Global Artificial Intelligence Ai Chipset Market
Marktgröße in Milliarden USD
CAGR :
%
USD
73.24 Billion
USD
558.18 Billion
2024
2032
| 2025 –2032 | |
| USD 73.24 Billion | |
| USD 558.18 Billion | |
|
|
|
|
Globale Marktsegmentierung für Chipsätze für künstliche Intelligenz (KI) nach Hardware (Prozessor, Speicher und Netzwerk), Technologie (Maschinelles Lernen, Verarbeitung natürlicher Sprache, kontextbezogenes Computing, Computer Vision und prädiktive Analyse), Funktion (Training und Inferenz), Endbenutzer (Unterhaltungselektronik, Gesundheitswesen, Fertigung, Automobilindustrie, Landwirtschaft, Einzelhandel, Cybersicherheit, Personalwesen, Marketing, Recht, Fintech und Regierung) – Branchentrends und Prognose bis 2032
Marktgröße für Chipsätze für künstliche Intelligenz (KI)
- Der globale Markt für Chipsätze für künstliche Intelligenz (KI) wurde im Jahr 2024 auf 73,24 Milliarden US-Dollar geschätzt und soll bis 2032 558,18 Milliarden US-Dollar erreichen , bei einer CAGR von 28,9 % im Prognosezeitraum.
- Das Marktwachstum wird maßgeblich durch die steigende Nachfrage nach Hochgeschwindigkeitsprozessoren in KI-Anwendungen, die zunehmende Verbreitung von KI in Sektoren wie dem Gesundheitswesen, der Automobilindustrie, dem Finanzwesen und der Fertigung sowie die zunehmenden Investitionen in die KI-Forschung und -Entwicklung im öffentlichen und privaten Sektor vorangetrieben.
- Fortschritte in der Chiparchitektur, einschließlich der Integration neuromorpher und Quantencomputerelemente, dürften neue Leistungsmaßstäbe setzen und die Einführung von KI in komplexen Echtzeitszenarien beschleunigen.
Marktanalyse für Chipsätze für künstliche Intelligenz (KI)
- Der Markt für KI-Chipsätze erlebt ein starkes Wachstum, das durch die Verbreitung datenzentrierter Technologien und die zunehmende Implementierung von Machine-Learning- und Deep-Learning-Modellen in allen Branchen vorangetrieben wird.
- Edge Computing gewinnt deutlich an Bedeutung und erhöht die Nachfrage nach energieeffizienten KI-Chips, die Daten in Echtzeit verarbeiten können.
- Nordamerika dominierte den Markt für Chipsätze für künstliche Intelligenz (KI) mit dem größten Umsatzanteil von 44,3 % im Jahr 2024, angetrieben durch starke Investitionen in die KI-Entwicklung, eine gut etablierte Rechenzentrumsinfrastruktur und den weit verbreiteten Einsatz KI-gestützter Lösungen in allen Branchen.
- Im asiatisch-pazifischen Raum wird voraussichtlich die höchste Wachstumsrate im globalen Markt für Chipsätze für künstliche Intelligenz (KI) verzeichnet. Dies ist auf die zunehmende Verbreitung KI-gestützter Technologien in Schwellenländern, steigende Investitionen in Smart-City- und Industrieautomatisierungsprojekte sowie die Existenz kostengünstiger Halbleiterproduktionszentren in Ländern wie China, Taiwan und Südkorea zurückzuführen.
- Das Prozessorsegment dominierte den Markt mit dem größten Umsatzanteil von 61,5 % im Jahr 2024, angetrieben durch den wachsenden Bedarf an Hochleistungsrechnen für KI-Workloads wie Deep Learning und neuronales Netzwerktraining. Grafikprozessoren (GPUs) und anwendungsspezifische integrierte Schaltkreise (ASICs) sind aufgrund ihrer parallelen Verarbeitungsfähigkeiten und ihres optimierten Designs für KI-Aufgaben besonders gefragt. Dieses Segment profitiert weiterhin vom technologischen Fortschritt und dem zunehmenden Einsatz sowohl in Cloud- als auch in Edge-Umgebungen.
