Global Mlops Market
حجم السوق بالمليار دولار أمريكي
CAGR :
%
USD
2.19 Billion
USD
34.21 Billion
2024
2032
| 2025 –2032 | |
| USD 2.19 Billion | |
| USD 34.21 Billion | |
|
|
|
|
تجزئة سوق عمليات إدارة العمليات الرئيسية (MLOps) العالمية، حسب المكونات (المنصة والخدمة)، وطريقة النشر (محليًا، سحابيًا، وهجينًا)، وحجم المؤسسة (الشركات الكبيرة، والصغيرة والمتوسطة)، والقطاعات الصناعية (الخدمات المالية، والتأمين، والتصنيع، وتكنولوجيا المعلومات والاتصالات، وتجارة التجزئة والتجارة الإلكترونية، والرعاية الصحية، وغيرها) - اتجاهات الصناعة وتوقعاتها حتى عام 2032
حجم سوق MLOps
- تم تقييم حجم سوق MLOps العالمي بـ 2.19 مليار دولار أمريكي في عام 2024 ومن المتوقع أن يصل إلى 34.21 مليار دولار أمريكي بحلول عام 2032 ، بمعدل نمو سنوي مركب قدره 41.00٪ خلال الفترة المتوقعة
- يتم دعم نمو السوق إلى حد كبير من خلال التبني المتزايد للذكاء الاصطناعي (AI) والتعلم الآلي (ML) عبر الصناعات، مما يخلق الحاجة إلى نشر نموذج مبسط وإدارة دورة حياة المنتج.
- الطلب المتزايد على الأتمتة في سير عمل التعلم الآلي، بما في ذلك تدريب النموذج ومراقبته وإعادة تدريبه، يعمل على تسريع اعتماد منصات وأدوات MLOps
تحليل سوق MLOps
- يشهد سوق MLOps نموًا سريعًا حيث تسعى المؤسسات إلى تشغيل نماذج التعلم الآلي على نطاق واسع، مما يضمن الموثوقية وإمكانية التكرار والحوكمة
- تكتسب حلول MLOps المستندة إلى السحابة زخمًا نظرًا لقدرتها على التوسع والتكامل مع خطوط أنابيب DevOps الحالية، مما يجعلها جذابة لكل من الشركات الكبيرة والشركات الصغيرة والمتوسطة الحجم
- سيطرت أمريكا الشمالية على سوق MLOps بأكبر حصة إيرادات بلغت 41% في عام 2024، مدفوعة بالتبني القوي للذكاء الاصطناعي والتعلم الآلي عبر المؤسسات، بالإضافة إلى وجود مزودي التكنولوجيا الرئيسيين والبنية التحتية السحابية المتقدمة
- من المتوقع أن تشهد منطقة آسيا والمحيط الهادئ أعلى معدل نمو في سوق MLOps العالمية ، مدفوعةً بالاعتماد واسع النطاق على تقنيات الذكاء الاصطناعي، والاستثمارات المتزايدة في منصات السحابة، وتوسيع خدمات تكنولوجيا المعلومات، ودور المنطقة كمركز عالمي للتحول الرقمي والابتكار.
- استحوذ قطاع المنصات على أكبر حصة من إيرادات السوق في عام ٢٠٢٤، مدفوعًا بالطلب المتزايد على الحلول المتكاملة التي تُبسط إعداد البيانات والتدريب والنشر ومراقبة نماذج التعلم الآلي. تضمن هذه المنصات قابلية التوسع وإمكانية التكرار والامتثال، مما يجعلها الخيار الأمثل لاعتماد الشركات على نطاق واسع.
