Globaler Bericht zur Analyse von Marktgröße, Marktanteil und Trends für künstliche Intelligenz (KI) in der Arzneimittelforschung – Branchenüberblick und Prognose bis 2032

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Globaler Bericht zur Analyse von Marktgröße, Marktanteil und Trends für künstliche Intelligenz (KI) in der Arzneimittelforschung – Branchenüberblick und Prognose bis 2032

  • Healthcare
  • Upcoming Reports
  • Mar 2025
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60
  • Author : Sachin Pawar

Umgehen Sie die Zollherausforderungen mit agiler Supply-Chain-Beratung

Die Analyse des Supply-Chain-Ökosystems ist jetzt Teil der DBMR-Berichte

Global Artificial Intelligence Ai In Drug Discovery Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 981.64 Million USD 1,483.82 Million 2024 2032
Diagramm Prognosezeitraum
2025 –2032
Diagramm Marktgröße (Basisjahr)
USD 981.64 Million
Diagramm Marktgröße (Prognosejahr)
USD 1,483.82 Million
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

Globale Marktsegmentierung für künstliche Intelligenz (KI) in der Arzneimittelforschung nach Anwendung (neue Arzneimittelkandidaten, Arzneimitteloptimierung und -umwidmung, präklinische Tests und Zulassung, Arzneimittelüberwachung, Suche nach mit neuen Krankheiten verbundenen Zielen und Signalwegen, Verständnis von Krankheitsmechanismen, Aggregieren und Synthetisieren von Informationen, Bildung und Qualifizierung von Hypothesen, De-novo-Arzneimitteldesign, Suche nach Arzneimittelzielen eines alten Arzneimittels und andere), Technologie (Maschinelles Lernen, Deep Learning, Verarbeitung natürlicher Sprache und andere), Arzneimitteltyp (kleine und große Moleküle), Angebot (Software und Dienstleistungen), Indikation (Immunonkologie, neurodegenerative Erkrankungen, Herz-Kreislauf-Erkrankungen, Stoffwechselerkrankungen und andere), Endverbrauch (Auftragsforschungsinstitute (CROs), Pharma- und Biotechnologieunternehmen, Forschungszentren und akademische Institute und andere) – Branchentrends und Prognose bis 2032

Künstliche Intelligenz (KI) im Markt für Arzneimittelforschung

Künstliche Intelligenz (KI) in der Arzneimittelforschung Marktgröße

  • Der globale Markt für künstliche Intelligenz (KI) in der Arzneimittelforschung wurde im Jahr 2024 auf 981,64 Millionen US-Dollar geschätzt und soll bis 2032 1483,82 Millionen US-Dollar erreichen.
  • Im Prognosezeitraum von 2025 bis 2032 wird der Markt voraussichtlich mit einer jährlichen Wachstumsrate von 5,30 % wachsen, vor allem aufgrund der zunehmenden Verfügbarkeit von Gesundheitsdaten.
  • Dieses Wachstum wird durch Faktoren wie die zunehmende Verbreitung chronischer Krankheiten und Fortschritte bei KI-Technologien vorangetrieben, die die Prozesse der Arzneimittelforschung verbessern.

Künstliche Intelligenz (KI) in der Arzneimittelforschung – Marktanalyse

  • Der Markt erlebt ein rasantes Wachstum, angetrieben durch Fortschritte in KI-Technologien wie maschinellem Lernen und Deep Learning, die die Prozesse der Arzneimittelforschung rationalisieren und die Kosten senken.
  • KI wird in großem Umfang für die Optimierung, Umwidmung, präklinische Tests und die Gestaltung klinischer Studien von Medikamenten eingesetzt, wodurch die Arzneimittelentwicklung deutlich beschleunigt wird.
  • Nordamerika ist aufgrund seines starken Pharmasektors Marktführer, während für die Region Asien-Pazifik ein schnelles Wachstum erwartet wird, das durch erhöhte Investitionen in Forschung und Entwicklung vorangetrieben wird.

Beispielsweise werden KI-Technologien wie maschinelles Lernen und Deep Learning eingesetzt, um Erfolgsraten bei klinischen Studien vorherzusagen, Arzneimittelkandidaten zu optimieren und neue therapeutische Ziele zu identifizieren, wodurch Zeit und Kosten der Arzneimittelentwicklung erheblich reduziert werden.

  • Der Einsatz von KI in der Arzneimittelforschung revolutioniert die Pharmaindustrie, indem er Herausforderungen wie hohe Kosten, lange Zeiträume und niedrige Erfolgsquoten bei herkömmlichen Arzneimittelentwicklungsprozessen angeht.

Berichtsumfang und künstliche Intelligenz (KI) in der Arzneimittelforschung Marktsegmentierung

Eigenschaften

Künstliche Intelligenz (KI) in der Arzneimittelforschung – wichtige Markteinblicke

Abgedeckte Segmente

  • Nach Anwendung : Neue Arzneimittelkandidaten, Arzneimitteloptimierung und -umwidmung, präklinische Tests und Zulassung, Arzneimittelüberwachung, Auffinden neuer krankheitsassoziierter Ziele und Wege, Verstehen von Krankheitsmechanismen, Aggregieren und Synthetisieren von Informationen, Aufstellen und Qualifizieren von Hypothesen, De-novo-Arzneimitteldesign, Auffinden von Wirkstoffzielen eines alten Arzneimittels und andere
  • Nach Technologie:   Maschinelles Lernen, Deep Learning , Verarbeitung natürlicher Sprache und andere
  • Nach Arzneimitteltyp:  Kleines Molekül und großes Molekül
  • Nach Angebot:  Software und Dienstleistungen
  • Nach Indikation : Immunonkologie, neurodegenerative Erkrankungen, Herz-Kreislauf-Erkrankungen, Stoffwechselerkrankungen und andere
  • Nach Endverwendung : Auftragsforschungsinstitute (CROs), Pharma- und Biotechnologieunternehmen, Forschungszentren und akademische Institute und andere

