Global AI-Driven Pathology Tools Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2032

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Global AI-Driven Pathology Tools Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2032

  • Healthcare
  • Upcoming Reports
  • Dec 2024
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60
  • Author : Sachin Pawar

Umgehen Sie die Zollherausforderungen mit agiler Supply-Chain-Beratung

Die Analyse des Supply-Chain-Ökosystems ist jetzt Teil der DBMR-Berichte

Global Ai Driven Pathology Tools Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 156.82 Million USD 529.70 Million 2024 2032
Diagramm Prognosezeitraum
2025 –2032
Diagramm Marktgröße (Basisjahr)
USD 156.82 Million
Diagramm Marktgröße (Prognosejahr)
USD 529.70 Million
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • PathAIInc.
  • Ibex Medical Analytics Ltd.
  • Tempus LabsInc.
  • Proscia Inc.
  • DeepLensInc.

Global AI-Driven Pathology Tools Market Segmentation, By Product Type (Software, Services), Technology (Machine Learning, Deep Learning, Natural Language Processing (NLP)), Mode of Deployment (On-premise, Cloud-based), Application (Diagnostic Pathology, Research & Drug Development, Forensic Pathology, Personalized Medicine), End User (Hospitals & Clinics, Research Laboratories, Diagnostic Laboratories, Forensic Institutions) – Industry Trends and Forecast to 2032

AI-Driven Pathology Tools Market

AI-Driven Pathology Tools Market Analysis

The global AI-driven pathology tools market is experiencing rapid growth driven by advancements in machine learning, deep learning, and image recognition technologies. AI tools are transforming pathology by enabling more accurate and faster diagnoses, especially in cancer detection, where AI has shown a diagnostic accuracy of over 90% in some studies. For instance, in breast cancer, AI-based pathology tools have demonstrated a 96% accuracy rate in identifying malignant tumors. The rising prevalence of cancer, with an estimated 19.3 million new cases globally in 2020 according to the World Health Organization (WHO), significantly contributes to the demand for these tools. Additionally, AI applications in pathology are expanding in research and drug development, with AI tools facilitating faster drug discovery processes, as evidenced by AI-driven analyses in genomic studies. With increasing adoption in both clinical and research settings, AI tools are becoming integral to improving patient outcomes and operational efficiencies in pathology.

AI-Driven Pathology Tools Market Size

Global AI-driven pathology tools market size was valued at USD 156.82 million in 2024 and is projected to reach USD 529.70 million by 2032, with a CAGR of 16.40% during the forecast period of 2025 to 2032. In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include depth expert analysis, patient epidemiology, pipeline analysis, pricing analysis, and regulatory framework.

AI-Driven Pathology Tools Market Trends

“Focus on Cancer Diagnosis”

In der Onkologie konzentriert sich die Nachfrage nach KI-Pathologie-Tools zunehmend auf die Verbesserung der Krebsdiagnose. KI wird in die Arbeitsabläufe der Krebserkennung integriert und bietet erhebliche Verbesserungen bei der Frühdiagnose und der Tumorbewertung. Diese Tools nutzen Deep-Learning-Algorithmen zur Analyse von Pathologie-Objektträgern und Bilddaten und identifizieren Muster, die für menschliche Pathologen möglicherweise schwer zu erkennen sind. Durch die genaue Bewertung von Tumoren und die Beurteilung ihrer Eigenschaften helfen KI-Tools bei der Festlegung der am besten geeigneten Behandlungspläne für Patienten. Die weltweit zunehmende Verbreitung von Krebs und die Fortschritte in der KI machen diese Tools in der Onkologie unverzichtbar, um schnellere und genauere Diagnosen zu stellen, die für die Verbesserung der Patientenergebnisse und Überlebensraten von entscheidender Bedeutung sind.

