Künstliche Intelligenz (KI) in der Lieferkette verfügt über mehrere wesentliche Eigenschaften, die zu ihrer Bedeutung auf dem Markt für künstliche Intelligenz im Lieferkettenbereich beitragen. Zu diesen Eigenschaften gehören erweiterte Datenanalysen, Algorithmen für maschinelles Lernen, Automatisierung und Vorhersagefunktionen. KI ermöglicht die Echtzeitanalyse großer Datenmengen, was zu verbesserten Entscheidungen, höherer Effizienz und Kostenoptimierung führt. Sie erleichtert die Bedarfsprognose, das Bestandsmanagement, die Abstimmung von Angebot und Nachfrage sowie die Routenoptimierung. Darüber hinaus bieten KI-gesteuerte Lieferkettenlösungen mehr Sichtbarkeit, Transparenz und Rückverfolgbarkeit, wodurch die Einhaltung von Vorschriften gewährleistet und Risiken gemindert werden. Diese Eigenschaften treiben die Einführung von KI im Lieferkettenmarkt voran, verändern traditionelle Lieferkettenabläufe und bieten Unternehmen greifbare Vorteile.
Laut Marktforschung von Data Bridge Künstliche Intelligenz im Supply-Chain-Markt wird im Prognosezeitraum 2022-2029 eine durchschnittliche jährliche Wachstumsrate (CAGR) von 8,60 % aufweisen. Daher würde der Marktwert für künstliche Intelligenz in der Lieferkette bis 2029 bei 54,51 Millionen USD liegen..
„Die Nachfrage nach mehr Sichtbarkeit und Transparenz bei Lieferketten- und Logistikdaten treibt den Markt an“
Die steigende Nachfrage nach mehr Sichtbarkeit und Transparenz in Lieferketten- und Logistikdaten ist ein wichtiger Treiber für künstliche Intelligenz im Lieferkettenmarkt. Unternehmen und Verbraucher suchen gleichermaßen nach Echtzeit-Tracking, Rückverfolgbarkeit und genauen Einblicken in ihre Lieferkettenabläufe. Künstliche Intelligenztechnologien wie maschinelles Lernen und Datenanalyse ermöglichen es Unternehmen, große Datenmengen zu verarbeiten, Muster zu erkennen und umsetzbare Erkenntnisse zu generieren. Durch den Einsatz von KI können Unternehmen die Effizienz der Lieferkette steigern, das Bestandsmanagement optimieren, Risiken mindern und die Kundenzufriedenheit verbessern. Der dringende Bedarf an Sichtbarkeit und Transparenz ist ein starker Katalysator für die Einführung von KI im Lieferkettensektor.
Was hemmt das Wachstum von Künstliche Intelligenz im Lieferkettenmarkt?
„Mangel an technologischem Know-how in unterentwickelten und sich entwickelnden Volkswirtschaften“
Der Mangel an technologischem Know-how in unterentwickelten und sich entwickelnden Volkswirtschaften hemmt die künstliche Intelligenz im Lieferkettenmarkt erheblich. Diese Regionen sind oft mit begrenzten Ressourcen, Infrastruktur und Fachkräftemangel konfrontiert. Die Implementierung und Einführung fortschrittlicher KI-Technologien in der Lieferkette erfordert Fachwissen und technisches Know-how, das in diesen Volkswirtschaften möglicherweise fehlt. Dies stellt ein Hindernis für die weit verbreitete Einführung von KI-Lösungen dar, behindert das Marktwachstum in diesen Regionen und schafft eine technologische Kluft zwischen entwickelten und sich entwickelnden Volkswirtschaften im Lieferkettenbereich.
Segmentierung: Künstliche Intelligenz im Supply Chain-Markt
Der Markt für künstliche Intelligenz in der Lieferkette ist nach Angebot, Technologie, Anwendung und Branche segmentiert.
- Auf der Grundlage des Angebots ist der Markt für künstliche Intelligenz in der Lieferkette in Hardware, Software und Dienstleistungen segmentiert.