Abgedeckte Länder

Nordamerika

  • UNS
  • Kanada
  • Mexiko

Europa

  • Deutschland
  • Frankreich
  • Vereinigtes Königreich
  • Niederlande
  • Schweiz
  • Belgien
  • Russland
  • Italien
  • Spanien
  • Truthahn
  • Restliches Europa

Asien-Pazifik

  • China
  • Japan
  • Indien
  • Südkorea
  • Singapur
  • Malaysia
  • Australien
  • Thailand
  • Indonesien
  • Philippinen
  • Restlicher Asien-Pazifik-Raum

Naher Osten und Afrika

  • Saudi-Arabien
  • Vereinigte Arabische Emirate
  • Südafrika
  • Ägypten
  • Israel
  • Rest des Nahen Ostens und Afrikas

Südamerika

  • Brasilien
  • Argentinien
  • Restliches Südamerika

Wichtige Marktteilnehmer

  • NVIDIA Corporation (USA)
  • IBM Corp. (USA)
  • Atomwise Inc. (USA)
  • Microsoft (US)
  • Wohlwollende KI (Großbritannien)
  • Aria Pharmaceuticals, Inc. (USA)
  • DEEP GENOMICS (Kanada)
  • Exscientia (Großbritannien)
  • Insilico Medicine (Hongkong)
  • Cyclica (Kanada)
  • NuMedii, Inc. (USA)
  • Envisagenics (USA)
  • Owkin Inc. (USA)
  • BERG LLC (US)
  • Schrödinger, Inc. (USA)
  • XtalPi Inc. (China)
  • BIOAGE Inc. (USA)

Marktchancen

  • Steigende F&E-Investitionen in der Pharmaindustrie
  • Verbesserte prädiktive Modellierung für klinische Studien

Wertschöpfungsdaten-Infosets

Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch Import-Export-Analysen, eine Übersicht über die Produktionskapazität, eine Analyse des Produktionsverbrauchs, eine Preistrendanalyse, ein Szenario des Klimawandels, eine Lieferkettenanalyse, eine Wertschöpfungskettenanalyse, eine Übersicht über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, eine PESTLE-Analyse, eine Porter-Analyse und regulatorische Rahmenbedingungen.

Künstliche Intelligenz (KI) in der Arzneimittelforschung – Markttrends

„KI-gesteuerte Innovationen revolutionieren die Arzneimittelforschung“

  • Ein herausragender Trend im KI-Markt für die Arzneimittelforschung ist die zunehmende Nutzung von Technologien des maschinellen Lernens und des Deep Learning zur Optimierung der Arzneimittelentwicklungsprozesse .
  • Diese fortschrittlichen Technologien steigern die Effizienz und Genauigkeit der Arzneimittelforschung, indem sie umfangreiche Datensätze analysieren, die Bindungseigenschaften von Molekülen vorhersagen und potenzielle Arzneimittelkandidaten identifizieren.
  • Beispielsweise werden KI-gestützte Plattformen verwendet, um bestehende Medikamente für neue Therapiebereiche umzuwidmen, wodurch der Zeit- und Kostenaufwand im Zusammenhang mit herkömmlichen Methoden der Arzneimittelforschung erheblich reduziert wird.
  • Die Integration von KI ermöglicht außerdem eine bessere Gestaltung klinischer Studien durch die Vorhersage von Erfolgsraten und die Identifizierung von Patientenpopulationen, wodurch der Gesamterfolg der Arzneimittelentwicklung verbessert wird.
  • Dieser Trend verändert die Pharmaindustrie, beschleunigt die Entwicklung innovativer Therapien und geht auf ungedeckte medizinische Bedürfnisse ein, wodurch die Nachfrage nach KI-gesteuerten Lösungen auf dem Markt steigt.

Künstliche Intelligenz (KI) in der Arzneimittelforschung – Marktdynamik

Treiber

„Steigende F&E-Investitionen in der Pharmaindustrie“

  • Pharmaunternehmen erhöhen ihre F&E-Budgets, um neue Medikamente und Therapien zu entwickeln und so ihre Wettbewerbsfähigkeit zu sichern und den sich wandelnden Bedürfnissen der Patienten gerecht zu werden.
  • KI-Tools werden in F&E-Prozesse integriert, um die Arzneimittelforschung zu verbessern, eine schnellere Identifizierung von Arzneimittelkandidaten zu ermöglichen, die Erfolgsquoten zu verbessern und die Forschung im Frühstadium zu optimieren.
  • KI ermöglicht ein Hochdurchsatz-Screening, wodurch der Prozess der Prüfung von Verbindungen erheblich beschleunigt und vielversprechende Kandidaten für die weitere Entwicklung identifiziert werden.
  • KI kann große Datensätze aus der Genomik, klinischen Studien und Patientendemografie verarbeiten, um verborgene Muster zu entdecken und so die Identifizierung neuer therapeutischer Ziele zu beschleunigen.
  • Mit KI-Algorithmen, die die Patientenrekrutierung und das Studiendesign optimieren, können Pharmaunternehmen effizientere klinische Studien durchführen und so Zeit und Kosten sparen.