نطاق التقرير وتجزئة سوق MLOps
|
صفات |
رؤى السوق الرئيسية لـ MLOps |
|
القطاعات المغطاة |
|
|
الدول المغطاة |
أمريكا الشمالية
أوروبا
آسيا والمحيط الهادئ
الشرق الأوسط وأفريقيا
أمريكا الجنوبية
|
|
اللاعبون الرئيسيون في السوق |
|
|
فرص السوق |
• دمج عمليات التعلم الآلي (MLOps) مع المنصات السحابية الأصلية |
|
مجموعات معلومات البيانات ذات القيمة المضافة |
بالإضافة إلى رؤى السوق مثل القيمة السوقية ومعدل النمو وشرائح السوق والتغطية الجغرافية واللاعبين في السوق وسيناريو السوق، فإن تقرير السوق الذي أعده فريق أبحاث السوق في Data Bridge يتضمن تحليلًا متعمقًا من الخبراء وتحليل الاستيراد / التصدير وتحليل التسعير وتحليل استهلاك الإنتاج وتحليل المدقة. |
اتجاهات سوق MLOps
صعود عمليات التعلم الآلي الآلية والقابلة للتطوير
يُحدث التحول المتزايد نحو سير العمل الآلي في التعلم الآلي تحولاً جذرياً في مشهد عمليات التعلم الآلي (MLOps) من خلال تمكين نشر النماذج ومراقبتها وحوكمتها في الوقت الفعلي. تتيح قابلية التوسع وسرعة هذه المنصات للشركات تشغيل الذكاء الاصطناعي على نطاق واسع، مما يؤدي إلى تسريع الابتكار وتحسين عملية اتخاذ القرار.
يُسرّع الطلب المتزايد على الكفاءة في إدارة كميات كبيرة من نماذج التعلم الآلي من اعتماد حلول MLOps السحابية وخطوط أنابيب DevOps المتكاملة. تُعد هذه المنصات فعّالة بشكل خاص للشركات التي تُعدّ إعادة التدريب والنشر المستمر أمرًا بالغ الأهمية، مما يضمن دقة النماذج وفعاليتها.
إن توافر أدوات MLOps مفتوحة المصدر وسهولة الوصول إليها يجعلها جذابة للشركات الصغيرة والمتوسطة، مما يتيح مشاركة أوسع في التحول القائم على الذكاء الاصطناعي. وهذا يُحسّن مرونة المؤسسة مع تقليل العوائق الفنية والمالية أمام تطبيق الذكاء الاصطناعي.
• على سبيل المثال، في عام 2023، نفذت العديد من المؤسسات المالية في أمريكا الشمالية خطوط أنابيب MLOps الآلية لمراقبة نماذج اكتشاف الاحتيال، مما أدى إلى تقليل الإيجابيات الخاطئة وتحسين أمان المعاملات مع خفض التكاليف التشغيلية.
في حين أن الأتمتة وقابلية التوسع تُسرّعان اعتماد عمليات إدارة العمليات الرئيسية (MLOps)، فإن تأثيرهما يعتمد على الابتكار المستمر، والحوكمة القوية للبيانات، والتكامل مع أنظمة تكنولوجيا المعلومات المؤسسية الحالية. يجب على الموردين التركيز على قابلية التشغيل البيني، والأمان، والحلول سهلة الاستخدام للاستفادة من هذا الطلب.
ديناميكيات سوق MLOps
سائق
تزايد اعتماد المؤسسات للذكاء الاصطناعي والطلب على إدارة دورة حياة النموذج
يدفع التبني السريع للذكاء الاصطناعي والتعلم الآلي في مختلف القطاعات الشركات إلى الاستثمار في عمليات إدارة التعلم الآلي (MLOps) لإدارة دورة حياة النموذج بكفاءة. من التدريب إلى النشر، تضمن عمليات إدارة التعلم الآلي الموثوقية وإمكانية التكرار والامتثال، مما يُمكّن المؤسسات من توسيع نطاق الذكاء الاصطناعي بمسؤولية ودفع عجلة الابتكار بسرعة.
تزداد وعي المؤسسات بمخاطر نماذج التعلم الآلي غير المُدارة، بما في ذلك التحيز والانحراف وعدم الامتثال للوائح التنظيمية، مما يُبرز ضرورة وجود أطر عمل قوية لعمليات التعلم الآلي (MLOps). من خلال معالجة هذه التحديات، تُمكّن عمليات التعلم الآلي (MLOps) المؤسسات من الحفاظ على أداء النموذج، والحماية من مخاطر السمعة، وضمان الثقة في القرارات المُعتمدة على الذكاء الاصطناعي.