Berichtsumfang und Marktsegmentierung für Chipsätze für künstliche Intelligenz (KI)
|
Eigenschaften |
Wichtige Markteinblicke zu Chipsätzen mit künstlicher Intelligenz (KI) |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
Europa
Asien-Pazifik
Naher Osten und Afrika
Südamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Wertschöpfungsdaten-Infosets |
Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team kuratierte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse. |
Markttrends für Chipsätze mit künstlicher Intelligenz (KI)
„Zunehmende Integration von KI-Chipsätzen in Edge-Geräte“
- Der wachsende Bedarf an Echtzeitverarbeitung und Entscheidungsfindung mit geringer Latenz treibt den Einsatz von KI-Chipsätzen in Edge-Geräten voran. Diese Chipsätze reduzieren die Abhängigkeit von der Cloud-Infrastruktur, indem sie eine lokalisierte Verarbeitung ermöglichen. Dieser Wandel ist besonders wichtig für Anwendungen wie autonomes Fahren, industrielle Automatisierung und Videoüberwachung.
- In Unterhaltungselektronik integrierte KI-Chipsätze verbessern die Geräteintelligenz und -personalisierung. Smartphones, Smart Speaker und Wearables verfügen mittlerweile über neuronale Prozessoren, die komplexe KI-Aufgaben direkt auf dem Gerät erledigen. Diese Entwicklung verbessert Reaktionszeit, Akkulaufzeit und Benutzerfreundlichkeit deutlich.
- Edge-KI-Chipsätze werden mit kleinerem Platzbedarf und verbesserter Energieeffizienz für kompakte Geräte entwickelt. Diese Chips ermöglichen kontinuierliche KI-Funktionalität, ohne Energieressourcen zu verbrauchen. Ihr Einsatzgebiet erstreckt sich auf Drohnen, medizinische Geräte und IoT-Sensoren.
- Beispielsweise treibt Googles Edge-TPU-Chip die Coral-Geräte an, die in der Fertigung und im Einzelhandel zur Bildklassifizierung und -analyse eingesetzt werden. Diese Chips verarbeiten Daten lokal, reduzieren die Bandbreitennutzung und ermöglichen Entscheidungen in Echtzeit. Der Erfolg von Coral zeigt, wie Edge-KI branchenübergreifend skaliert.
- Der Wandel hin zu Edge-basierter KI-Verarbeitung verändert sowohl Verbraucher- als auch Industrieanwendungen. KI-Chipsätze, die auf lokalisierte, effiziente Berechnungen zugeschnitten sind, setzen neue Maßstäbe in Leistung und Innovation. Dieser Trend wird sich voraussichtlich beschleunigen, da die Nachfrage nach intelligenten, reaktionsschnellen Systemen weiter steigt.
Marktdynamik von Chipsätzen für künstliche Intelligenz (KI)
Treiber
„Branchenübergreifender Anstieg von KI-Anwendungen“
- Der zunehmende Einsatz von KI in Branchen wie Gesundheitswesen, Finanzen, Automobilindustrie und Fertigung treibt die Nachfrage nach leistungsstarken Chipsätzen voran. Diese Branchen setzen auf KI für Diagnose, Betrugserkennung, vorausschauende Wartung und intelligente Automatisierung. Die Vielseitigkeit von KI-Chipsätzen macht sie zu unverzichtbaren Werkzeugen moderner Infrastrukturen.
- Unternehmen investieren massiv in die KI-Entwicklung und steigern damit den Bedarf an spezialisierter Hardware zur Unterstützung komplexer Machine-Learning- und Deep-Learning-Modelle. KI-Chipsätze liefern die nötige Rechenleistung, um solche Modelle effektiv zu trainieren und einzusetzen. Mit der Skalierung ihrer KI-Kapazitäten steigt die Nachfrage nach leistungsstarken Prozessoren weiter an.
- KI-Chipsätze ermöglichen fortschrittliche Funktionen in Anwendungen der nächsten Generation, wie autonomen Fahrzeugen und der Präzisionsmedizin. Diese Systeme sind auf eine schnelle, zuverlässige und energieeffiziente Verarbeitung angewiesen. KI-Chips helfen dabei, Echtzeitdaten in umsetzbare Erkenntnisse zu übersetzen und so die Ergebnisse in verschiedenen Bereichen zu verbessern.
- Beispielsweise verarbeitet Teslas speziell entwickelter Full Self-Driving (FSD)-Chip Daten mehrerer Sensoren, um autonomen Fahrzeugbetrieb ohne externe Konnektivität zu ermöglichen. Dank der Leistung und Geschwindigkeit des Chips konnte Tesla seine Fahrerassistenzfunktionen deutlich verbessern. Dieses Beispiel unterstreicht die Bedeutung von Chipsatz-Innovationen für den Einsatz von KI
- Die branchenübergreifende Einführung von KI-Technologien treibt das langfristige Wachstum des KI-Chipsatzmarktes voran. Diese Prozessoren sind entscheidend für intelligentere Systeme und effizientere Entscheidungsfindung. Da KI immer stärker in den Alltag integriert wird, wird die Nachfrage nach fortschrittlichen Chipsätzen weiter steigen.