Zum Beispiel,

  • Sanofi kooperierte mit Exscientia und nutzte KI zur Entwicklung neuer Medikamentenkandidaten, um den Weg zu klinischen Studien zu beschleunigen. Im Rahmen einer dieser Kooperationen identifizierten sie einen vielversprechenden Kandidaten für die Behandlung von Autoimmunerkrankungen in einem Bruchteil der Zeit, die mit herkömmlichen Methoden benötigt worden wäre.
  • GlaxoSmithKline (GSK) und 24M arbeiten zusammen, um mithilfe von KI den F&E-Prozess zu optimieren, einschließlich der Identifizierung neuer Wirkstoffziele und der Beschleunigung der Entwicklung neuer Therapien, beispielsweise für seltene Krankheiten.
  • Steigende Investitionen in Forschung und Entwicklung sowie die Leistungsfähigkeit der KI verbessern die Fähigkeit der Pharmaindustrie, neue Medikamente schneller, kostengünstiger und mit höherer Präzision zu entdecken, erheblich.

Gelegenheit

„Verbesserte prädiktive Modellierung für klinische Studien“

  • KI kann das Design klinischer Studien optimieren, indem sie die am besten geeigneten Studienparameter wie Stichprobengröße, Endpunkte und Behandlungsschemata identifiziert, was zu effizienteren und effektiveren Studien führt.
  • Durch die Analyse elektronischer Gesundheitsakten und anderer Daten kann KI dabei helfen, anhand spezifischer Einschluss-/Ausschlusskriterien die richtigen Patienten für klinische Studien zu identifizieren und so die Rekrutierungsgeschwindigkeit und -genauigkeit zu verbessern.
  • KI-Modelle können den wahrscheinlichen Erfolg oder Misserfolg einer klinischen Studie auf der Grundlage historischer Daten und Echtzeit-Erkenntnisse vorhersagen, was eine frühzeitige Anpassung der Studienprotokolle ermöglicht und die Erfolgschancen erhöht.
  • Durch den Einsatz prädiktiver Analysen kann KI Patienten identifizieren, bei denen das Risiko eines Studienabbruchs besteht, und Interventionen vorschlagen, um sie bei der Stange zu halten. Dadurch wird die Anzahl unvollständiger Studien reduziert.
  • Die Fähigkeit der KI, den Prozess klinischer Studien von der Teilnehmerauswahl bis zur Ergebnisprognose zu rationalisieren, kann die mit herkömmlichen Studienmethoden verbundenen Kosten erheblich senken.

Zum Beispiel,

  • Pfizer nutzte KI in Zusammenarbeit mit IBM Watson Health, um die Rekrutierung von Teilnehmern für klinische Studien zu verbessern und das Studiendesign für die Entwicklung einer Therapie für seltene Krankheiten zu optimieren. Ihr KI-gestützter Ansatz trug dazu bei, die Rekrutierung zu beschleunigen und die Studienergebnisse zu verbessern.
  • Novartis nutzte KI, um Patientenreaktionen vorherzusagen und Studiendesigns für Gentherapien zu optimieren. Dieser KI-gestützte Ansatz führte zu zielgerichteteren Therapien und effizienteren klinischen Studien.
  • Die Fähigkeit der KI, die prädiktive Modellierung in klinischen Studien zu verbessern, bietet erhebliche Vorteile, darunter effizientere Studiendesigns, schnellere Patientenrekrutierung, geringere Kosten und bessere Studienergebnisse, was letztendlich die Entwicklung neuer Behandlungen beschleunigt.

Einschränkung/Herausforderung

„Hohe anfängliche Investitionskosten“

  • KI-gesteuerte Tools erfordern eine teure Technologieinfrastruktur, darunter leistungsstarke Computersysteme, Datenspeicherlösungen und spezielle Software, was die Anfangsinvestition hoch macht.
  • Die Rekrutierung qualifizierter Fachkräfte wie Datenwissenschaftler, KI-Experten und Biopharma-Forscher mit Kenntnissen sowohl in KI als auch in der Arzneimittelforschung ist kostspielig und erhöht die finanzielle Belastung durch die Implementierung von KI in Forschung und Entwicklung zusätzlich.
  • Die Integration von KI-Tools in bestehende Arbeitsabläufe der Arzneimittelforschung, insbesondere in Altsysteme, erfordert erhebliche finanzielle Ressourcen für Anpassung, Schulung und Optimierung.
  • KI-Technologien erfordern kontinuierliche Wartung, Software-Updates und Hardware-Upgrades, um mit den Fortschritten im maschinellen Lernen und in der Datenanalyse Schritt zu halten, was zu den langfristigen Betriebskosten beiträgt.
  • KI-Systeme in der Arzneimittelforschung sind auf umfangreiche, qualitativ hochwertige Datensätze angewiesen. Der Erwerb oder die Lizenzierung solcher Datensätze kann für kleinere Unternehmen oder Start-ups teuer sein, was die Kosten der KI-Implementierung weiter in die Höhe treibt.

Zum Beispiel,

  • BenevolentAI investierte massiv in KI-gestützte Plattformen und Expertise zur Arzneimittelforschung, um den Prozess der Arzneimittelentwicklung mit Schwerpunkt auf der Onkologie zu optimieren. Trotz der anfänglich hohen Investitionen ermöglichte ihr Ansatz eine schnellere Arzneimittelforschung mit verbesserten Erfolgsraten.
  • Insilico Medicine , ein Startup, das KI zur Arzneimittelforschung nutzt, benötigte erhebliche Vorabinvestitionen, um seine KI-gesteuerte Plattform aufzubauen, die es dem Unternehmen ermöglichte, die Arzneimittelentwicklung für Krankheiten wie Fibrose und Krebs zu beschleunigen. Die Kosten waren jedoch hoch und für kleinere Wettbewerber schwer zu erreichen.
  • Die hohen anfänglichen Investitionskosten in KI für die Arzneimittelforschung stellen für kleinere Unternehmen und Start-ups eine Hürde dar und schränken ihre Wettbewerbsfähigkeit gegenüber größeren Organisationen ein, die sich diese Technologien leisten können. Um diese Herausforderung zu meistern, sind möglicherweise innovative Finanzierungsmodelle oder Partnerschaften erforderlich, um KI einem breiteren Spektrum von Akteuren in der Pharmaindustrie zugänglicher zu machen.