تُعزز مبادرات القطاعين العام والخاص، مثل الاستثمارات المُركزة على الذكاء الاصطناعي، وتوسيع البنية التحتية السحابية، والمبادئ التوجيهية التنظيمية للذكاء الاصطناعي المسؤول، منظومة عمليات إدارة التعلم الرئيسية (MLOps). ولا تقتصر هذه الجهود على تشجيع الشركات على تبني أفضل الممارسات، بل تُسهم أيضًا في صياغة معايير عالمية لنشر الذكاء الاصطناعي بطريقة أخلاقية وشفافة وآمنة.
على سبيل المثال، في عام ٢٠٢٢، أعلنت الحكومة الأمريكية عن زيادة تمويل البنية التحتية للذكاء الاصطناعي وحوكمته، مما عزز الطلب على منصات عمليات إدارة التعلم الآلي (MLOps) المصممة للمؤسسات في قطاعات مثل الرعاية الصحية والدفاع والمالية. تعكس هذه المبادرة توجهًا عالميًا أوسع نطاقًا لمواءمة ابتكارات الذكاء الاصطناعي مع المساءلة والتنافسية طويلة الأمد.
مع تزايد اعتماد الذكاء الاصطناعي، يعتمد النمو المستدام على معالجة قضايا مثل التوحيد القياسي، وأمن البيانات، وتدريب القوى العاملة لضمان الاستخدام المسؤول والواسع النطاق لحلول عمليات إدارة التعلم (MLOps). يجب على الشركات تحقيق التوازن بين النشر السريع والحوكمة المسؤولة لإطلاق العنان لكامل إمكانات الذكاء الاصطناعي التحويلية.
ضبط النفس/التحدي
تكاليف التنفيذ المرتفعة ونقص المواهب في عمليات إدارة التعلم الرئيسية
لا تزال التكلفة الباهظة لتطبيق منصات MLOps على مستوى المؤسسات، وخاصةً تلك التي تتطلب بنية تحتية سحابية وأدوات مراقبة متطورة، تُشكل عائقًا أمام الشركات الصغيرة والأسواق الناشئة. غالبًا ما لا تقتصر هذه التكاليف على البرمجيات فحسب، بل تشمل أيضًا التكامل والامتثال والصيانة المستمرة، مما يحد من إمكانية الوصول إليها على نطاق أوسع.
في العديد من المناطق، هناك نقص في الكفاءات المؤهلة لإدارة عمليات إدارة رأس المال البشري (MLOps) المعقدة، بما في ذلك عمليات نشر النماذج والمراقبة والامتثال. يُشكّل ندرة الكفاءات عوائق أمام الشركات التي تسعى إلى توسيع نطاق الذكاء الاصطناعي، مما يُجبرها على الاعتماد على مستشارين خارجيين أو موظفين غير مؤهلين.
• يزداد انتشار السوق صعوبةً بسبب تحديات التكامل، حيث لا تزال العديد من الشركات تستخدم أنظمة تكنولوجيا معلومات قديمة تفتقر إلى التوافق مع منصات MLOps الحديثة. تؤدي هذه الفجوة إلى إطالة زمن التنفيذ، وزيادة النفقات، وتأخر عائد الاستثمار، مما يُثني الشركات الصغيرة عن السعي لتبني الذكاء الاصطناعي على نطاق واسع.
على سبيل المثال، في عام ٢٠٢٣، أبلغت العديد من شركات التصنيع في منطقة آسيا والمحيط الهادئ عن تحديات في تبني عمليات إدارة الموارد البشرية (MLOps) بسبب محدودية القوى العاملة الماهرة وارتفاع التكاليف المرتبطة بالهجرة السحابية ودمج المنصات. تُبرز هذه الصعوبات تفاوت وتيرة تبني عمليات إدارة الموارد البشرية بين الأسواق المتقدمة والنامية.
مع استمرار تطور تقنيات MLOps، يبقى حل تحديات التكلفة والتكامل والمواهب أمرًا بالغ الأهمية. يجب على الموردين والشركات إعطاء الأولوية للحلول منخفضة التكلفة، وبرامج التدريب، ونماذج النشر الهجينة لسد الفجوات، وتقليل التعقيد، وإطلاق العنان لكامل إمكانات سوق MLOps العالمي.
