 PESTEL ANALYSIS
5.2 PORTER’S FIVE FORCES MODEL
6 INDUSTRY INSIGHTS
6.1 MICRO AND MACRO ECONOMIC FACTORS
6.2 PENETRATION AND GROWTH PROSPECT MAPPING
6.3 KEY PRICING STRATEGIES
6.4 INTERVIEWS WITH SPECIALIST
6.5 ANALYIS AND RECOMMENDATION
7 INTELLECTUAL PROPERTY (IP) PORTFOLIO
7.1 PATENT QUALITY AND STRENGTH
7.2 PATENT FAMILIES
7.3 LICENSING AND COLLABORATIONS
7.4 COMPETITIVE LANDSCAPE
7.5 IP STRATEGY AND MANAGEMENT
7.6 OTHER
8 COST ANALYSIS BREAKDOWN
9 TECHNONLOGY ROADMAP
10 INNOVATION TRACKER AND STRATEGIC ANALYSIS
10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS
10.1.1 JOINT VENTURES
10.1.2 MERGERS AND ACQUISITIONS
10.1.3 LICENSING AND PARTNERSHIP
10.1.4 TECHNOLOGY COLLABORATIONS
10.1.5 STRATEGIC DIVESTMENTS
10.2 NUMBER OF PRODUCTS IN DEVELOPMENT
10.3 STAGE OF DEVELOPMENT
10.4 TIMELINES AND MILESTONES
10.5 INNOVATION STRATEGIES AND METHODOLOGIES
10.6 RISK ASSESSMENT AND MITIGATION
10.7 FUTURE OUTLOOK
11 REGULATORY COMPLIANCE
11.1 REGULATORY AUTHORITIES
11.2 REGULATORY CLASSIFICATIONS
11.2.1 CLASS I
11.2.2 CLASS II
11.2.3 CLASS III
11.3 REGULATORY SUBMISSIONS
11.4 INTERNATIONAL HARMONIZATION
11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS
11.6 REGULATORY CHALLENGES AND STRATEGIES
12 REIMBURSEMENT FRAMEWORK
13 OPPUTUNITY MAP ANALYSIS
14 VALUE CHAIN ANALYSIS
15 HEALTHCARE ECONOMY
15.1 HEALTHCARE EXPENDITURE
15.2 CAPITAL EXPENDITURE
15.3 CAPEX TRENDS
15.4 CAPEX ALLOCATION
15.5 FUNDING SOURCES
15.6 INDUSTRY BENCHMARKS
15.7 GDP RATION IN OVERALL GDP
15.8 HEALTHCARE SYSTEM STRUCTURE
15.9 GOVERNMENT POLICIES
15.1 ECONOMIC DEVELOPMENT
16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
16.1 OVERVIEW
16.2 SOFTWARE
16.2.1 INTEGRATED
16.2.2 STANDALONE
16.3 SERVICES
17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
17.1 OVERVIEW
17.2 MACHINE LEARNING (ML)
17.2.1 SUPERVISED LEARNING
17.2.2 UNSUPERVISED LEARNING
17.2.3 REINFORCEMENT LEARNING
17.3 DEEP LEARNING
17.4 NATURAL LANGUAGE PROCESSING (NLP)
17.5 OTHERS
18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE
18.1 OVERVIEW
18.2 SMALL MOLECULE
18.3 LARGE MOLECULE
19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
19.1 OVERVIEW
19.2 NOVEL DRUG CANDIDATES
19.2.1 IDENTIFY BIOLOGICS TARGET
19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE
19.2.3 OTHERS
19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL
19.4 DRUG MONITORING
19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS
19.6 UNDERSTANDING DISEASE MECHANISMS
19.7 AGGREGATING AND SYNTHESIZING INFORMATION
19.8 FORM ATION & QUALIFICATION OF HYPOTHESES
19.9 DE NOVO DRUG DESIGN
19.1 FINDING DRUG TARGETS OF AN OLD DRUG
19.11 OTHERS
20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
20.1 OVERVIEW
20.2 IMMUNO-ONCOLOGY
20.2.1 PROSTATE CANCER
20.2.2 BREAST CANCER
20.2.3 BRAIN CANCER
20.2.4 LUNG CANCER
20.2.5 PANCREATIC CANCER
20.2.6 COLORECTAL CANCER
20.2.7 LEUKEMIA
20.2.8 OTHERS
20.3 NEURODEGENERATIVE DISEASES
20.4 CARDIOVASCULAR DISEASES
20.5 METABOLIC DISEASES
20.6 OTHERS
21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER
21.1 OVERVIEW
21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
21.3 CONTRACT RESEARCH ORGANIZATIONS
21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES
21.5 OTHERS
22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)
GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
22.1 OVERVIEW
22.2 NORTH AMERICA
22.2.1 U.S.
22.2.2 CANADA
22.2.3 MEXICO
22.3 EUROPE
22.3.1 GERMANY
22.3.2 U.K.
22.3.3 ITALY
22.3.4 FRANCE
22.3.5 SPAIN
22.3.6 SWITZERLAND
22.3.7 RUSSIA
22.3.8 TURKEY
22.3.9 BELGIUM
22.3.10 NETHERLANDS
22.3.11 REST OF EUROPE
22.4 ASIA-PACIFIC
22.4.1 JAPAN
22.4.2 CHINA
22.4.3 SOUTH KOREA
22.4.4 INDIA
22.4.5 AUSTRALIA & NEW ZEALAND
22.4.6 SINGAPORE
22.4.7 THAILAND
22.4.8 INDONESIA
22.4.9 MALAYSIA
22.4.10 PHILIPPINES
22.4.11 REST OF ASIA-PACIFIC
22.5 SOUTH AMERICA
22.5.1 BRAZIL
22.5.2 ARGENTINA
22.5.3 REST OF SOUTH AMERICA
22.6 MIDDLE EAST AND AFRICA
22.6.1 SOUTH AFRICA
22.6.2 EGYPT
22.6.3 SAUDI ARABIA
22.6.4 UNITED ARAB EMIRATES
22.6.5 ISRAEL
22.6.6 REST OF MIDDLE EAST AND AFRICA
23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE
23.1 COMPANY SHARE ANALYSIS: GLOBAL
23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
23.3 COMPANY SHARE ANALYSIS: EUROPE
23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
23.5 MERGERS & ACQUISITIONS
23.6 NEW PRODUCT DEVELOPMENT & APPROVALS
23.7 EXPANSIONS
23.8 REGULATORY CHANGES
23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES
24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS
25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE
25.1 MICROSOFT
25.1.1 COMPANY OVERVIEW
25.1.2 REVENUE ANALYSIS
25.1.3 PRODUCT PORTFOLIO
25.1.4 RECENT DEVELOPMENTS
25.2 SHANGHAI MEDICILON INC.
25.2.1 COMPANY OVERVIEW
25.2.2 REVENUE ANALYSIS
25.2.3 PRODUCT PORTFOLIO
25.2.4 RECENT DEVELOPMENTS
25.3 NVIDIA CORPORATION + ASTRAZENECA
25.3.1 COMPANY OVERVIEW
25.3.2 REVENUE ANALYSIS
25.3.3 PRODUCT PORTFOLIO
25.3.4 RECENT DEVELOPMENTS
25.4 ATOMWISE INC.
25.4.1 COMPANY OVERVIEW
25.4.2 REVENUE ANALYSIS
25.4.3 PRODUCT PORTFOLIO
25.4.4 RECENT DEVELOPMENTS
25.5 DEEP GENOMICS
25.5.1 COMPANY OVERVIEW
25.5.2 REVENUE ANALYSIS
25.5.3 PRODUCT PORTFOLIO
25.5.4 RECENT DEVELOPMENTS
25.6 CLOUD PHARMACEUTICALS INC.
25.6.1 COMPANY OVERVIEW
25.6.2 REVENUE ANALYSIS
25.6.3 PRODUCT PORTFOLIO
25.6.4 RECENT DEVELOPMENTS
25.7 INSILICO MEDICINE
25.7.1 COMPANY OVERVIEW
25.7.2 REVENUE ANALYSIS
25.7.3 PRODUCT PORTFOLIO
25.7.4 RECENT DEVELOPMENTS
25.8 BENEVOLENTAI
25.8.1 COMPANY OVERVIEW
25.8.2 REVENUE ANALYSIS
25.8.3 PRODUCT PORTFOLIO
25.8.4 RECENT DEVELOPMENTS
25.9 EXSCIENTIA
25.9.1 COMPANY OVERVIEW
25.9.2 REVENUE ANALYSIS
25.9.3 PRODUCT PORTFOLIO
25.9.4 RECENT DEVELOPMENTS
25.1 CYCLICA
25.10.1 COMPANY OVERVIEW
25.10.2 REVENUE ANALYSIS
25.10.3 PRODUCT PORTFOLIO
25.10.4 RECENT DEVELOPMENTS
25.11 OWKIN, INC
25.11.1 COMPANY OVERVIEW
25.11.2 REVENUE ANALYSIS
25.11.3 PRODUCT PORTFOLIO
25.11.4 RECENT DEVELOPMENTS
25.12 ENVISAGENICS
25.12.1 COMPANY OVERVIEW
25.12.2 REVENUE ANALYSIS
25.12.3 PRODUCT PORTFOLIO
25.12.4 RECENT DEVELOPMENTS
25.13 NUMEDII, INC.
25.13.1 COMPANY OVERVIEW
25.13.2 REVENUE ANALYSIS
25.13.3 PRODUCT PORTFOLIO