Künstliche Intelligenz (KI) in der Arzneimittelforschung – Marktumfang

Der Markt ist nach Anwendung, Produkttyp, Technologie, Vergrößerungstyp, Endbenutzer und Vertriebskanal segmentiert.

Segmentierung

Untersegmentierung

Nach Anwendung

  • Neue Arzneimittelkandidaten
  • Arzneimitteloptimierung und Neuverwendung
  • Präklinische Tests und Zulassung
  • Arzneimittelüberwachung
  • Suche nach neuen Zielen und Signalwegen im Zusammenhang mit Krankheiten
  • Krankheitsmechanismen verstehen
  • Aggregieren und Synthetisieren von Informationen
  • Bildung und Qualifizierung von Hypothesen
  • De Novo-Arzneimitteldesign
  • Wirkstoffziele eines alten Medikaments finden
  • Sonstige

Nach Technologie

  • Maschinelles Lernen
  • Tiefes Lernen
  • Verarbeitung natürlicher Sprache
  • Sonstige

Nach Arzneimitteltyp

  • Kleines Molekül
  • Großes Molekül

Durch das Angebot

  • Software
  • Leistungen

Nach Indikation

  • Immunonkologie
  • Neurodegenerative Erkrankungen
  • Herz-Kreislauf-Erkrankungen
  • Stoffwechselerkrankungen
  • Sonstige

Nach Endverwendung

 

  • Auftragsforschungsinstitute (CROs)
  • Pharma- und Biotechnologieunternehmen
  • Forschungszentren und akademische Institute
  • Sonstige

Künstliche Intelligenz (KI) in der Arzneimittelforschung – Regionale Marktanalyse

„Nordamerika ist die dominierende Region auf dem Markt für künstliche Intelligenz (KI) in der Arzneimittelforschung“

  • Nordamerika dominiert den Markt für künstliche Intelligenz (KI) in der Arzneimittelforschung , angetrieben durch eine fortschrittliche Gesundheitsinfrastruktur, eine hohe Akzeptanz modernster medizinischer Technologien und eine starke Präsenz wichtiger Marktteilnehmer.
  • In den USA sind einige der größten Pharmaunternehmen wie Pfizer , Johnson & Johnson , Merck und Eli Lilly ansässig , die bei der Nutzung von KI in der Arzneimittelforschung eine Vorreiterrolle einnehmen. Diese Unternehmen investieren massiv in KI, um den Prozess der Arzneimittelentwicklung zu rationalisieren und die Ergebnisse zu verbessern.
  • Nordamerika verfügt über ein etabliertes Technologie-Ökosystem mit großen KI-Unternehmen wie IBM Watson Health und Google DeepMind, die Innovationen in der Arzneimittelforschung vorantreiben. Diese Unternehmen sind führend in der KI-Forschung und bieten leistungsstarke KI-Tools für die pharmazeutische Forschung und Entwicklung.
  • Nordamerika investiert kontinuierlich einen erheblichen Teil seines BIP in Forschung und Entwicklung (F&E). Diese Mittel fördern den Einsatz fortschrittlicher KI-Technologien in der Arzneimittelforschung, da Unternehmen nach Möglichkeiten suchen, die Entdeckung neuer Medikamente und Behandlungen zu beschleunigen.
  • In Nordamerika gibt es zahlreiche Partnerschaften zwischen Pharmaunternehmen und KI-Startups oder Technologieunternehmen. Kooperationen wie die von Novartis und Microsoft zum Einsatz von KI in der Arzneimittelforschung unterstreichen beispielsweise die führende Rolle der Region bei der Nutzung von KI für Innovationen in der Arzneimittelentwicklung.

„Der asiatisch-pazifische Raum wird voraussichtlich die höchste Wachstumsrate verzeichnen“

  • Im asiatisch-pazifischen Raum wird die höchste Wachstumsrate im Bereich der künstlichen Intelligenz (KI) in der Arzneimittelforschung erwartet , was auf den schnellen Ausbau der Gesundheitsinfrastruktur, das zunehmende Bewusstsein für die Augengesundheit und die steigende Zahl chirurgischer Eingriffe zurückzuführen ist.
  • Länder wie China , Indien und Japan investieren massiv in KI und Biotechnologie , um ihre Pharmabranche zu stärken und den wachsenden Bedarf im Gesundheitswesen zu decken. Diese Investitionen beschleunigen den Einsatz von KI in der Arzneimittelforschung.
  • Die Regierungen der APAC-Region fördern die digitale Gesundheitsversorgung und die Integration von KI aktiv durch verschiedene Initiativen. China beispielsweise hat nationale Strategien zur Einbindung von KI in das Gesundheitswesen umgesetzt und so den Einsatz von KI in der Arzneimittelforschung gefördert.
  • Die APAC- Länder verfügen über große Bevölkerungen und enorme Mengen an Gesundheitsdaten, die für die KI-gestützte Arzneimittelforschung genutzt werden können. Die robuste digitale Infrastruktur der Region unterstützt die Integration von KI-Technologien in die Arzneimittelentwicklung.
  • Der asiatisch-pazifische Raum (APAC) verzeichnet das schnellste Wachstum im Markt für KI in der Arzneimittelforschung. Dies ist auf steigende Investitionen, unterstützende Regierungspolitik, einen großen Datenpool und die Expansion von Biotech-Unternehmen zurückzuführen, die KI-Technologie nutzen.