نطاق سوق MLOps
يتم تقسيم السوق على أساس المكون، وطريقة النشر، وحجم المنظمة، والقطاعات الصناعية.
- حسب المكون
بناءً على مكوناته، يُقسّم سوق عمليات التعلم الآلي (MLOps) إلى قسمي المنصة والخدمة. وقد استحوذ قطاع المنصة على أكبر حصة من إيرادات السوق في عام 2024، مدفوعًا بالطلب المتزايد على الحلول المتكاملة التي تُبسّط إعداد البيانات والتدريب والنشر ومراقبة نماذج التعلم الآلي. تضمن هذه المنصات قابلية التوسع وإمكانية التكرار والامتثال، مما يجعلها الخيار الأمثل لاعتمادها من قِبل الشركات الكبيرة.
من المتوقع أن يشهد قطاع الخدمات أسرع معدل نمو بين عامي 2025 و2032، مدفوعًا بالاعتماد المتزايد على الاستشارات والتكامل والخدمات المُدارة. وتتجه الشركات بشكل متزايد إلى مزودي الخدمات للتغلب على نقص المهارات ومعالجة تحديات النشر المعقدة، مما يُمكّنها من تسريع تبني الذكاء الاصطناعي مع تحسين التكلفة والكفاءة التشغيلية.
- حسب وضع النشر
بناءً على نمط النشر، يُقسّم سوق عمليات التعلم الآلي (MLOps) إلى محلي، وسحابي، وهجين. وقد استحوذ قطاع السحابة على الحصة السوقية الأكبر في عام 2024، مدعومًا بالاعتماد المتزايد على البنية التحتية السحابية القابلة للتطوير، والتي تُمكّن المؤسسات من تدريب نماذج التعلم الآلي ونشرها بشكل أسرع مع تقليل التكاليف الأولية. كما تتكامل حلول عمليات التعلم الآلي السحابية بسلاسة مع خطوط أنابيب البيانات الحديثة، مما يوفر المرونة وسهولة الوصول.
من المتوقع أن يشهد قطاع الخدمات الهجينة أسرع معدل نمو بين عامي 2025 و2032، مدفوعًا بسعي الشركات إلى تحقيق توازن بين قابلية التوسع السحابي وأمن البنية التحتية المحلية. وتتزايد اعتماد نماذج عمليات إدارة الموارد الرئيسية الهجينة في القطاعات الخاضعة لرقابة صارمة، مثل البنوك والدفاع والرعاية الصحية، حيث تُعد معالجة البيانات الحساسة أمرًا بالغ الأهمية مع الاستفادة في الوقت نفسه من ابتكارات السحابة.
- حسب حجم المنظمة
بناءً على حجم المؤسسة، يُقسّم سوق عمليات إدارة الموارد البشرية (MLOps) إلى شركات كبيرة وأخرى صغيرة ومتوسطة. وقد استحوذت الشركات الكبيرة على أكبر حصة من الإيرادات في عام 2024، كونها من أوائل الشركات التي تبنت حلول الذكاء الاصطناعي على مستوى المؤسسات، ولديها الموارد اللازمة للاستثمار في منصات عمليات إدارة الموارد البشرية المتقدمة. وتستفيد هذه المؤسسات من القدرة على توسيع نطاق مبادرات الذكاء الاصطناعي لتشمل أقسامًا متعددة، مما يعزز الإنتاجية والابتكار.
من المتوقع أن يشهد قطاع الشركات الصغيرة والمتوسطة أسرع معدل نمو بين عامي 2025 و2032، مدفوعًا بتزايد القدرة على تحمل تكاليف حلول إدارة العمليات الرئيسية (MLOps) السحابية والمنصات منخفضة التكلفة. وتعتمد الشركات الصغيرة والمتوسطة حلول إدارة العمليات الرئيسية (MLOps) لتحسين عملية اتخاذ القرار، وتبسيط العمليات، واكتساب ميزة تنافسية دون تكبد تكاليف بنية تحتية باهظة، مما يعزز انتشار الذكاء الاصطناعي عالميًا.