25.13.4 RECENT DEVELOPMENTS
25.14 BIOSYNTAGMA
25.14.1 COMPANY OVERVIEW
25.14.2 REVENUE ANALYSIS
25.14.3 PRODUCT PORTFOLIO
25.14.4 RECENT DEVELOPMENTS
25.15 COLLABORATIONS PHARMACEUTICALS, INC.
25.15.1 COMPANY OVERVIEW
25.15.2 REVENUE ANALYSIS
25.15.3 PRODUCT PORTFOLIO
25.15.4 RECENT DEVELOPMENTS
25.16 INVENIAI LLC
25.16.1 COMPANY OVERVIEW
25.16.2 REVENUE ANALYSIS
25.16.3 PRODUCT PORTFOLIO
25.16.4 RECENT DEVELOPMENTS
25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION
25.17.1 COMPANY OVERVIEW
25.17.2 REVENUE ANALYSIS
25.17.3 PRODUCT PORTFOLIO
25.17.4 RECENT DEVELOPMENTS
25.18 VALO HEALTH
25.18.1 COMPANY OVERVIEW
25.18.2 REVENUE ANALYSIS
25.18.3 PRODUCT PORTFOLIO
25.18.4 RECENT DEVELOPMENTS
25.19 AIFORIA
25.19.1 COMPANY OVERVIEW
25.19.2 REVENUE ANALYSIS
25.19.3 PRODUCT PORTFOLIO
25.19.4 RECENT DEVELOPMENTS
25.2 CHEMALIVE
25.20.1 COMPANY OVERVIEW
25.20.2 REVENUE ANALYSIS
25.20.3 PRODUCT PORTFOLIO
25.20.4 RECENT DEVELOPMENTS
25.21 DEEPMATTER GROUP LIMITED
25.21.1 COMPANY OVERVIEW
25.21.2 REVENUE ANALYSIS
25.21.3 PRODUCT PORTFOLIO
25.21.4 RECENT DEVELOPMENTS
25.22 MABSILICO.
25.22.1 COMPANY OVERVIEW
25.22.2 REVENUE ANALYSIS
25.22.3 PRODUCT PORTFOLIO
25.22.4 RECENT DEVELOPMENTS
25.23 OPTIBRIUM, LTD.
25.23.1 COMPANY OVERVIEW
25.23.2 REVENUE ANALYSIS
25.23.3 PRODUCT PORTFOLIO
25.23.4 RECENT DEVELOPMENTS
25.24 ABBVIE AND BIGHAT BIOSCIENCES
25.24.1 COMPANY OVERVIEW
25.24.2 REVENUE ANALYSIS
25.24.3 PRODUCT PORTFOLIO
25.24.4 RECENT DEVELOPMENTS
25.25 ADAGENE
25.25.1 COMPANY OVERVIEW
25.25.2 REVENUE ANALYSIS
25.25.3 PRODUCT PORTFOLIO
25.25.4 RECENT DEVELOPMENTS
25.26 PEPTICOM LTD.
25.26.1 COMPANY OVERVIEW
25.26.2 REVENUE ANALYSIS
25.26.3 PRODUCT PORTFOLIO
25.26.4 RECENT DEVELOPMENTS
25.27 DEARGEN INC.
25.27.1 COMPANY OVERVIEW
25.27.2 REVENUE ANALYSIS
25.27.3 PRODUCT PORTFOLIO
25.27.4 RECENT DEVELOPMENTS
25.28 GERO.AI
25.28.1 COMPANY OVERVIEW
25.28.2 REVENUE ANALYSIS
25.28.3 PRODUCT PORTFOLIO
25.28.4 RECENT DEVELOPMENTS
25.29 3BIGS CO. LTD.
25.29.1 COMPANY OVERVIEW
25.29.2 REVENUE ANALYSIS
25.29.3 PRODUCT PORTFOLIO
25.29.4 RECENT DEVELOPMENTS
25.3 BPGBIO INC.
25.30.1 COMPANY OVERVIEW
25.30.2 REVENUE ANALYSIS
25.30.3 PRODUCT PORTFOLIO
25.30.4 RECENT DEVELOPMENTS
25.31 SCHRÖDINGER, INC.
25.31.1 COMPANY OVERVIEW
25.31.2 REVENUE ANALYSIS
25.31.3 PRODUCT PORTFOLIO
25.31.4 RECENT DEVELOPMENTS
25.32 XTALPI INC.
25.32.1 COMPANY OVERVIEW
25.32.2 REVENUE ANALYSIS
25.32.3 PRODUCT PORTFOLIO
25.32.4 RECENT DEVELOPMENTS
25.33 BIOAGE INC.
25.33.1 COMPANY OVERVIEW
25.33.2 REVENUE ANALYSIS
25.33.3 PRODUCT PORTFOLIO
25.33.4 RECENT DEVELOPMENTS
26 RELATED REPORTS
27 QUESTIONNAIRE
28 CONCLUSION
29 ABOUT DATA BRIDGE MARKET RESEARCH
منهجية البحث
يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.
منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.
التخصيص متاح
تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.

