Global Artificial Intelligence Ai In Drug Discovery Market
Marktgröße in Milliarden USD
CAGR :
%
USD
981.64 Million
USD
1,483.82 Million
2024
2032
| 2025 –2032 | |
| USD 981.64 Million | |
| USD 1,483.82 Million | |
|
|
|
Globale Marktsegmentierung für künstliche Intelligenz (KI) in der Arzneimittelforschung nach Anwendung (neue Arzneimittelkandidaten, Arzneimitteloptimierung und -umwidmung, präklinische Tests und Zulassung, Arzneimittelüberwachung, Suche nach mit neuen Krankheiten verbundenen Zielen und Signalwegen, Verständnis von Krankheitsmechanismen, Aggregieren und Synthetisieren von Informationen, Bildung und Qualifizierung von Hypothesen, De-novo-Arzneimitteldesign, Suche nach Arzneimittelzielen eines alten Arzneimittels und andere), Technologie (Maschinelles Lernen, Deep Learning, Verarbeitung natürlicher Sprache und andere), Arzneimitteltyp (kleine und große Moleküle), Angebot (Software und Dienstleistungen), Indikation (Immunonkologie, neurodegenerative Erkrankungen, Herz-Kreislauf-Erkrankungen, Stoffwechselerkrankungen und andere), Endverbrauch (Auftragsforschungsinstitute (CROs), Pharma- und Biotechnologieunternehmen, Forschungszentren und akademische Institute und andere) – Branchentrends und Prognose bis 2032
Künstliche Intelligenz (KI) in der Arzneimittelforschung Marktgröße
- Der globale Markt für künstliche Intelligenz (KI) in der Arzneimittelforschung wurde im Jahr 2024 auf 981,64 Millionen US-Dollar geschätzt und soll bis 2032 1483,82 Millionen US-Dollar erreichen.
- Im Prognosezeitraum von 2025 bis 2032 wird der Markt voraussichtlich mit einer jährlichen Wachstumsrate von 5,30 % wachsen, vor allem aufgrund der zunehmenden Verfügbarkeit von Gesundheitsdaten.
- Dieses Wachstum wird durch Faktoren wie die zunehmende Verbreitung chronischer Krankheiten und Fortschritte bei KI-Technologien vorangetrieben, die die Prozesse der Arzneimittelforschung verbessern.
Künstliche Intelligenz (KI) in der Arzneimittelforschung – Marktanalyse
- Der Markt erlebt ein rasantes Wachstum, angetrieben durch Fortschritte in KI-Technologien wie maschinellem Lernen und Deep Learning, die die Prozesse der Arzneimittelforschung rationalisieren und die Kosten senken.
- KI wird in großem Umfang für die Optimierung, Umwidmung, präklinische Tests und die Gestaltung klinischer Studien von Medikamenten eingesetzt, wodurch die Arzneimittelentwicklung deutlich beschleunigt wird.
- Nordamerika ist aufgrund seines starken Pharmasektors Marktführer, während für die Region Asien-Pazifik ein schnelles Wachstum erwartet wird, das durch erhöhte Investitionen in Forschung und Entwicklung vorangetrieben wird.
Beispielsweise werden KI-Technologien wie maschinelles Lernen und Deep Learning eingesetzt, um Erfolgsraten bei klinischen Studien vorherzusagen, Arzneimittelkandidaten zu optimieren und neue therapeutische Ziele zu identifizieren, wodurch Zeit und Kosten der Arzneimittelentwicklung erheblich reduziert werden.
- Der Einsatz von KI in der Arzneimittelforschung revolutioniert die Pharmaindustrie, indem er Herausforderungen wie hohe Kosten, lange Zeiträume und niedrige Erfolgsquoten bei herkömmlichen Arzneimittelentwicklungsprozessen angeht.