- حسب القطاعات الصناعية
بناءً على القطاعات الصناعية، يُقسّم سوق عمليات إدارة الأصول الرئيسية (MLOps) إلى قطاعات الخدمات المالية (BFSI)، والتصنيع، وتكنولوجيا المعلومات والاتصالات، وتجارة التجزئة والتجارة الإلكترونية، والرعاية الصحية، وغيرها. وسيُهيمن قطاع الخدمات المالية والتأمينية (BFSI) على السوق في عام 2024، مدفوعًا بالاستخدام المتزايد للذكاء الاصطناعي للكشف عن الاحتيال، وتقييم المخاطر، ومراقبة الامتثال. كما أن الحاجة إلى حوكمة نموذجية فعّالة، ومراقبة آنية، تُعزز الطلب على عمليات إدارة الأصول الرئيسية (MLOps) في هذا القطاع.
من المتوقع أن يشهد قطاع الرعاية الصحية أسرع معدل نمو بين عامي 2025 و2032، مدفوعًا بالاعتماد المتزايد على الذكاء الاصطناعي في التصوير الطبي والتشخيص والعلاج الشخصي. تساعد حلول MLOps على ضمان دقة النماذج، والامتثال للوائح التنظيمية، وأمن بيانات المرضى، مما يجعلها حيوية لتوسيع نطاق تطبيقات الذكاء الاصطناعي في مجال الرعاية الصحية. كما تدمج قطاعات أخرى، مثل التصنيع وتجارة التجزئة، حلول MLOps بسرعة لتحسين الكفاءة التشغيلية، وإدارة سلسلة التوريد، وتجربة العملاء.
تحليل إقليمي لسوق MLOps
• سيطرت أمريكا الشمالية على سوق MLOps بأكبر حصة إيرادات بلغت 41% في عام 2024، مدفوعة بالتبني القوي للذكاء الاصطناعي والتعلم الآلي في جميع المؤسسات، بالإضافة إلى وجود مزودي التكنولوجيا الرئيسيين والبنية التحتية السحابية المتقدمة.
• تقدر الشركات في المنطقة ميزات الموثوقية وقابلية التوسع والامتثال لمنصات MLOps، مما يضمن إدارة دورة حياة نموذج الذكاء الاصطناعي بشكل آمن وفعال.
• يتم دعم هذه القيادة أيضًا من خلال الاستثمارات الكبيرة في ابتكار الذكاء الاصطناعي، والسياسات الحكومية المواتية، والطلب القوي من الصناعات مثل التمويل والرعاية الصحية وتكنولوجيا المعلومات، مما يعزز أمريكا الشمالية كمركز رائد لتبني MLOps.
رؤى سوق MLOps في الولايات المتحدة
استحوذ سوق MLOps الأمريكي على أكبر حصة من الإيرادات في أمريكا الشمالية عام 2024، مدفوعًا بالتحول الرقمي السريع، وزيادة نشر حلول الذكاء الاصطناعي السحابية، وارتفاع طلب الشركات على الأتمتة. وتستفيد الشركات بشكل متزايد من MLOps لتبسيط سير عمل الذكاء الاصطناعي، وتقليل المخاطر التشغيلية، وضمان الامتثال للوائح البيانات المتطورة. علاوة على ذلك، يواصل دمج MLOps مع أنظمة الحوسبة السحابية المتقدمة، مثل AWS وMicrosoft Azure وGoogle Cloud، دفع عجلة النمو في مختلف القطاعات، بما في ذلك قطاع الخدمات المصرفية والمالية والتأمين، وتجارة التجزئة، والرعاية الصحية.