Marktanteile der künstlichen Intelligenz (KI) in der Arzneimittelforschung

Die Wettbewerbslandschaft des Marktes bietet detaillierte Informationen zu den einzelnen Wettbewerbern. Zu den Details gehören Unternehmensübersicht, Finanzdaten, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang sowie Anwendungsdominanz. Die oben genannten Daten beziehen sich ausschließlich auf die Marktausrichtung der Unternehmen.

Die wichtigsten Marktführer auf dem Markt sind:

  • NVIDIA Corporation (USA)
  • IBM Corp. (USA)
  • Atomwise Inc. (USA)
  • Microsoft (US)
  • Wohlwollende KI (Großbritannien)
  • Aria Pharmaceuticals, Inc. (USA)
  • DEEP GENOMICS (Kanada)
  • Exscientia (Großbritannien)
  • Insilico Medicine (Hongkong)
  • Cyclica (Kanada)
  • NuMedii, Inc. (USA)
  • Envisagenics (USA)
  • Owkin Inc. (USA)
  • BERG LLC (US)
  • Schrödinger, Inc. (USA)
  • XtalPi Inc. (China)
  • BIOAGE Inc. (USA)

Neueste Entwicklungen im globalen Markt für künstliche Intelligenz (KI) im Bereich der Arzneimittelforschung

  • Im Mai 2024 stellte Google DeepMind die dritte Version seines KI-Modells AlphaFold vor, das die Arzneimittelentwicklung verbessern und die Bekämpfung von Krankheiten verbessern soll. Diese erweiterte Version ermöglicht es Forschern von DeepMind und Isomorphic Labs, das Verhalten aller Moleküle, einschließlich der menschlichen DNA, zu analysieren.
  • Im April 2024 sicherte sich Xaira Therapeutics, ein innovatives Unternehmen, das sich auf KI-gestützte Arzneimittelforschung und -entwicklung spezialisiert hat, in einer gemeinsamen Finanzierungsrunde mit ARCH Venture Partners und Foresite Labs über eine Million US-Dollar. Mithilfe von maschinellem Lernen, Datengenerierungsmodellen und der Entwicklung therapeutischer Produkte konzentriert sich das Unternehmen auf die Erforschung von Wirkstoffzielen, die bisher schwer zu erreichen waren.
  • Im Dezember 2023 brachte MilliporeSigma, die Life-Science-Sparte von Merck, AIDDISON auf den Markt, eine hochmoderne Software zur Arzneimittelforschung. Diese Plattform schließt die Lücke zwischen virtuellem Moleküldesign und realer Herstellbarkeit durch die Integration der Retrosynthese-Software-API von Synthia. Sie kombiniert generative KI, maschinelles Lernen und computergestütztes Arzneimitteldesign, um Arzneimittelentwicklungsprozesse zu optimieren.
  • Im Mai 2023 brachte Google zwei innovative KI-gestützte Tools auf den Markt, die Biotech- und Pharmaunternehmen dabei unterstützen sollen, die Arzneimittelforschung zu beschleunigen und die Präzisionsmedizin zu verfeinern. Diese Lösungen sollen den Zeit- und Kostenaufwand für die Einführung neuer Therapien auf dem US-Markt reduzieren. Zu den ersten Anwendern dieser Tools zählen Cerevel Therapeutics, Pfizer und Colossal Biosciences .


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Inhaltsverzeichnis

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 MARKETS COVERED

2.5 GEOGRAPHIC SCOPE

2.6 YEARS CONSIDERED FOR THE STUDY

2.7 RESEARCH METHODOLOGY

2.8 TECHNOLOGY LIFE LINE CURVE

2.9 MULTIVARIATE MODELLING

2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.11 DBMR MARKET POSITION GRID