Berichtsumfang und künstliche Intelligenz (KI) in der Arzneimittelforschung Marktsegmentierung
|
Eigenschaften |
Künstliche Intelligenz (KI) in der Arzneimittelforschung – wichtige Markteinblicke |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
Europa
Asien-Pazifik
Naher Osten und Afrika
Südamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Wertschöpfungsdaten-Infosets |
Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch Import-Export-Analysen, eine Übersicht über die Produktionskapazität, eine Analyse des Produktionsverbrauchs, eine Preistrendanalyse, ein Szenario des Klimawandels, eine Lieferkettenanalyse, eine Wertschöpfungskettenanalyse, eine Übersicht über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, eine PESTLE-Analyse, eine Porter-Analyse und regulatorische Rahmenbedingungen. |
Künstliche Intelligenz (KI) in der Arzneimittelforschung – Markttrends
„KI-gesteuerte Innovationen revolutionieren die Arzneimittelforschung“
- Ein herausragender Trend im KI-Markt für die Arzneimittelforschung ist die zunehmende Nutzung von Technologien des maschinellen Lernens und des Deep Learning zur Optimierung der Arzneimittelentwicklungsprozesse .
- Diese fortschrittlichen Technologien steigern die Effizienz und Genauigkeit der Arzneimittelforschung, indem sie umfangreiche Datensätze analysieren, die Bindungseigenschaften von Molekülen vorhersagen und potenzielle Arzneimittelkandidaten identifizieren.
- Beispielsweise werden KI-gestützte Plattformen verwendet, um bestehende Medikamente für neue Therapiebereiche umzuwidmen, wodurch der Zeit- und Kostenaufwand im Zusammenhang mit herkömmlichen Methoden der Arzneimittelforschung erheblich reduziert wird.
- Die Integration von KI ermöglicht außerdem eine bessere Gestaltung klinischer Studien durch die Vorhersage von Erfolgsraten und die Identifizierung von Patientenpopulationen, wodurch der Gesamterfolg der Arzneimittelentwicklung verbessert wird.
- Dieser Trend verändert die Pharmaindustrie, beschleunigt die Entwicklung innovativer Therapien und geht auf ungedeckte medizinische Bedürfnisse ein, wodurch die Nachfrage nach KI-gesteuerten Lösungen auf dem Markt steigt.
Künstliche Intelligenz (KI) in der Arzneimittelforschung – Marktdynamik
Treiber
„Steigende F&E-Investitionen in der Pharmaindustrie“
- Pharmaunternehmen erhöhen ihre F&E-Budgets, um neue Medikamente und Therapien zu entwickeln und so ihre Wettbewerbsfähigkeit zu sichern und den sich wandelnden Bedürfnissen der Patienten gerecht zu werden.
- KI-Tools werden in F&E-Prozesse integriert, um die Arzneimittelforschung zu verbessern, eine schnellere Identifizierung von Arzneimittelkandidaten zu ermöglichen, die Erfolgsquoten zu verbessern und die Forschung im Frühstadium zu optimieren.
- KI ermöglicht ein Hochdurchsatz-Screening, wodurch der Prozess der Prüfung von Verbindungen erheblich beschleunigt und vielversprechende Kandidaten für die weitere Entwicklung identifiziert werden.
- KI kann große Datensätze aus der Genomik, klinischen Studien und Patientendemografie verarbeiten, um verborgene Muster zu entdecken und so die Identifizierung neuer therapeutischer Ziele zu beschleunigen.
- Mit KI-Algorithmen, die die Patientenrekrutierung und das Studiendesign optimieren, können Pharmaunternehmen effizientere klinische Studien durchführen und so Zeit und Kosten sparen.
Zum Beispiel,
- Sanofi kooperierte mit Exscientia und nutzte KI zur Entwicklung neuer Medikamentenkandidaten, um den Weg zu klinischen Studien zu beschleunigen. Im Rahmen einer dieser Kooperationen identifizierten sie einen vielversprechenden Kandidaten für die Behandlung von Autoimmunerkrankungen in einem Bruchteil der Zeit, die mit herkömmlichen Methoden benötigt worden wäre.
- GlaxoSmithKline (GSK) und 24M arbeiten zusammen, um mithilfe von KI den F&E-Prozess zu optimieren, einschließlich der Identifizierung neuer Wirkstoffziele und der Beschleunigung der Entwicklung neuer Therapien, beispielsweise für seltene Krankheiten.