Berichtsumfang und Marktsegmentierung    für KI-gesteuerte Pathologie-Tools

Eigenschaften

KI-gesteuerte Pathologie-Tools – wichtige Markteinblicke

Abgedeckte Segmente

  • Nach Produkttyp : Software, Dienstleistungen
  • Technologie : Maschinelles Lernen, Deep Learning, Verarbeitung natürlicher Sprache (NLP)
  • Nach Bereitstellungsmodus : Vor Ort, Cloud-basiert
  • Nach Anwendung : Diagnostische Pathologie, Forschung und Arzneimittelentwicklung, Forensische Pathologie, Personalisierte Medizin
  • Nach Endbenutzer : Krankenhäuser und Kliniken, Forschungslabore, Diagnoselabore, forensische Einrichtungen

Abgedeckte Länder

USA, Kanada, Mexiko, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika, Brasilien, Argentinien, Restliches Südamerika

Wichtige Marktteilnehmer

PathAI, Inc. (USA), Ibex Medical Analytics Ltd. (Israel), Tempus Labs, Inc. (USA), Proscia Inc. (USA), DeepLens, Inc. (USA), Paige.AI, Inc. (USA), Vuno Inc. (Südkorea), FUJIFILM Corporation (Japan), Koninklijke Philips NV (Niederlande), IBM Corporation (USA), Zebra Medical Vision, Inc. (Israel), Pathcore Inc. (Kanada), DXC Technology Company (USA), Qure.ai Technologies Pvt. Ltd. (Indien), Mindpeak GmbH (Deutschland), MetaSystems GmbH (Deutschland), Medical Informatics Corp. (USA), Huron Digital Pathology Inc. (Kanada) und andere.

Marktchancen

  • Integration mit Genomik und personalisierter Medizin
  • Zusammenarbeit mit Pharma- und Biotech-Unternehmen

Wertschöpfende Dateninfosets

Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research zusammengestellten Marktberichte auch ausführliche Expertenanalysen, Patientenepidemiologie, Pipeline-Analysen, Preisanalysen und regulatorische Rahmenbedingungen.

Marktdefinition für KI-gesteuerte Pathologie-Tools

KI-gesteuerte Pathologie-Tools sind fortschrittliche Technologien, die künstliche Intelligenz (KI) und maschinelle Lernalgorithmen nutzen, um Pathologen bei der Diagnose von Krankheiten, insbesondere Krebs, zu unterstützen, indem sie pathologische Objektträger und medizinische Bilder analysieren. Diese Tools automatisieren Aufgaben wie Bilderkennung, Tumorerkennung, Klassifizierung und Einstufung und liefern im Vergleich zu herkömmlichen Methoden genauere und effizientere Ergebnisse. KI-gesteuerte Pathologie-Tools tragen dazu bei, die Geschwindigkeit, Präzision und Konsistenz von Diagnosen zu verbessern und ermöglichen es Pathologen, Muster zu erkennen, die manuell möglicherweise nur schwer zu erkennen sind. Diese Tools werden in klinische und Forschungsumgebungen integriert, um die Patientenergebnisse zu verbessern und die personalisierte Medizin zu unterstützen.

Marktdynamik für KI-gestützte Pathologie-Tools

Treiber  

  • Steigende Prävalenz chronischer Krankheiten und Krebs

Die steigende Verbreitung chronischer Krankheiten, insbesondere Krebs, treibt die Nachfrage nach KI-gesteuerten Pathologie-Tools erheblich an. Da die Zahl der Krebsfälle weltweit zunimmt, werden KI-Tools zunehmend in Pathologie-Workflows integriert, um bei der Frühdiagnose, einer genaueren Tumorbewertung und der Entwicklung personalisierter Behandlungspläne zu helfen. Diese Tools können komplexe medizinische Bilder analysieren und selbst kleinste Anomalien erkennen, die dem menschlichen Auge möglicherweise entgehen, und so zur Früherkennung beitragen, wenn Behandlungen am wirksamsten sind. KI-gesteuerte Tools spielen auch eine entscheidende Rolle bei der Tumorbewertung, indem sie präzisere Einschätzungen der Krebsstadien ermöglichen, was sich direkt auf Behandlungsentscheidungen auswirkt. Da die Zahl chronischer Krankheiten, insbesondere Krebs, weiter zunimmt, werden KI-Tools zur Verbesserung der diagnostischen Effizienz und Genauigkeit unverzichtbar.

Die zunehmende Belastung durch chronische Krankheiten verändert in Verbindung mit Fortschritten in der KI die Landschaft der Pathologie und verbessert sowohl die Frühdiagnose als auch die personalisierte Versorgung, um die Behandlungsergebnisse für die Patienten zu verbessern.  