2.12 MARKET APPLICATION COVERAGE GRID

2.13 DBMR MARKET CHALLENGE MATRIX

2.14 SECONDARY SOURCES

2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT

2.16 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

5.1 PESTEL ANALYSIS

5.2 PORTER’S FIVE FORCES MODEL

6 INDUSTRY INSIGHTS

6.1 MICRO AND MACRO ECONOMIC FACTORS

6.2 PENETRATION AND GROWTH PROSPECT MAPPING

6.3 KEY PRICING STRATEGIES

6.4 INTERVIEWS WITH SPECIALIST

6.5 ANALYIS AND RECOMMENDATION

7 INTELLECTUAL PROPERTY (IP) PORTFOLIO

7.1 PATENT QUALITY AND STRENGTH

7.2 PATENT FAMILIES

7.3 LICENSING AND COLLABORATIONS

7.4 COMPETITIVE LANDSCAPE

7.5 IP STRATEGY AND MANAGEMENT

7.6 OTHER

8 COST ANALYSIS BREAKDOWN

9 TECHNONLOGY ROADMAP

10 INNOVATION TRACKER AND STRATEGIC ANALYSIS

10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS

10.1.1 JOINT VENTURES

10.1.2 MERGERS AND ACQUISITIONS

10.1.3 LICENSING AND PARTNERSHIP

10.1.4 TECHNOLOGY COLLABORATIONS

10.1.5 STRATEGIC DIVESTMENTS

10.2 NUMBER OF PRODUCTS IN DEVELOPMENT

10.3 STAGE OF DEVELOPMENT

10.4 TIMELINES AND MILESTONES

10.5 INNOVATION STRATEGIES AND METHODOLOGIES

10.6 RISK ASSESSMENT AND MITIGATION

10.7 FUTURE OUTLOOK

11 REGULATORY COMPLIANCE

11.1 REGULATORY AUTHORITIES

11.2 REGULATORY CLASSIFICATIONS

11.2.1 CLASS I

11.2.2 CLASS II

11.2.3 CLASS III

11.3 REGULATORY SUBMISSIONS

11.4 INTERNATIONAL HARMONIZATION

11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS

11.6 REGULATORY CHALLENGES AND STRATEGIES

12 REIMBURSEMENT FRAMEWORK

13 OPPUTUNITY MAP ANALYSIS

14 VALUE CHAIN ANALYSIS

15 HEALTHCARE ECONOMY

15.1 HEALTHCARE EXPENDITURE

15.2 CAPITAL EXPENDITURE

15.3 CAPEX TRENDS

15.4 CAPEX ALLOCATION

15.5 FUNDING SOURCES

15.6 INDUSTRY BENCHMARKS

15.7 GDP RATION IN OVERALL GDP

15.8 HEALTHCARE SYSTEM STRUCTURE

15.9 GOVERNMENT POLICIES

15.1 ECONOMIC DEVELOPMENT

16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING

16.1 OVERVIEW

16.2 SOFTWARE

16.2.1 INTEGRATED

16.2.2 STANDALONE

16.3 SERVICES

17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY

17.1 OVERVIEW

17.2 MACHINE LEARNING (ML)

17.2.1 SUPERVISED LEARNING

17.2.2 UNSUPERVISED LEARNING

17.2.3 REINFORCEMENT LEARNING

17.3 DEEP LEARNING

17.4 NATURAL LANGUAGE PROCESSING (NLP)

17.5 OTHERS

18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE

18.1 OVERVIEW

18.2 SMALL MOLECULE

18.3 LARGE MOLECULE

19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION

19.1 OVERVIEW

19.2 NOVEL DRUG CANDIDATES

19.2.1 IDENTIFY BIOLOGICS TARGET

19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE

19.2.3 OTHERS

19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL

19.4 DRUG MONITORING

19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS

19.6 UNDERSTANDING DISEASE MECHANISMS

19.7 AGGREGATING AND SYNTHESIZING INFORMATION

19.8 FORM ATION & QUALIFICATION OF HYPOTHESES

19.9 DE NOVO DRUG DESIGN

19.1 FINDING DRUG TARGETS OF AN OLD DRUG

19.11 OTHERS

20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION

20.1 OVERVIEW

20.2 IMMUNO-ONCOLOGY

20.2.1 PROSTATE CANCER

20.2.2 BREAST CANCER

20.2.3 BRAIN CANCER

20.2.4 LUNG CANCER

20.2.5 PANCREATIC CANCER

20.2.6 COLORECTAL CANCER

20.2.7 LEUKEMIA

20.2.8 OTHERS

20.3 NEURODEGENERATIVE DISEASES

20.4 CARDIOVASCULAR DISEASES

20.5 METABOLIC DISEASES

20.6 OTHERS

21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER

21.1 OVERVIEW

21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES

21.3 CONTRACT RESEARCH ORGANIZATIONS

21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES

21.5 OTHERS

22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)

GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

22.1 OVERVIEW

22.2 NORTH AMERICA

22.2.1 U.S.

22.2.2 CANADA

22.2.3 MEXICO

22.3 EUROPE

22.3.1 GERMANY

22.3.2 U.K.

22.3.3 ITALY

22.3.4 FRANCE

22.3.5 SPAIN

22.3.6 SWITZERLAND

22.3.7 RUSSIA

22.3.8 TURKEY

22.3.9 BELGIUM

22.3.10 NETHERLANDS

22.3.11 REST OF EUROPE

22.4 ASIA-PACIFIC

22.4.1 JAPAN

22.4.2 CHINA

22.4.3 SOUTH KOREA

22.4.4 INDIA

22.4.5 AUSTRALIA & NEW ZEALAND

22.4.6 SINGAPORE

22.4.7 THAILAND

22.4.8 INDONESIA

22.4.9 MALAYSIA

22.4.10 PHILIPPINES

22.4.11 REST OF ASIA-PACIFIC

22.5 SOUTH AMERICA

22.5.1 BRAZIL

22.5.2 ARGENTINA

22.5.3 REST OF SOUTH AMERICA

22.6 MIDDLE EAST AND AFRICA

22.6.1 SOUTH AFRICA

22.6.2 EGYPT

22.6.3 SAUDI ARABIA

22.6.4 UNITED ARAB EMIRATES

22.6.5 ISRAEL

22.6.6 REST OF MIDDLE EAST AND AFRICA

23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE

23.1 COMPANY SHARE ANALYSIS: GLOBAL

23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

23.3 COMPANY SHARE ANALYSIS: EUROPE

23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

23.5 MERGERS & ACQUISITIONS

23.6 NEW PRODUCT DEVELOPMENT & APPROVALS

23.7 EXPANSIONS

23.8 REGULATORY CHANGES

23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES

24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS

25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE

25.1 MICROSOFT

25.1.1 COMPANY OVERVIEW

25.1.2 REVENUE ANALYSIS

25.1.3 PRODUCT PORTFOLIO

25.1.4 RECENT DEVELOPMENTS

25.2 SHANGHAI MEDICILON INC.

25.2.1 COMPANY OVERVIEW

25.2.2 REVENUE ANALYSIS

25.2.3 PRODUCT PORTFOLIO

25.2.4 RECENT DEVELOPMENTS

25.3 NVIDIA CORPORATION + ASTRAZENECA

25.3.1 COMPANY OVERVIEW

25.3.2 REVENUE ANALYSIS

25.3.3 PRODUCT PORTFOLIO

25.3.4 RECENT DEVELOPMENTS

25.4 ATOMWISE INC.

25.4.1 COMPANY OVERVIEW

25.4.2 REVENUE ANALYSIS

25.4.3 PRODUCT PORTFOLIO

25.4.4 RECENT DEVELOPMENTS

25.5 DEEP GENOMICS

25.5.1 COMPANY OVERVIEW

25.5.2 REVENUE ANALYSIS

25.5.3 PRODUCT PORTFOLIO

25.5.4 RECENT DEVELOPMENTS

25.6 CLOUD PHARMACEUTICALS INC.

25.6.1 COMPANY OVERVIEW

25.6.2 REVENUE ANALYSIS

25.6.3 PRODUCT PORTFOLIO

25.6.4 RECENT DEVELOPMENTS

25.7 INSILICO MEDICINE

25.7.1 COMPANY OVERVIEW

25.7.2 REVENUE ANALYSIS

25.7.3 PRODUCT PORTFOLIO

25.7.4 RECENT DEVELOPMENTS

25.8 BENEVOLENTAI

25.8.1 COMPANY OVERVIEW

25.8.2 REVENUE ANALYSIS

25.8.3 PRODUCT PORTFOLIO

25.8.4 RECENT DEVELOPMENTS

25.9 EXSCIENTIA

25.9.1 COMPANY OVERVIEW

25.9.2 REVENUE ANALYSIS

25.9.3 PRODUCT PORTFOLIO

25.9.4 RECENT DEVELOPMENTS

25.1 CYCLICA

25.10.1 COMPANY OVERVIEW

25.10.2 REVENUE ANALYSIS

25.10.3 PRODUCT PORTFOLIO

25.10.4 RECENT DEVELOPMENTS

25.11 OWKIN, INC

25.11.1 COMPANY OVERVIEW

25.11.2 REVENUE ANALYSIS

25.11.3 PRODUCT PORTFOLIO

25.11.4 RECENT DEVELOPMENTS

25.12 ENVISAGENICS

25.12.1 COMPANY OVERVIEW

25.12.2 REVENUE ANALYSIS

25.12.3 PRODUCT PORTFOLIO

25.12.4 RECENT DEVELOPMENTS

25.13 NUMEDII, INC.

25.13.1 COMPANY OVERVIEW

25.13.2 REVENUE ANALYSIS

25.13.3 PRODUCT PORTFOLIO

25.13.4 RECENT DEVELOPMENTS

25.14 BIOSYNTAGMA

25.14.1 COMPANY OVERVIEW

25.14.2 REVENUE ANALYSIS

25.14.3 PRODUCT PORTFOLIO

25.14.4 RECENT DEVELOPMENTS

25.15 COLLABORATIONS PHARMACEUTICALS, INC.

25.15.1 COMPANY OVERVIEW

25.15.2 REVENUE ANALYSIS

25.15.3 PRODUCT PORTFOLIO

25.15.4 RECENT DEVELOPMENTS

25.16 INVENIAI LLC

25.16.1 COMPANY OVERVIEW

25.16.2 REVENUE ANALYSIS

25.16.3 PRODUCT PORTFOLIO

25.16.4 RECENT DEVELOPMENTS

25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION

25.17.1 COMPANY OVERVIEW

25.17.2 REVENUE ANALYSIS

25.17.3 PRODUCT PORTFOLIO

25.17.4 RECENT DEVELOPMENTS

25.18 VALO HEALTH

25.18.1 COMPANY OVERVIEW

25.18.2 REVENUE ANALYSIS

25.18.3 PRODUCT PORTFOLIO

25.18.4 RECENT DEVELOPMENTS

25.19 AIFORIA

25.19.1 COMPANY OVERVIEW

25.19.2 REVENUE ANALYSIS

25.19.3 PRODUCT PORTFOLIO

25.19.4 RECENT DEVELOPMENTS

25.2 CHEMALIVE

25.20.1 COMPANY OVERVIEW

25.20.2 REVENUE ANALYSIS

25.20.3 PRODUCT PORTFOLIO

25.20.4 RECENT DEVELOPMENTS

25.21 DEEPMATTER GROUP LIMITED

25.21.1 COMPANY OVERVIEW

25.21.2 REVENUE ANALYSIS

25.21.3 PRODUCT PORTFOLIO

25.21.4 RECENT DEVELOPMENTS

25.22 MABSILICO.

25.22.1 COMPANY OVERVIEW

25.22.2 REVENUE ANALYSIS

25.22.3 PRODUCT PORTFOLIO

25.22.4 RECENT DEVELOPMENTS

25.23 OPTIBRIUM, LTD.

25.23.1 COMPANY OVERVIEW

25.23.2 REVENUE ANALYSIS

25.23.3 PRODUCT PORTFOLIO

25.23.4 RECENT DEVELOPMENTS

25.24 ABBVIE AND BIGHAT BIOSCIENCES

25.24.1 COMPANY OVERVIEW

25.24.2 REVENUE ANALYSIS

25.24.3 PRODUCT PORTFOLIO

25.24.4 RECENT DEVELOPMENTS

25.25 ADAGENE

25.25.1 COMPANY OVERVIEW

25.25.2 REVENUE ANALYSIS

25.25.3 PRODUCT PORTFOLIO

25.25.4 RECENT DEVELOPMENTS

25.26 PEPTICOM LTD.

25.26.1 COMPANY OVERVIEW

25.26.2 REVENUE ANALYSIS

25.26.3 PRODUCT PORTFOLIO

25.26.4 RECENT DEVELOPMENTS

25.27 DEARGEN INC.

25.27.1 COMPANY OVERVIEW

25.27.2 REVENUE ANALYSIS

25.27.3 PRODUCT PORTFOLIO

25.27.4 RECENT DEVELOPMENTS

25.28 GERO.AI

25.28.1 COMPANY OVERVIEW

25.28.2 REVENUE ANALYSIS

25.28.3 PRODUCT PORTFOLIO

25.28.4 RECENT DEVELOPMENTS

25.29 3BIGS CO. LTD.