- Steigende Investitionen in Forschung und Entwicklung sowie die Leistungsfähigkeit der KI verbessern die Fähigkeit der Pharmaindustrie, neue Medikamente schneller, kostengünstiger und mit höherer Präzision zu entdecken, erheblich.
Gelegenheit
„Verbesserte prädiktive Modellierung für klinische Studien“
- KI kann das Design klinischer Studien optimieren, indem sie die am besten geeigneten Studienparameter wie Stichprobengröße, Endpunkte und Behandlungsschemata identifiziert, was zu effizienteren und effektiveren Studien führt.
- Durch die Analyse elektronischer Gesundheitsakten und anderer Daten kann KI dabei helfen, anhand spezifischer Einschluss-/Ausschlusskriterien die richtigen Patienten für klinische Studien zu identifizieren und so die Rekrutierungsgeschwindigkeit und -genauigkeit zu verbessern.
- KI-Modelle können den wahrscheinlichen Erfolg oder Misserfolg einer klinischen Studie auf der Grundlage historischer Daten und Echtzeit-Erkenntnisse vorhersagen, was eine frühzeitige Anpassung der Studienprotokolle ermöglicht und die Erfolgschancen erhöht.
- Durch den Einsatz prädiktiver Analysen kann KI Patienten identifizieren, bei denen das Risiko eines Studienabbruchs besteht, und Interventionen vorschlagen, um sie bei der Stange zu halten. Dadurch wird die Anzahl unvollständiger Studien reduziert.
- Die Fähigkeit der KI, den Prozess klinischer Studien von der Teilnehmerauswahl bis zur Ergebnisprognose zu rationalisieren, kann die mit herkömmlichen Studienmethoden verbundenen Kosten erheblich senken.
Zum Beispiel,
- Pfizer nutzte KI in Zusammenarbeit mit IBM Watson Health, um die Rekrutierung von Teilnehmern für klinische Studien zu verbessern und das Studiendesign für die Entwicklung einer Therapie für seltene Krankheiten zu optimieren. Ihr KI-gestützter Ansatz trug dazu bei, die Rekrutierung zu beschleunigen und die Studienergebnisse zu verbessern.
- Novartis nutzte KI, um Patientenreaktionen vorherzusagen und Studiendesigns für Gentherapien zu optimieren. Dieser KI-gestützte Ansatz führte zu zielgerichteteren Therapien und effizienteren klinischen Studien.
- Die Fähigkeit der KI, die prädiktive Modellierung in klinischen Studien zu verbessern, bietet erhebliche Vorteile, darunter effizientere Studiendesigns, schnellere Patientenrekrutierung, geringere Kosten und bessere Studienergebnisse, was letztendlich die Entwicklung neuer Behandlungen beschleunigt.
Einschränkung/Herausforderung
„Hohe anfängliche Investitionskosten“
- KI-gesteuerte Tools erfordern eine teure Technologieinfrastruktur, darunter leistungsstarke Computersysteme, Datenspeicherlösungen und spezielle Software, was die Anfangsinvestition hoch macht.
- Die Rekrutierung qualifizierter Fachkräfte wie Datenwissenschaftler, KI-Experten und Biopharma-Forscher mit Kenntnissen sowohl in KI als auch in der Arzneimittelforschung ist kostspielig und erhöht die finanzielle Belastung durch die Implementierung von KI in Forschung und Entwicklung zusätzlich.
- Die Integration von KI-Tools in bestehende Arbeitsabläufe der Arzneimittelforschung, insbesondere in Altsysteme, erfordert erhebliche finanzielle Ressourcen für Anpassung, Schulung und Optimierung.
- KI-Technologien erfordern kontinuierliche Wartung, Software-Updates und Hardware-Upgrades, um mit den Fortschritten im maschinellen Lernen und in der Datenanalyse Schritt zu halten, was zu den langfristigen Betriebskosten beiträgt.
- KI-Systeme in der Arzneimittelforschung sind auf umfangreiche, qualitativ hochwertige Datensätze angewiesen. Der Erwerb oder die Lizenzierung solcher Datensätze kann für kleinere Unternehmen oder Start-ups teuer sein, was die Kosten der KI-Implementierung weiter in die Höhe treibt.