Einschränkung/Herausforderung
„Hohe Entwicklungskosten und technische Komplexität“
- Die Entwicklung von KI-Chipsätzen erfordert komplexe Architekturen, fortschrittliche Fertigung und spezielle Fähigkeiten, was zu hohen Entwicklungskosten führt. Im Gegensatz zu herkömmlichen Prozessoren müssen KI-Chips paralleles Rechnen und adaptive Lernmodelle unterstützen. Diese Komplexität schafft Barrieren für neue Marktteilnehmer und verlängert die Produktentwicklungszeiträume.
- Rasante Fortschritte bei KI-Software erfordern ständige Hardware-Upgrades, um Kompatibilität und Leistung zu gewährleisten. Chiphersteller stehen unter dem Druck, schnell Innovationen zu entwickeln, was die Forschungs- und Betriebskosten erhöht. Diese Dynamik stellt Unternehmen in einem hart umkämpften Umfeld vor Herausforderungen in Sachen Nachhaltigkeit.
- Kleineren Unternehmen und Startups fehlen oft die finanziellen und technischen Ressourcen, um im KI-Hardware-Markt wettbewerbsfähig zu sein. Die Dominanz großer Player schränkt die Vielfalt ein und verlangsamt die Demokratisierung der KI-Chipsatz-Verfügbarkeit. Ohne gemeinsame Anstrengungen können diese Lücken eine breitere Marktbeteiligung behindern.
- So musste Intel beispielsweise Produktionsrückschläge bei seinen KI-Chips Nervana und Habana Labs hinnehmen, was seine Wettbewerbsfähigkeit gegenüber Konkurrenten wie NVIDIA beeinträchtigte. Verzögerungen bei der Produkteinführung und Integrationsschwierigkeiten schränkten den Marktanteil in Schlüsselsegmenten ein. Dies verdeutlicht, dass selbst etablierte Unternehmen Schwierigkeiten bei der Entwicklung von KI-Chips haben.
- Die Kosten und die Komplexität der KI-Chipsatzentwicklung bleiben die größten Herausforderungen für die Marktexpansion. Um diese Hürden zu überwinden, sind modulare Designstrategien, die Zusammenarbeit im Ökosystem und skalierbare Produktionstechniken erforderlich. Die Lösung dieser Probleme ist entscheidend für eine breite Akzeptanz und Marktreife.
Marktumfang für Chipsätze für künstliche Intelligenz (KI)
Der Markt ist nach Hardware, Technologie, Funktion und Endbenutzer segmentiert.
• Nach Hardware
Der Markt für Chipsätze für künstliche Intelligenz (KI) ist hardwareseitig in Prozessor, Speicher und Netzwerk unterteilt. Das Prozessorsegment dominierte den Markt mit dem größten Umsatzanteil von 61,5 % im Jahr 2024, angetrieben durch den wachsenden Bedarf an Hochleistungsrechnen für KI-Workloads wie Deep Learning und das Training neuronaler Netze. Grafikprozessoren (GPUs) und anwendungsspezifische integrierte Schaltkreise (ASICs) sind aufgrund ihrer parallelen Verarbeitungsfähigkeiten und ihres optimierten Designs für KI-Aufgaben besonders gefragt. Dieses Segment profitiert weiterhin vom technologischen Fortschritt und der zunehmenden Bereitstellung sowohl in Cloud- als auch in Edge-Umgebungen.
Das Netzwerksegment wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, angetrieben durch die steigende Nachfrage nach effizienter Datenübertragung zwischen KI-Komponenten in komplexen Systemen. Hochgeschwindigkeitsverbindungen und KI-optimierte Netzwerklösungen sind in Rechenzentren und Edge-Bereitstellungen unerlässlich, da Latenzreduzierung und Bandbreitenoptimierung für die Echtzeitverarbeitung und die Inferenz von KI-Modellen entscheidend sind.