25.29.1 COMPANY OVERVIEW

25.29.2 REVENUE ANALYSIS

25.29.3 PRODUCT PORTFOLIO

25.29.4 RECENT DEVELOPMENTS

25.3 BPGBIO INC.

25.30.1 COMPANY OVERVIEW

25.30.2 REVENUE ANALYSIS

25.30.3 PRODUCT PORTFOLIO

25.30.4 RECENT DEVELOPMENTS

25.31 SCHRÖDINGER, INC.

25.31.1 COMPANY OVERVIEW

25.31.2 REVENUE ANALYSIS

25.31.3 PRODUCT PORTFOLIO

25.31.4 RECENT DEVELOPMENTS

25.32 XTALPI INC.

25.32.1 COMPANY OVERVIEW

25.32.2 REVENUE ANALYSIS

25.32.3 PRODUCT PORTFOLIO

25.32.4 RECENT DEVELOPMENTS

25.33 BIOAGE INC.

25.33.1 COMPANY OVERVIEW

25.33.2 REVENUE ANALYSIS

25.33.3 PRODUCT PORTFOLIO

25.33.4 RECENT DEVELOPMENTS

26 RELATED REPORTS

27 QUESTIONNAIRE

28 CONCLUSION

29 ABOUT DATA BRIDGE MARKET RESEARCH

Detaillierte Informationen anzeigen Right Arrow

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

The global artificial intelligence (ai) in drug discovery market size was valued at USD 981.64 million in 2024.
The global artificial intelligence (ai) in drug discovery market is to grow at a CAGR of 5.30 % during the forecast period of 2025 to 2032.
The artificial intelligence (ai) in drug discovery market is segmented on the basis of application, technology, drug type, offering, indication, and end use. On the basis of application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation and qualification of hypotheses, de novo drug design, finding drug targets of an old drug and others. On the basis of technology, the market is segmented into machine learning, deep learning, natural language processing, and others. On the basis of drug type, the market is segmented into small molecule and large molecule. On the basis of offering, the market is segmented into software and services. On the basis of indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others. On the basis of end use, the market is segmented into direct contract research organizations (CROS), pharmaceutical and biotechnology companies, research centers and academic institutes, and others.
Companies such as NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.) are the major companies in the artificial intelligence (ai) in drug discovery market.
In January 2025, Bausch + Lomb Corporation, a global leader in eye health, has announced the commercial launch of its enVista Aspire monofocal and toric intraocular lenses (IOLs) in the European Union, following the receipt of a CE Mark. In September 2024, Haag-Streit announced the launch of METIS, its cutting-edge ophthalmic microscope system, which brings superior optical performance into the operating room with exceptional clarity, a brilliant coaxial red reflex, and optimized optics for precise color reproduction, high light transmission, and an expansive depth of field, making it ideal for delicate ophthalmic procedures. It will be officially launched in Q1 2025
The countries covered in the artificial intelligence (ai) in drug discovery market are U.S., Canada, Mexico, Germany, France, U.K., Italy, Spain, Russia, Turkey, Netherlands, Switzerland, Austria, Poland, Norway, Ireland, Hungary, Lithuania, rest of Europe, China, Japan, India, South Korea, Australia, Taiwan, Philippines, Thailand, Malaysia, Vietnam, Indonesia, Singapore, rest of Asia-Pacific, Brazil, Argentina, Chili, Colombia, Peru, Venezuela, Ecuador, Uruguay, Paraguay ,Bolivia, Trinidad And Tobago, Curaçao, rest Of South America, South Africa, Saudi Arabia, U.A.E, Egypt, Israel, Kuwait, rest of Middle East and Africa, Guatemala, Costa Rica, Honduras, EL Salvador, Nicaragua, and rest of Central America.
The Asia-Pacific (APAC) region is projected to be the fastest-growing market for artificial intelligence (AI) in drug discovery, with a notable compound annual growth rate (CAGR) expected in the coming years. This growth is driven by increasing investments in healthcare infrastructure, rising adoption of AI technologies, and a growing focus on drug discovery and development in the region.
U.S. is expected to dominate the artificial intelligence (AI) in drug discovery market. This is due to its well-established pharmaceutical and biotechnology sectors, significant investments in AI research, and strong collaborations between tech companies and healthcare organizations.
North America holds the largest share in the global artificial intelligence (AI) in drug discovery market. This dominance is attributed to its well-established pharmaceutical industry, significant investments in AI research, and the presence of leading pharmaceutical and biotechnology companies.
China, is expected to witness the highest compound annual growth rate (CAGR) in the artificial intelligence (AI) in drug discovery market. This growth is driven by increasing investments in AI technologies, expanding pharmaceutical industries, and government initiatives supporting innovation in healthcare.
AI-Driven innovations revolutionizing drug discovery, is emerging as a pivotal trend driving the global artificial intelligence (AI) in drug discovery market.
The major factors driving the growth of the artificial intelligence (ai) in drug discovery market is rising R&D investments in pharmaceutical industry.
The primary challenges include high initial investment costs.
The oncology segment is currently dominating the artificial intelligence (AI) in drug discovery market.
Testimonial