Zum Beispiel,
- BenevolentAI investierte massiv in KI-gestützte Plattformen und Expertise zur Arzneimittelforschung, um den Prozess der Arzneimittelentwicklung mit Schwerpunkt auf der Onkologie zu optimieren. Trotz der anfänglich hohen Investitionen ermöglichte ihr Ansatz eine schnellere Arzneimittelforschung mit verbesserten Erfolgsraten.
- Insilico Medicine , ein Startup, das KI zur Arzneimittelforschung nutzt, benötigte erhebliche Vorabinvestitionen, um seine KI-gesteuerte Plattform aufzubauen, die es dem Unternehmen ermöglichte, die Arzneimittelentwicklung für Krankheiten wie Fibrose und Krebs zu beschleunigen. Die Kosten waren jedoch hoch und für kleinere Wettbewerber schwer zu erreichen.
- Die hohen anfänglichen Investitionskosten in KI für die Arzneimittelforschung stellen für kleinere Unternehmen und Start-ups eine Hürde dar und schränken ihre Wettbewerbsfähigkeit gegenüber größeren Organisationen ein, die sich diese Technologien leisten können. Um diese Herausforderung zu meistern, sind möglicherweise innovative Finanzierungsmodelle oder Partnerschaften erforderlich, um KI einem breiteren Spektrum von Akteuren in der Pharmaindustrie zugänglicher zu machen.
Künstliche Intelligenz (KI) in der Arzneimittelforschung – Marktumfang
Der Markt ist nach Anwendung, Produkttyp, Technologie, Vergrößerungstyp, Endbenutzer und Vertriebskanal segmentiert.
|
Segmentierung |
Untersegmentierung |
|
Nach Anwendung |
|
|
Nach Technologie |
|
|
Nach Arzneimitteltyp |
|
|
Durch das Angebot |
|
|
Nach Indikation |
|
|
Nach Endverwendung
|
|
Künstliche Intelligenz (KI) in der Arzneimittelforschung – Regionale Marktanalyse
„Nordamerika ist die dominierende Region auf dem Markt für künstliche Intelligenz (KI) in der Arzneimittelforschung“
- Nordamerika dominiert den Markt für künstliche Intelligenz (KI) in der Arzneimittelforschung , angetrieben durch eine fortschrittliche Gesundheitsinfrastruktur, eine hohe Akzeptanz modernster medizinischer Technologien und eine starke Präsenz wichtiger Marktteilnehmer.
- In den USA sind einige der größten Pharmaunternehmen wie Pfizer , Johnson & Johnson , Merck und Eli Lilly ansässig , die bei der Nutzung von KI in der Arzneimittelforschung eine Vorreiterrolle einnehmen. Diese Unternehmen investieren massiv in KI, um den Prozess der Arzneimittelentwicklung zu rationalisieren und die Ergebnisse zu verbessern.
- Nordamerika verfügt über ein etabliertes Technologie-Ökosystem mit großen KI-Unternehmen wie IBM Watson Health und Google DeepMind, die Innovationen in der Arzneimittelforschung vorantreiben. Diese Unternehmen sind führend in der KI-Forschung und bieten leistungsstarke KI-Tools für die pharmazeutische Forschung und Entwicklung.
- Nordamerika investiert kontinuierlich einen erheblichen Teil seines BIP in Forschung und Entwicklung (F&E). Diese Mittel fördern den Einsatz fortschrittlicher KI-Technologien in der Arzneimittelforschung, da Unternehmen nach Möglichkeiten suchen, die Entdeckung neuer Medikamente und Behandlungen zu beschleunigen.
- In Nordamerika gibt es zahlreiche Partnerschaften zwischen Pharmaunternehmen und KI-Startups oder Technologieunternehmen. Kooperationen wie die von Novartis und Microsoft zum Einsatz von KI in der Arzneimittelforschung unterstreichen beispielsweise die führende Rolle der Region bei der Nutzung von KI für Innovationen in der Arzneimittelentwicklung.