رؤى سوق MLOps في أوروبا
من المتوقع أن يشهد سوق عمليات إدارة الموارد البشرية (MLOps) في أوروبا أسرع معدل نمو بين عامي 2025 و2032، مدفوعًا بشكل رئيسي بلوائح حماية البيانات الصارمة، مثل اللائحة العامة لحماية البيانات (GDPR)، والحاجة المتزايدة إلى نماذج ذكاء اصطناعي آمنة وقابلة للتفسير. ويعزز تزايد اعتماد الذكاء الاصطناعي في قطاعات الخدمات المالية والتصنيع والقطاع الحكومي الطلب على منصات عمليات إدارة الموارد البشرية القابلة للتطوير. كما تُركز الشركات الأوروبية على النشر المسؤول للذكاء الاصطناعي، والاستدامة، وممارسات الذكاء الاصطناعي الأخلاقية، مما يُشجع على تكامل عمليات إدارة الموارد البشرية على نطاق واسع في القطاعين العام والخاص.
نظرة ثاقبة على سوق MLOps في المملكة المتحدة
من المتوقع أن يشهد سوق MLOps في المملكة المتحدة أسرع معدل نمو بين عامي 2025 و2032، مدعومًا باستثمارات قوية في أبحاث الذكاء الاصطناعي، وابتكارات التكنولوجيا المالية، واستراتيجيات الأعمال الرقمية. ويساهم التركيز المتزايد على الامتثال التنظيمي، وشفافية النماذج، وإدارة البيانات الآمنة في تعزيز الطلب على حلول MLOps المصممة خصيصًا للمؤسسات. كما أن قطاع خدمات تكنولوجيا المعلومات المزدهر في المملكة المتحدة، والاعتماد الواسع النطاق على البنية التحتية السحابية الهجينة، يُسرّعان نمو السوق.
نظرة عامة على سوق MLOps في ألمانيا
من المتوقع أن يشهد سوق عمليات إدارة التوريدات (MLOps) في ألمانيا أسرع معدل نمو بين عامي 2025 و2032، مدفوعًا بتركيز البلاد على الصناعة 4.0 والتصنيع الذكي والأتمتة. وتدمج الشركات الألمانية عمليات إدارة التوريدات (MLOps) بشكل متزايد في أنظمة الذكاء الاصطناعي الخاصة بها لتعزيز الكفاءة التشغيلية والتحليلات التنبؤية وتحسين سلسلة التوريد. كما أن التركيز على الاستدامة والامتثال وأمن البيانات يُسهم في زيادة الطلب على حلول عمليات إدارة التوريدات (MLOps)، لا سيما في التطبيقات الصناعية وقطاع السيارات والرعاية الصحية.
نظرة عامة على سوق MLOps في منطقة آسيا والمحيط الهادئ
من المتوقع أن يشهد سوق عمليات إدارة الموارد البشرية (MLOps) في منطقة آسيا والمحيط الهادئ أسرع معدل نمو بين عامي 2025 و2032، مدفوعًا بالتحول الرقمي السريع، وتنامي اعتماد الحوسبة السحابية، وتوسع استثمارات الذكاء الاصطناعي في دول مثل الصين واليابان والهند. وتتزايد اعتماد الشركات في المنطقة لعمليات إدارة الموارد البشرية (MLOps) لإدارة التطبيقات واسعة النطاق القائمة على البيانات، وتبسيط عمليات نشر الذكاء الاصطناعي، وتحسين قابلية التوسع. ومع بروز منطقة آسيا والمحيط الهادئ كمستهلك ومنتج لتقنيات الذكاء الاصطناعي، من المتوقع أن تُسرّع تكلفة منصات عمليات إدارة الموارد البشرية (MLOps) وسهولة الوصول إليها من تبنيها في الشركات الصغيرة والمتوسطة والكبيرة على حد سواء.
نظرة ثاقبة على سوق MLOps في اليابان
من المتوقع أن يشهد سوق عمليات إدارة المخازن (MLOps) في اليابان أسرع معدل نمو بين عامي 2025 و2032، وذلك بفضل تركيز الدولة على الأتمتة والروبوتات والابتكارات التكنولوجية المتقدمة. وتستفيد الشركات اليابانية من عمليات إدارة المخازن (MLOps) في تطبيقاتها بقطاعات التصنيع وتجارة التجزئة والرعاية الصحية، مع التركيز بشكل كبير على الكفاءة والدقة والأمان. كما أن دمج عمليات إدارة المخازن (MLOps) مع إنترنت الأشياء ومشاريع البنية التحتية الذكية يُعزز تبني هذه التقنيات. علاوة على ذلك، يدفع شيخوخة القوى العاملة اليابانية الشركات إلى تبني الأتمتة المدعومة بالذكاء الاصطناعي، مما يزيد الطلب على منصات عمليات إدارة المخازن (MLOps).