  • Fortschritte in der künstlichen Intelligenz und im maschinellen Lernen   

Fortschritte in der künstlichen Intelligenz (KI) und im maschinellen Lernen (ML) revolutionieren das Gebiet der Pathologie und führen zur Entwicklung ausgefeilterer Tools, mit denen große Datensätze analysiert und die Diagnosegenauigkeit verbessert werden können. Mit der Weiterentwicklung der KI- und ML-Technologien können Pathologietools jetzt große Mengen medizinischer Bilder mit größerer Präzision verarbeiten und selbst die subtilsten Anomalien identifizieren, die menschlichen Pathologen möglicherweise entgehen. Diese Fortschritte ermöglichen es KI-gesteuerten Tools, Bereiche wie Tumorerkennung, -bewertung und -prognose erheblich zu verbessern und Klinikern detailliertere und genauere Erkenntnisse zu liefern. Darüber hinaus können KI-Algorithmen Routineaufgaben wie die Bildklassifizierung automatisieren, wodurch die Arbeitsbelastung der Pathologen verringert wird und sie sich auf komplexere Fälle konzentrieren können. Mit der Weiterentwicklung dieser Technologien wird die Integration von KI-gesteuerten Pathologietools in klinische Arbeitsabläufe voraussichtlich zunehmen, was sowohl die Geschwindigkeit als auch die Qualität der Diagnosen verbessert. Fortschritte in KI und ML verbessern die Fähigkeiten von Pathologietools und machen sie für eine effizientere und genauere Krankheitsdiagnose unverzichtbar.

Gelegenheiten

  • Integration mit Genomik und personalisierter Medizin

Die Integration KI-gesteuerter Pathologie-Tools mit Genomik und personalisierter Medizin bietet eine große Chance, die Gesundheitsversorgung voranzubringen. Durch die Kombination von KI mit genetischen Daten und Biomarkeranalysen können diese Tools dazu beitragen, maßgeschneiderte und präzisere Behandlungspläne für einzelne Patienten zu erstellen. Dies ist insbesondere in der Onkologie von entscheidender Bedeutung, wo genetische Mutationen und molekulare Profile eine Schlüsselrolle bei der Bestimmung der wirksamsten Therapien spielen. KI kann neben Pathologiedaten riesige Mengen genetischer Informationen analysieren und Muster und Zusammenhänge identifizieren, die für Ärzte manuell möglicherweise nur schwer zu erkennen sind. Infolgedessen ermöglicht diese Integration die Entwicklung gezielterer Therapien, verbessert die Behandlungsergebnisse und minimiert Nebenwirkungen. Darüber hinaus erleichtert sie den Übergang zur Präzisionsmedizin, bei der die Behandlung auf der Grundlage des einzigartigen genetischen und klinischen Profils eines Patienten personalisiert wird.

Die Synergie zwischen KI-gesteuerten Pathologie-Tools und der Genomik birgt das Potenzial, die personalisierte Gesundheitsfürsorge deutlich zu verbessern, insbesondere bei der Behandlung komplexer Erkrankungen wie Krebs.

  • Zusammenarbeit mit Pharma- und Biotech-Unternehmen

Die Zusammenarbeit zwischen KI-gesteuerten Pathologie-Tools und Pharma- oder Biotechnologieunternehmen bietet wertvolle Möglichkeiten zur Verbesserung der Arzneimittelentwicklungsprozesse. Durch den Einsatz von KI-Tools können diese Unternehmen die Entdeckung neuer Wirkstofftargets beschleunigen und die Ergebnisse klinischer Studien verbessern. KI kann die Analyse von Pathologiebildern und Gewebeproben rationalisieren und dabei helfen, wichtige Biomarker und Krankheitsmuster zu identifizieren, die sonst möglicherweise unbemerkt blieben. Diese Fähigkeit ist besonders wichtig in der frühen Phase der Arzneimittelentwicklung, wo KI dabei helfen kann, die richtigen Patientengruppen auszuwählen und Reaktionen auf Therapien vorherzusagen. In klinischen Studien können KI-gesteuerte Pathologie-Tools auch die Datengenauigkeit verbessern und schnellere und zuverlässigere Bewertungen der Wirksamkeit und Sicherheit von Medikamenten ermöglichen. Darüber hinaus können diese Tools die Entdeckung von Biomarkern unterstützen, die für die Entwicklung personalisierter Behandlungen von entscheidender Bedeutung ist.