„Der asiatisch-pazifische Raum wird voraussichtlich die höchste Wachstumsrate verzeichnen“
- Im asiatisch-pazifischen Raum wird die höchste Wachstumsrate im Bereich der künstlichen Intelligenz (KI) in der Arzneimittelforschung erwartet , was auf den schnellen Ausbau der Gesundheitsinfrastruktur, das zunehmende Bewusstsein für die Augengesundheit und die steigende Zahl chirurgischer Eingriffe zurückzuführen ist.
- Länder wie China , Indien und Japan investieren massiv in KI und Biotechnologie , um ihre Pharmabranche zu stärken und den wachsenden Bedarf im Gesundheitswesen zu decken. Diese Investitionen beschleunigen den Einsatz von KI in der Arzneimittelforschung.
- Die Regierungen der APAC-Region fördern die digitale Gesundheitsversorgung und die Integration von KI aktiv durch verschiedene Initiativen. China beispielsweise hat nationale Strategien zur Einbindung von KI in das Gesundheitswesen umgesetzt und so den Einsatz von KI in der Arzneimittelforschung gefördert.
- Die APAC- Länder verfügen über große Bevölkerungen und enorme Mengen an Gesundheitsdaten, die für die KI-gestützte Arzneimittelforschung genutzt werden können. Die robuste digitale Infrastruktur der Region unterstützt die Integration von KI-Technologien in die Arzneimittelentwicklung.
- Der asiatisch-pazifische Raum (APAC) verzeichnet das schnellste Wachstum im Markt für KI in der Arzneimittelforschung. Dies ist auf steigende Investitionen, unterstützende Regierungspolitik, einen großen Datenpool und die Expansion von Biotech-Unternehmen zurückzuführen, die KI-Technologie nutzen.
Marktanteile der künstlichen Intelligenz (KI) in der Arzneimittelforschung
Die Wettbewerbslandschaft des Marktes bietet detaillierte Informationen zu den einzelnen Wettbewerbern. Zu den Details gehören Unternehmensübersicht, Finanzdaten, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang sowie Anwendungsdominanz. Die oben genannten Daten beziehen sich ausschließlich auf die Marktausrichtung der Unternehmen.
Die wichtigsten Marktführer auf dem Markt sind:
- NVIDIA Corporation (USA)
- IBM Corp. (USA)
- Atomwise Inc. (USA)
- Microsoft (US)
- Wohlwollende KI (Großbritannien)
- Aria Pharmaceuticals, Inc. (USA)
- DEEP GENOMICS (Kanada)
- Exscientia (Großbritannien)
- Insilico Medicine (Hongkong)
- Cyclica (Kanada)
- NuMedii, Inc. (USA)
- Envisagenics (USA)
- Owkin Inc. (USA)
- BERG LLC (US)
- Schrödinger, Inc. (USA)
- XtalPi Inc. (China)
- BIOAGE Inc. (USA)
Neueste Entwicklungen im globalen Markt für künstliche Intelligenz (KI) im Bereich der Arzneimittelforschung
- Im Mai 2024 stellte Google DeepMind die dritte Version seines KI-Modells AlphaFold vor, das die Arzneimittelentwicklung verbessern und die Bekämpfung von Krankheiten verbessern soll. Diese erweiterte Version ermöglicht es Forschern von DeepMind und Isomorphic Labs, das Verhalten aller Moleküle, einschließlich der menschlichen DNA, zu analysieren.
- Im April 2024 sicherte sich Xaira Therapeutics, ein innovatives Unternehmen, das sich auf KI-gestützte Arzneimittelforschung und -entwicklung spezialisiert hat, in einer gemeinsamen Finanzierungsrunde mit ARCH Venture Partners und Foresite Labs über eine Million US-Dollar. Mithilfe von maschinellem Lernen, Datengenerierungsmodellen und der Entwicklung therapeutischer Produkte konzentriert sich das Unternehmen auf die Erforschung von Wirkstoffzielen, die bisher schwer zu erreichen waren.