• Nach Technologie
Der Markt für Chipsätze für künstliche Intelligenz (KI) ist technologisch in die Bereiche maschinelles Lernen, natürliche Sprachverarbeitung, kontextsensitives Computing, Computer Vision und prädiktive Analyse unterteilt. Das Segment maschinelles Lernen hatte 2024 den größten Marktanteil, da es in Anwendungen wie Betrugserkennung, Empfehlungsmaschinen und Kundenverhaltensanalysen weit verbreitet ist. Da Unternehmen branchenübergreifend datengesteuerte Entscheidungen priorisieren, werden KI-Chipsätze auf Basis maschinellen Lernens zunehmend in Unterhaltungselektronik, Cloud-Plattformen und Unternehmenssystemen integriert.
Das Segment Computer Vision wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, angetrieben durch den zunehmenden Einsatz von KI in der Bild- und Videoanalyse. Anwendungen wie Gesichtserkennung, autonome Fahrzeuge und intelligente Überwachungssysteme basieren stark auf Computer-Vision-Technologie. Diese erfordert leistungsstarke, visionspezifische Chipsätze, die hochauflösende visuelle Daten in Echtzeit verarbeiten können.
• Nach Funktion
Der Markt für Chipsätze für künstliche Intelligenz (KI) ist funktional in Training und Inferenz unterteilt. Das Trainingssegment dominierte den Markt mit dem größten Umsatzanteil im Jahr 2024, angetrieben durch den steigenden Bedarf an leistungsstarken Prozessoren, die große Datensätze und komplexe neuronale Netzwerkmodelle verarbeiten können. Das Training von KI-Modellen erfordert typischerweise fortschrittliche GPUs und ASICs, die für hohe Arbeitslasten ausgelegt sind, insbesondere in Cloud-basierten Infrastrukturen, die umfangreiche Lernanwendungen unterstützen.
Aufgrund der steigenden Nachfrage nach Echtzeit-Entscheidungen am Edge wird das Inferenzsegment zwischen 2025 und 2032 voraussichtlich die schnellste Wachstumsrate verzeichnen. Auf Inferenz ausgerichtete KI-Chipsätze sind auf Energieeffizienz und schnelle Verarbeitung optimiert und eignen sich daher ideal für Anwendungen in Mobilgeräten, der industriellen Automatisierung und autonomen Systemen, bei denen sofortige Reaktionen entscheidend sind.
• Nach Endbenutzer
Der Markt für Chipsätze für künstliche Intelligenz (KI) ist nach Endnutzern in die Bereiche Unterhaltungselektronik, Gesundheitswesen, Fertigung, Automobilindustrie, Landwirtschaft, Einzelhandel, Cybersicherheit, Personalwesen, Marketing, Recht, Fintech und öffentliche Verwaltung unterteilt. Das Segment Unterhaltungselektronik erzielte 2024 den größten Marktanteil, unterstützt durch die weit verbreitete Integration von KI-Funktionen in Smartphones, Smart-TVs und Wearables. Chipsätze mit eingebetteten KI-Funktionen verbessern das Benutzererlebnis durch Sprachassistenten, Gesichtserkennung und personalisierte Inhaltsempfehlungen.
Der Gesundheitssektor wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, angetrieben durch den zunehmenden Einsatz von KI in der medizinischen Diagnostik, der Arzneimittelforschung und der robotergestützten Chirurgie. KI-Chipsätze spielen eine entscheidende Rolle bei der Echtzeit-Datenanalyse und prädiktiven Modellierung in Gesundheitssystemen und verbessern so die Diagnosegenauigkeit und die betriebliche Effizienz.
Regionale Analyse des Marktes für Chipsätze für künstliche Intelligenz (KI)
- Nordamerika dominierte den Markt für Chipsätze für künstliche Intelligenz (KI) mit dem größten Umsatzanteil von 44,3 % im Jahr 2024, angetrieben durch starke Investitionen in die KI-Entwicklung, eine gut etablierte Rechenzentrumsinfrastruktur und den weit verbreiteten Einsatz KI-gestützter Lösungen in allen Branchen.
- Die Region profitiert von einem hochentwickelten technologischen Ökosystem, führenden Halbleiterherstellern und hohen KI-Akzeptanzraten in Sektoren wie dem Gesundheitswesen, der Automobilindustrie und dem Finanzwesen.
- Die Kombination aus günstigen Regierungsinitiativen, der zunehmenden Nutzung von Machine-Learning- und Deep-Learning-Tools in Unternehmen und der wachsenden Nachfrage nach KI sowohl in Verbraucher- als auch in Industrieanwendungen unterstützt weiterhin die Marktexpansion in der Region.