Zum Beispiel,

  • Im November 2024 ist Deep Bio Inc. laut einem von Deep Bio Inc. veröffentlichten Artikel eine Partnerschaft mit PathAI eingegangen, um seine Analyselösung DeepDx für Prostatakrebs in das Bildverwaltungssystem AISight1 von PathAI zu integrieren. Diese Zusammenarbeit kombiniert die KI-Technologie von Deep Bio mit der Plattform von PathAI und verbessert so den Zugang zu fortschrittlichen Diagnosetools für Prostatakrebs. Sie bietet beiden Unternehmen die Möglichkeit, stärker mit Pharma- und Biotech-Unternehmen zusammenzuarbeiten und durch verbesserte Diagnosemöglichkeiten die Arzneimittelentwicklung und klinische Studien zu unterstützen.

Durch die Partnerschaft mit Pharma- und Biotechunternehmen können KI-gesteuerte Pathologietools eine zentrale Rolle bei der Förderung der Arzneimittelforschung, klinischer Studien und der personalisierten Medizin spielen und so die Gesamteffizienz der Arzneimittelentwicklung verbessern.

Einschränkungen/Herausforderungen

  • Hohe Implementierungskosten

Die hohen Implementierungskosten sind eine erhebliche Einschränkung auf dem Markt für KI-gestützte Pathologie-Tools. Die Entwicklung, Integration und Wartung KI-gestützter Systeme erfordert erhebliche Investitionen in Technologie, Infrastruktur und qualifiziertes Personal. Gesundheitseinrichtungen, insbesondere in Schwellenländern oder Regionen mit begrenzten Ressourcen, haben möglicherweise Schwierigkeiten, sich die teuren Tools und Software zu leisten, die für die KI-Integration erforderlich sind. Die Vorlaufkosten umfassen auch die Schulung von Pathologen und medizinischem Fachpersonal zur effektiven Nutzung dieser fortschrittlichen Systeme. Darüber hinaus tragen regelmäßige Updates, Systemwartung und der Bedarf an spezialisiertem Personal zur Bedienung der KI-Tools zu den laufenden Kosten bei. Diese finanzielle Belastung kann die Einführung KI-gestützter Pathologie-Tools verlangsamen, insbesondere in Krankenhäusern und Kliniken mit knappen Budgets.

Die mit der KI-Implementierung und -Schulung verbundenen hohen Kosten stellen ein Hindernis für das Marktwachstum dar, insbesondere in Umgebungen mit begrenzten Ressourcen, und verhindern eine weitverbreitete Nutzung dieser Technologien in der Pathologie.

  • Datenschutz- und Sicherheitsbedenken

Datenschutz- und Sicherheitsbedenken stellen eine große Herausforderung für den Markt für KI-gesteuerte Pathologie-Tools dar. Diese Tools basieren auf der Erfassung, Analyse und Speicherung sensibler Patientendaten wie medizinischer Bilder und genetischer Informationen, was das Risiko potenzieller Verstöße und unbefugter Zugriffe erhöht. Mit der zunehmenden Nutzung von KI im Gesundheitswesen wird der Schutz dieser Daten vor Cyber-Bedrohungen von entscheidender Bedeutung. Gesundheitseinrichtungen müssen strenge Vorschriften wie die DSGVO in Europa und HIPAA in den USA einhalten, um einen sicheren Umgang mit Patientendaten zu gewährleisten. Die Komplexität und die Kosten der Umsetzung dieser Compliance-Maßnahmen können jedoch ein Hindernis darstellen. Darüber hinaus wirft die Integration von KI-Systemen in bestehende Gesundheitsinfrastrukturen zusätzliche Bedenken hinsichtlich der sicheren Übertragung und Speicherung von Patientendaten auf. Eine Sicherheitsverletzung könnte zu rechtlichen Problemen und einem Verlust des Patientenvertrauens führen und letztendlich die Einführung KI-gesteuerter Pathologie-Tools behindern. Die Bewältigung dieser Herausforderungen im Bereich der Datensicherheit ist von entscheidender Bedeutung, um das erfolgreiche Wachstum und die Einführung von KI in der Pathologie sicherzustellen.