نظرة ثاقبة على سوق MLOps في الصين
استحوذ سوق عمليات التعلم الآلي (MLOps) في الصين على أكبر حصة من إيرادات السوق في منطقة آسيا والمحيط الهادئ عام 2024، مدعومًا باستثمارات حكومية ضخمة في الذكاء الاصطناعي، وتوسع البنية التحتية السحابية، والاعتماد السريع في قطاعات مثل التجارة الإلكترونية والتمويل والتصنيع. تبرز الصين كقائد عالمي في ابتكارات الذكاء الاصطناعي، حيث تُمثل عمليات التعلم الآلي (MLOps) ركيزةً أساسيةً لتوسيع نطاق تطبيقات التعلم الآلي ونشرها. كما أن صعود المدن الذكية، إلى جانب قوة مزودي التكنولوجيا المحليين، يُعزز اعتماد عمليات التعلم الآلي، مما يجعل الصين لاعبًا محوريًا في السوق العالمية.
حصة سوق MLOps
تقود شركات راسخة بشكل أساسي صناعة MLOps، بما في ذلك:
- داتابريكس (الولايات المتحدة)
- مختبر بيانات دومينو (الولايات المتحدة)
- Kubeflow (من Google) (الولايات المتحدة)
- أمازون سيج ميكر (الولايات المتحدة)
- تدرج ورق الفضاء (الولايات المتحدة)
- فيدلر AI (الولايات المتحدة)
- MLflow (من Databricks) (الولايات المتحدة)
- فالوهاي (فنلندا)
- الفيل الأمريكي
- ZenML (ألمانيا)
أحدث التطورات في سوق MLOps العالمي
- في مارس 2025، أطلقت شركة هيوليت باكارد إنتربرايز (HPE)، بالتعاون مع شركة إنفيديا، حلول ذكاء اصطناعي جديدة للمؤسسات ضمن محفظة حلول حوسبة الذكاء الاصطناعي من إنفيديا، بما في ذلك حلول الذكاء الاصطناعي السحابية الخاصة من HPE المدمجة مع منصة بيانات الذكاء الاصطناعي من إنفيديا. بفضل بنية بلاكويل من إنفيديا، توفر هذه الحلول أدوات مُحسّنة للأداء والأمان والقدرة على المراقبة، مع تمكين تطوير ونشر الذكاء الاصطناعي بسرعة. تهدف هذه المبادرة إلى تسريع تبني المؤسسات للذكاء الاصطناعي التوليدي والوكيل، مما يُقلل من الوقت اللازم لتحقيق القيمة ويعزز الابتكار، مما يعزز القدرة التنافسية للشركتين في مجال الذكاء الاصطناعي وعمليات إدارة العمليات الرئيسية (MLOps).
- في يوليو 2024، أطلقت مايكروسوفت إطار عمل MLOps v2 المعماري لـ Azure، وهو حل شامل مصمم لتبسيط عمليات التعلم الآلي عبر أحمال عمل التعلم الآلي التقليدي، والرؤية الحاسوبية، ومعالجة اللغة الطبيعية. يدمج هذا الإطار أفضل ممارسات الصناعة، ويوفر مكونات معيارية لإدارة البيانات، وتطوير النماذج، والنشر، والمراقبة. من خلال ضمان سير عمل ذكاء اصطناعي قابلة للتكرار وآمنة وجاهزة للإنتاج، يُمكّن هذا الإطلاق الشركات من تسريع مبادرات الذكاء الاصطناعي الخاصة بها مع تحسين قابلية التوسع والكفاءة، مما يعزز مكانة Azure في سوق MLOps العالمي.