- Im Dezember 2023 brachte MilliporeSigma, die Life-Science-Sparte von Merck, AIDDISON auf den Markt, eine hochmoderne Software zur Arzneimittelforschung. Diese Plattform schließt die Lücke zwischen virtuellem Moleküldesign und realer Herstellbarkeit durch die Integration der Retrosynthese-Software-API von Synthia. Sie kombiniert generative KI, maschinelles Lernen und computergestütztes Arzneimitteldesign, um Arzneimittelentwicklungsprozesse zu optimieren.
- Im Mai 2023 brachte Google zwei innovative KI-gestützte Tools auf den Markt, die Biotech- und Pharmaunternehmen dabei unterstützen sollen, die Arzneimittelforschung zu beschleunigen und die Präzisionsmedizin zu verfeinern. Diese Lösungen sollen den Zeit- und Kostenaufwand für die Einführung neuer Therapien auf dem US-Markt reduzieren. Zu den ersten Anwendern dieser Tools zählen Cerevel Therapeutics, Pfizer und Colossal Biosciences .
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Inhaltsverzeichnis
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 MARKETS COVERED
2.5 GEOGRAPHIC SCOPE
2.6 YEARS CONSIDERED FOR THE STUDY
2.7 RESEARCH METHODOLOGY
2.8 TECHNOLOGY LIFE LINE CURVE
2.9 MULTIVARIATE MODELLING
2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.11 DBMR MARKET POSITION GRID
2.12 MARKET APPLICATION COVERAGE GRID
2.13 DBMR MARKET CHALLENGE MATRIX
2.14 SECONDARY SOURCES
2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT
2.16 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 PESTEL ANALYSIS
5.2 PORTER’S FIVE FORCES MODEL
6 INDUSTRY INSIGHTS
6.1 MICRO AND MACRO ECONOMIC FACTORS
6.2 PENETRATION AND GROWTH PROSPECT MAPPING
6.3 KEY PRICING STRATEGIES
6.4 INTERVIEWS WITH SPECIALIST
6.5 ANALYIS AND RECOMMENDATION
7 INTELLECTUAL PROPERTY (IP) PORTFOLIO
7.1 PATENT QUALITY AND STRENGTH
7.2 PATENT FAMILIES
7.3 LICENSING AND COLLABORATIONS
7.4 COMPETITIVE LANDSCAPE
7.5 IP STRATEGY AND MANAGEMENT
7.6 OTHER
8 COST ANALYSIS BREAKDOWN
9 TECHNONLOGY ROADMAP
10 INNOVATION TRACKER AND STRATEGIC ANALYSIS
10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS
10.1.1 JOINT VENTURES
10.1.2 MERGERS AND ACQUISITIONS
10.1.3 LICENSING AND PARTNERSHIP
10.1.4 TECHNOLOGY COLLABORATIONS
10.1.5 STRATEGIC DIVESTMENTS
10.2 NUMBER OF PRODUCTS IN DEVELOPMENT
10.3 STAGE OF DEVELOPMENT
10.4 TIMELINES AND MILESTONES
10.5 INNOVATION STRATEGIES AND METHODOLOGIES
10.6 RISK ASSESSMENT AND MITIGATION
10.7 FUTURE OUTLOOK
11 REGULATORY COMPLIANCE
11.1 REGULATORY AUTHORITIES
11.2 REGULATORY CLASSIFICATIONS
11.2.1 CLASS I
11.2.2 CLASS II
11.2.3 CLASS III
11.3 REGULATORY SUBMISSIONS
11.4 INTERNATIONAL HARMONIZATION
11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS
11.6 REGULATORY CHALLENGES AND STRATEGIES
12 REIMBURSEMENT FRAMEWORK
13 OPPUTUNITY MAP ANALYSIS
14 VALUE CHAIN ANALYSIS
15 HEALTHCARE ECONOMY
15.1 HEALTHCARE EXPENDITURE
15.2 CAPITAL EXPENDITURE
15.3 CAPEX TRENDS
15.4 CAPEX ALLOCATION
15.5 FUNDING SOURCES
15.6 INDUSTRY BENCHMARKS
15.7 GDP RATION IN OVERALL GDP
15.8 HEALTHCARE SYSTEM STRUCTURE
15.9 GOVERNMENT POLICIES
15.1 ECONOMIC DEVELOPMENT
16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