Marktumfang für KI-gesteuerte Pathologietools

Der Markt ist nach Produkttyp, Technologie, Bereitstellungsmodus, Anwendung und Endbenutzer segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.

Produkttyp

  • Software
  • Dienstleistungen

Technologie

  • Maschinelles Lernen
  • Tiefes Lernen
  • Verarbeitung natürlicher Sprache (NLP)

Bereitstellungsmodus

  • Vor Ort
  • Cloudbasiert

Anwendung

  • Diagnostische Pathologie
  • Forschung und Arzneimittelentwicklung
  • Forensische Pathologie
  • Personalisierte Medizin

Endbenutzer

  • Krankenhäuser und Kliniken
  • Forschungslabore
  • Diagnostische Labore
  • Forensische Einrichtungen

Regionale Analyse des Marktes für KI-gesteuerte Pathologie-Tools

Der Markt wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Land, Produkttyp, Technologie, Bereitstellungsmodus, Anwendung und Endbenutzer wie oben angegeben bereitgestellt.

Die vom Markt abgedeckten Länder sind die USA, Kanada, Mexiko, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, übriges Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, übriger Asien-Pazifik-Raum, Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, übriger Naher Osten und Afrika, Brasilien, Argentinien und übriges Südamerika.

Aufgrund seiner fortschrittlichen Gesundheitsinfrastruktur, der hohen Akzeptanz von KI-Technologien und der starken Präsenz wichtiger Akteure in der Region wird Nordamerika den Markt voraussichtlich dominieren.

Der asiatisch-pazifische Raum dürfte aufgrund steigender Investitionen im Gesundheitswesen, der zunehmenden Verbreitung chronischer Krankheiten und der zunehmenden Nutzung hochentwickelter Technologien in Ländern wie China und Indien am schnellsten wachsen.

Der Länderabschnitt des Berichts enthält auch Angaben zu einzelnen marktbeeinflussenden Faktoren und Änderungen der Regulierung auf dem Inlandsmarkt, die sich auf die aktuellen und zukünftigen Trends des Marktes auswirken. Datenpunkte wie Downstream- und Upstream-Wertschöpfungskettenanalysen, technische Trends und Porters Fünf-Kräfte-Analyse sowie Fallstudien sind einige der Anhaltspunkte, die zur Prognose des Marktszenarios für einzelne Länder verwendet werden. Bei der Bereitstellung von Prognoseanalysen der Länderdaten werden auch die Präsenz und Verfügbarkeit globaler Marken und ihre Herausforderungen aufgrund großer oder geringer Konkurrenz durch lokale und inländische Marken sowie die Auswirkungen inländischer Zölle und Handelsrouten berücksichtigt.

Marktanteil von KI-gestützten Pathologie-Tools

Die Wettbewerbslandschaft des Marktes liefert Einzelheiten zu den einzelnen Wettbewerbern. Die enthaltenen Einzelheiten umfassen Unternehmensübersicht, Unternehmensfinanzen, erzielten Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang, Anwendungsdominanz. Die oben angegebenen Datenpunkte beziehen sich nur auf den Fokus der Unternehmen in Bezug auf den Markt.

Die Marktführer für KI-gestützte Pathologie-Tools sind:

  • PathAI, Inc. (USA)
  • Ibex Medical Analytics Ltd. (Israel)
  • Tempus Labs, Inc. (USA)
  • Proscia Inc. (USA)
  • DeepLens, Inc. (USA)
  • Paige.AI, Inc. (USA)
  • Vuno Inc. (Südkorea)
  • FUJIFILM Corporation (Japan)
  • Koninklijke Philips NV (Niederlande)
  • IBM Corporation (USA)
  • Zebra Medical Vision, Inc. (Israel)
  • Pathcore Inc. (Kanada)
  • DXC Technology Company (USA)
  • Qure.ai Technologies Pvt. Ltd. (Indien)
  • Mindpeak GmbH (Deutschland)
  • MetaSystems GmbH (Deutschland)
  • Medical Informatics Corp. (USA)
  • Huron Digital Pathology Inc. (Kanada)