Markteinblicke für Chipsätze für künstliche Intelligenz (KI) in den USA
Der US-Markt für KI-Chipsätze erzielte 2024 den größten Umsatzanteil innerhalb Nordamerikas. Dies ist auf starke F&E-Kapazitäten, die frühzeitige Einführung modernster KI-Anwendungen und die Dominanz wichtiger Akteure wie NVIDIA, Intel und AMD zurückzuführen. Die USA sind weltweit führend in der KI-Forschung und -Innovation. Chipsätze werden häufig in Cloud-Plattformen, autonomen Systemen und der Gesundheitsdiagnostik eingesetzt. Der zunehmende Einsatz KI-fähiger Unterhaltungselektronik sowie die Unterstützung fortschrittlicher Fertigung und Cybersicherheit treiben die Nachfrage im ganzen Land weiter an.
Markteinblicke für Chipsätze für künstliche Intelligenz (KI) in Europa
Der europäische Markt für KI-Chipsätze wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen. Dies wird durch das steigende Interesse an KI-Anwendungen in den Bereichen intelligente Mobilität, Fertigung und öffentlicher Sektor begünstigt. Die Länder der Region investieren in die digitale Transformation, insbesondere in Bereichen wie Industrie 4.0 und Smart Cities. Der Fokus auf Datenschutz, ethische KI-Entwicklung und Nachhaltigkeit fördert den Einsatz energieeffizienter KI-Chipsätze. Die Präsenz regionaler Technologiezentren und die zunehmende grenzüberschreitende Zusammenarbeit tragen ebenfalls zum Marktwachstum bei.
Markteinblicke für Chipsätze mit künstlicher Intelligenz (KI) in Deutschland
Der deutsche Markt für KI-Chipsätze wird voraussichtlich zwischen 2025 und 2032 die schnellste Wachstumsrate verzeichnen, angetrieben von der führenden Rolle Deutschlands bei Automobilinnovationen und industrieller Automatisierung. KI-Chipsätze werden zunehmend für Anwendungen in den Bereichen vorausschauende Wartung, Robotik und autonomes Fahren eingesetzt. Deutschlands starker Fokus auf Datensicherheit und Feinmechanik unterstützt den Einsatz maßgeschneiderter KI-Hardware, insbesondere in intelligenten Fabriken und Forschungseinrichtungen. Der anhaltende Trend zur digitalen Souveränität und die Förderung von Halbleiterinnovationen kurbeln das Wachstum zusätzlich an.
Markteinblicke für Chipsätze für künstliche Intelligenz (KI) in Großbritannien
Der britische Markt für KI-Chipsätze wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen. Unterstützt wird dies durch staatliche Initiativen wie den AI Sector Deal und den zunehmenden Einsatz von KI im Gesundheitswesen, im Finanzwesen und in der Rechtsbranche. Das Land investiert aktiv in KI-Start-ups und universitäre Forschung und stärkt so seine Position im europäischen KI-Ökosystem. Das wachsende Interesse an KI für Cybersicherheit, Arzneimittelforschung und Finanzmodellierung treibt die Nachfrage nach spezialisierten Chipsätzen mit hoher Rechenleistung und Skalierbarkeit an.
Markteinblicke für Chipsätze für künstliche Intelligenz (KI) im asiatisch-pazifischen Raum
Der Markt für KI-Chipsätze im asiatisch-pazifischen Raum wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen. Dies ist auf die schnelle Digitalisierung, starke staatliche Unterstützung und steigende Investitionen in KI-Innovationen in Ländern wie China, Japan, Südkorea und Indien zurückzuführen. Die Region profitiert von großen Fertigungskapazitäten, wachsenden KI-Start-up-Ökosystemen und der zunehmenden Nutzung von KI in Sektoren wie E-Commerce, Transport und Landwirtschaft. Die lokale Produktion von KI-Chipsätzen und die steigende Nachfrage nach kostengünstigen Lösungen erweitern den Zugang in Schwellenländern.
Markteinblicke für Chipsätze für künstliche Intelligenz (KI) in China
Der chinesische Markt für KI-Chipsätze erwirtschaftete 2024 den größten Umsatzanteil im asiatisch-pazifischen Raum. Unterstützt wurde er durch staatliche Initiativen wie den „Next Generation Artificial Intelligence Development Plan“ und hohe Investitionen in intelligente Infrastruktur. China ist Sitz führender Halbleiter- und KI-Technologieunternehmen, und die Nachfrage nach KI-Chipsätzen steigt in den Bereichen Gesichtserkennung, Überwachung und Unterhaltungselektronik rasant an. Der Fokus des Landes auf die Unabhängigkeit bei der Chipherstellung und der schnelle Einsatz von KI in städtischen und industriellen Umgebungen sind wichtige Wachstumstreiber.