- Auf der Grundlage der Technologie wurde der Markt für künstliche Intelligenz in der Lieferkette in maschinelles Lernen segmentiert, Verarbeitung natürlicher Sprache, kontextsensitives Computing und Computer Vision.
- Auf der Grundlage der Anwendung wurde der Markt für künstliche Intelligenz in der Lieferkette segmentiert Flottenmanagement, Lieferkettenplanung, Risikomanagement, Lagerverwaltung, virtueller Assistent, Frachtvermittlung und andere.
- Auf Branchenbasis wurde der Markt für künstliche Intelligenz in der Lieferkette in die Branchen Automobil, Luft- und Raumfahrt, Fertigung, Einzelhandel, Gesundheitswesen, Konsumgüter sowie Lebensmittel und Getränke unterteilt.
Regionale Einblicke: Nordamerika dominiert den Markt für künstliche Intelligenz in der Lieferkette
Nordamerikas Dominanz im Bereich der künstlichen Intelligenz im Supply-Chain-Markt ist auf die große Präsenz wichtiger Akteure und entwickelter Volkswirtschaften zurückzuführen, die der Verbesserung bestehender Lösungen Priorität einräumen. Dieser Trend dürfte sich im Prognosezeitraum fortsetzen und Nordamerikas Position auf dem Markt weiter stärken.
Der asiatisch-pazifische Raum wird voraussichtlich ein signifikantes Wachstum verzeichnen und die höchste durchschnittliche jährliche Wachstumsrate (CAGR) im Bereich der künstlichen Intelligenz im Lieferkettenmarkt erreichen. Dies ist auf Faktoren wie eine junge und technisch versierte Bevölkerung in der Region und die zunehmende Einführung von Technologien des Internets der Dinge (IOT) zurückzuführen, die die Nachfrage nach fortschrittlichen Lieferkettenlösungen ankurbeln.
Um mehr über den Studienbesuch zu erfahren, https://www.databridgemarketresearch.com/reports/global-artificial-intelligence-in-supply-chain-market
Die wichtigsten Akteure im Künstliche Intelligenz im Supply-Chain-Markt Enthalten:
- Amazon Web Services, Inc. (USA)
- project44 (USA)
- Deutsche Post AG – (Deutschland)
- FedEx (USA)
- GENERAL ELECTRIC (USA)
- Google LLC (USA)
- IBM (USA)
- Intel Corporation (USA)
- Coupa Software Inc. (USA)
- Micron Technology, Inc. (USA)
- Microsoft (US)
- NVIDIA Corporation (USA)
- Oracle (USA)
- SAP SE (Deutschland)
- SAMSUNG (Südkorea)
- Xilinx – (USA)
- Fracht-KI – (USA)
- CH Robinson Worldwide, Inc. – (USA)
- E2open, LLC – (USA)
- RELEX-Lösungen (Finnland)
- SKF-Gruppe (Schweden)
- Cainiao-Netzwerk (China)
- Spleißmaschine (USA)
- American Software, Inc. (USA)
Oben sind die wichtigsten Akteure im Bericht abgedeckt, um mehr über künstliche Intelligenz in Supply Chain Markt Unternehmen Kontakt zu erfahren, https://www.databridgemarketresearch.com/contact
Forschungsmethodik: Globaler Markt für künstliche Intelligenz in der Lieferkette
Die Datenerfassung und die Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Die wichtigste Forschungsmethode, die das DBMR-Forschungsteam verwendet, ist die Datentriangulation, die Data Mining, Analyse der Auswirkungen von Datenvariablen auf den Markt und primäre (Branchenexperten-)Validierung umfasst. Abgesehen davon umfassen die Datenmodelle ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, einen Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Firmenmarktanteilsanalyse, Messstandards, globale vs. regionale und Lieferantenanteilsanalyse. Bitte fordern Sie bei weiteren Fragen einen Analystenanruf an.