- في مايو 2021، كشفت جوجل كلاود عن Vertex AI، وهي منصة تعلّم آلي مُدارة تُوحد خدمات متعددة لبناء نماذج تعلّم آلي وتدريبها ونشرها. صُممت المنصة لتبسيط دورة حياة الذكاء الاصطناعي، وتقليل التعقيد التشغيلي، وتسريع تطوير النماذج. من خلال تمكين المؤسسات من تبني الذكاء الاصطناعي بشكل أسهل وأسرع وأكثر قابلية للتطوير، لعبت Vertex AI دورًا هامًا في تعزيز حضور جوجل في سوق الذكاء الاصطناعي وعمليات إدارة الموارد البشرية (MLOps) للمؤسسات.
SKU-
احصل على إمكانية الوصول عبر الإنترنت إلى التقرير الخاص بأول سحابة استخبارات سوقية في العالم
- لوحة معلومات تحليل البيانات التفاعلية
- لوحة معلومات تحليل الشركة للفرص ذات إمكانات النمو العالية
- إمكانية وصول محلل الأبحاث للتخصيص والاستعلامات
- تحليل المنافسين باستخدام لوحة معلومات تفاعلية
- آخر الأخبار والتحديثات وتحليل الاتجاهات
- استغل قوة تحليل المعايير لتتبع المنافسين بشكل شامل
منهجية البحث
يتم جمع البيانات وتحليل سنة الأساس باستخدام وحدات جمع البيانات ذات أحجام العينات الكبيرة. تتضمن المرحلة الحصول على معلومات السوق أو البيانات ذات الصلة من خلال مصادر واستراتيجيات مختلفة. تتضمن فحص وتخطيط جميع البيانات المكتسبة من الماضي مسبقًا. كما تتضمن فحص التناقضات في المعلومات التي شوهدت عبر مصادر المعلومات المختلفة. يتم تحليل بيانات السوق وتقديرها باستخدام نماذج إحصائية ومتماسكة للسوق. كما أن تحليل حصة السوق وتحليل الاتجاهات الرئيسية هي عوامل النجاح الرئيسية في تقرير السوق. لمعرفة المزيد، يرجى طلب مكالمة محلل أو إرسال استفسارك.
منهجية البحث الرئيسية التي يستخدمها فريق بحث DBMR هي التثليث البيانات والتي تتضمن استخراج البيانات وتحليل تأثير متغيرات البيانات على السوق والتحقق الأولي (من قبل خبراء الصناعة). تتضمن نماذج البيانات شبكة تحديد موقف البائعين، وتحليل خط زمني للسوق، ونظرة عامة على السوق ودليل، وشبكة تحديد موقف الشركة، وتحليل براءات الاختراع، وتحليل التسعير، وتحليل حصة الشركة في السوق، ومعايير القياس، وتحليل حصة البائعين على المستوى العالمي مقابل الإقليمي. لمعرفة المزيد عن منهجية البحث، أرسل استفسارًا للتحدث إلى خبراء الصناعة لدينا.
التخصيص متاح
تعد Data Bridge Market Research رائدة في مجال البحوث التكوينية المتقدمة. ونحن نفخر بخدمة عملائنا الحاليين والجدد بالبيانات والتحليلات التي تتطابق مع هدفهم. ويمكن تخصيص التقرير ليشمل تحليل اتجاه الأسعار للعلامات التجارية المستهدفة وفهم السوق في بلدان إضافية (اطلب قائمة البلدان)، وبيانات نتائج التجارب السريرية، ومراجعة الأدبيات، وتحليل السوق المجدد وقاعدة المنتج. ويمكن تحليل تحليل السوق للمنافسين المستهدفين من التحليل القائم على التكنولوجيا إلى استراتيجيات محفظة السوق. ويمكننا إضافة عدد كبير من المنافسين الذين تحتاج إلى بيانات عنهم بالتنسيق وأسلوب البيانات الذي تبحث عنه. ويمكن لفريق المحللين لدينا أيضًا تزويدك بالبيانات في ملفات Excel الخام أو جداول البيانات المحورية (كتاب الحقائق) أو مساعدتك في إنشاء عروض تقديمية من مجموعات البيانات المتوفرة في التقرير.