Neueste Entwicklungen auf dem globalen Markt für KI-gesteuerte Pathologie-Tools

  • Im November 2024 hat PathAI KI-Produkte von Top-Unternehmen wie Deep Bio, DoMore Diagnostics, Paige und Visiopharm in sein AISight1 Image Management System (IMS) integriert. Diese Zusammenarbeit verbessert die Vielseitigkeit, Zuverlässigkeit und Interoperabilität von AISight und ermöglicht es PathAI, eine umfassendere und nahtlosere Lösung anzubieten und so seine Position auf dem Markt zu stärken.
  • Im November 2024 ist Deep Bio eine Partnerschaft mit PathAI eingegangen, um seine DeepDx Prostate-Lösung zur Prostatakrebsanalyse mit dem AISight1 Image Management System (IMS) von PathAI zu integrieren. Diese Zusammenarbeit kombiniert die KI-Technologie von Deep Bio mit der Plattform von PathAI, verbessert den Zugang zu fortschrittlichen Diagnosetools für Prostatakrebs und stärkt die Position beider Unternehmen auf dem Markt der digitalen Pathologie
  • In November 2024, Aiforia and Paige have formed a non-exclusive partnership to integrate Paige’s Diagnostic AI applications into the Aiforia Platform, enhancing functionality and performance. This collaboration will improve laboratory efficiency, diagnostic accuracy, and patient care, helping both companies deliver advanced AI-powered solutions to their customers. This partnership strengthens their market presence and offers more comprehensive diagnostic tools
  • In November 2024, Royal Philips expanded its strategic collaboration with Amazon Web Services (AWS) to offer its integrated diagnostics portfolio, including radiology, digital pathology, cardiology, and AI solutions, in the cloud. This collaboration will streamline diagnostic workflows, enhance access to critical insights, and improve clinical outcomes, further strengthening Philips’ position in the healthcare technology market
  • In June 2024, Quest Diagnostics completed its acquisition of PathAI Diagnostics to accelerate the adoption of AI and digital pathology in cancer and disease diagnosis. This acquisition will enhance Quest's diagnostic capabilities, enabling more accurate and efficient disease detection through advanced AI technologies
  • In February 2024, F. Hoffmann-La Roche Ltd entered into an exclusive agreement with PathAI to develop AI-enabled digital pathology algorithms for companion diagnostics through Roche Tissue Diagnostics (RTD). While RTD will collaborate solely with PathAI on these algorithms, it retains the ability to develop its own in-house algorithms. This partnership will enhance Roche’s diagnostic capabilities and accelerate the development of personalized treatments through advanced AI-powered solutions


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Global AI-Driven Pathology Tools Market Segmentation, By Product Type (Software, Services), Technology (Machine Learning, Deep Learning, Natural Language Processing (NLP)), Mode of Deployment (On-premise, Cloud-based), Application (Diagnostic Pathology, Research & Drug Development, Forensic Pathology, Personalized Medicine), End User (Hospitals & Clinics, Research Laboratories, Diagnostic Laboratories, Forensic Institutions) – Industry Trends and Forecast to 2032 segmentiert.
Die Größe des Global AI-Driven Pathology Tools Market wurde im Jahr 2024 auf 156.82 USD Million USD geschätzt.
Der Global AI-Driven Pathology Tools Market wird voraussichtlich mit einer CAGR von 16.4% im Prognosezeitraum 2025 bis 2032 wachsen.
Die Hauptakteure auf dem Markt sind PathAIInc. , Ibex Medical Analytics Ltd. , Tempus LabsInc. , Proscia Inc. , DeepLensInc. , Paige.AIInc. , Vuno Inc. , FUJIFILM Corporation , Koninklijke Philips N.V. , IBM Corporation , Zebra Medical VisionInc. , Pathcore Inc. , DXC Technology Company , Qure.ai Technologies Pvt. Ltd. , Mindpeak GmbH , MetaSystems GmbH , Medical Informatics Corp. , Huron Digital Pathology Inc. .
Testimonial