Markteinblicke für Chipsätze für künstliche Intelligenz (KI) in Japan
Der japanische Markt für KI-Chipsätze wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, angetrieben durch die Integration von KI in Robotik, Altenpflege und fortschrittliche Transportsysteme. Japans technologische Führungsrolle und die etablierte Elektronikbranche ermöglichen eine breite Akzeptanz von KI-Hardware sowohl in Verbraucher- als auch in Industrieanwendungen. Da das Land mit dem Arbeitskräftemangel zu kämpfen hat und die betriebliche Effizienz steigern will, wird der Einsatz inferenzoptimierter Chipsätze in Smart Cities, im Gesundheitswesen und in der autonomen Mobilität voraussichtlich zunehmen.
Marktanteil von Chipsätzen für künstliche Intelligenz (KI)
Die Chipsatzbranche für künstliche Intelligenz (KI) wird hauptsächlich von etablierten Unternehmen angeführt, darunter:
- NVIDIA Corporation (USA)
- Intel Corporation (USA)
- Xilinx, Inc. (USA)
- Samsung Electronics Co., Ltd. (Südkorea)
- Micron Technology, Inc. (USA)
- Qualcomm Technologies, Inc. (USA)
- IBM Corp. (USA)
- Google Inc. (USA)
- Microsoft (US)
- Amazon Web Services, Inc. (USA)
- Advanced Micro Devices, Inc (USA)
- General Vision Inc. (USA)
- Mythisch (USA)
- Baidu, Inc. (China)
Neueste Entwicklungen auf dem globalen Markt für Chipsätze für künstliche Intelligenz (KI)
- Im Januar 2023 brachte NXP Semiconductors die i.MX 95-Familie als Teil seiner i.MX 9-Serie auf den Markt. Dieser Hochleistungsprozessor integriert 3D-Grafiken auf Basis von Arm Mali, einen eigenen Beschleuniger für maschinelles Lernen und erweiterte Datenverarbeitungsfunktionen. Er ermöglicht erweiterte Funktionalität in Automobil-, Industrie- und HMI-Anwendungen und stärkt die Position von NXP in den Bereichen Edge Computing und KI.
- Im September 2022 ging Kinara eine Zusammenarbeit mit NXP Semiconductors ein, um den Ara-1 Edge KI-Prozessor neben dem KI-fähigen Portfolio von NXP anzubieten. Diese Partnerschaft zielt darauf ab, die KI-Beschleunigung zu skalieren und Deep-Learning-Inferenzen am Edge zu verbessern. Dadurch erweitern beide Unternehmen ihre Fähigkeiten, integrierte KI-Lösungen für verschiedene Anwendungen bereitzustellen.
- Im September 2022 veröffentlichte Intel seinen Intel Xeon KI-Chip der vierten Generation, die skalierbaren Sapphire Rapids Prozessoren und Rechenzentrums-GPUs. Außerdem stellte das Unternehmen seine für KI optimierten Intel Core Prozessoren der 13. Generation vor. Diese Entwicklungen zielen darauf ab, die Leistung für Gaming, Content-Erstellung und KI-Workloads in Unternehmen zu steigern und so Intels KI-Ökosystem zu erweitern.
- Im August 2022 ging Intel eine Partnerschaft mit Aible ein, um die KI-Leistung für Unternehmenskunden durch Cloud-basierte Lösungen zu optimieren. Der Fokus dieser Zusammenarbeit liegt auf einer schnellen Bereitstellung und messbaren Auswirkungen durch fortschrittliches Benchmarking und technische Optimierung. So können Unternehmen KI effizienter in allen operativen Bereichen einsetzen.
- Im November 2021 stellte NXP Semiconductors die Anwendungsprozessoren der i.MX 93-Familie vor, die für die Automobil-, Smart-Home- und Industrieautomatisierung entwickelt wurden. Dank fortschrittlicher Machine-Learning-Funktionen antizipieren die Prozessoren die Bedürfnisse der Benutzer und passen sich diesen an. So unterstützen sie die wachsende Nachfrage nach intelligenten, reaktionsschnellen Geräten in vernetzten Umgebungen.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