16.1 OVERVIEW
16.2 SOFTWARE
16.2.1 INTEGRATED
16.2.2 STANDALONE
16.3 SERVICES
17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
17.1 OVERVIEW
17.2 MACHINE LEARNING (ML)
17.2.1 SUPERVISED LEARNING
17.2.2 UNSUPERVISED LEARNING
17.2.3 REINFORCEMENT LEARNING
17.3 DEEP LEARNING
17.4 NATURAL LANGUAGE PROCESSING (NLP)
17.5 OTHERS
18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE
18.1 OVERVIEW
18.2 SMALL MOLECULE
18.3 LARGE MOLECULE
19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
19.1 OVERVIEW
19.2 NOVEL DRUG CANDIDATES
19.2.1 IDENTIFY BIOLOGICS TARGET
19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE
19.2.3 OTHERS
19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL
19.4 DRUG MONITORING
19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS
19.6 UNDERSTANDING DISEASE MECHANISMS
19.7 AGGREGATING AND SYNTHESIZING INFORMATION
19.8 FORM ATION & QUALIFICATION OF HYPOTHESES
19.9 DE NOVO DRUG DESIGN
19.1 FINDING DRUG TARGETS OF AN OLD DRUG
19.11 OTHERS
20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
20.1 OVERVIEW
20.2 IMMUNO-ONCOLOGY
20.2.1 PROSTATE CANCER
20.2.2 BREAST CANCER
20.2.3 BRAIN CANCER
20.2.4 LUNG CANCER
20.2.5 PANCREATIC CANCER
20.2.6 COLORECTAL CANCER
20.2.7 LEUKEMIA
20.2.8 OTHERS
20.3 NEURODEGENERATIVE DISEASES
20.4 CARDIOVASCULAR DISEASES
20.5 METABOLIC DISEASES
20.6 OTHERS
21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER
21.1 OVERVIEW
21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
21.3 CONTRACT RESEARCH ORGANIZATIONS
21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES
21.5 OTHERS
22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)
GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
22.1 OVERVIEW
22.2 NORTH AMERICA
22.2.1 U.S.
22.2.2 CANADA
22.2.3 MEXICO
22.3 EUROPE
22.3.1 GERMANY
22.3.2 U.K.
22.3.3 ITALY
22.3.4 FRANCE
22.3.5 SPAIN
22.3.6 SWITZERLAND
22.3.7 RUSSIA
22.3.8 TURKEY
22.3.9 BELGIUM
22.3.10 NETHERLANDS
22.3.11 REST OF EUROPE
22.4 ASIA-PACIFIC
22.4.1 JAPAN
22.4.2 CHINA
22.4.3 SOUTH KOREA
22.4.4 INDIA
22.4.5 AUSTRALIA & NEW ZEALAND
22.4.6 SINGAPORE
22.4.7 THAILAND
22.4.8 INDONESIA
22.4.9 MALAYSIA
22.4.10 PHILIPPINES
22.4.11 REST OF ASIA-PACIFIC
22.5 SOUTH AMERICA
22.5.1 BRAZIL
22.5.2 ARGENTINA
22.5.3 REST OF SOUTH AMERICA
22.6 MIDDLE EAST AND AFRICA
22.6.1 SOUTH AFRICA
22.6.2 EGYPT
22.6.3 SAUDI ARABIA
22.6.4 UNITED ARAB EMIRATES
22.6.5 ISRAEL
22.6.6 REST OF MIDDLE EAST AND AFRICA
23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE
23.1 COMPANY SHARE ANALYSIS: GLOBAL
23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
23.3 COMPANY SHARE ANALYSIS: EUROPE
23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
23.5 MERGERS & ACQUISITIONS
23.6 NEW PRODUCT DEVELOPMENT & APPROVALS
23.7 EXPANSIONS
23.8 REGULATORY CHANGES
23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES
24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS
25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE
25.1 MICROSOFT
25.1.1 COMPANY OVERVIEW
25.1.2 REVENUE ANALYSIS
25.1.3 PRODUCT PORTFOLIO
25.1.4 RECENT DEVELOPMENTS
25.2 SHANGHAI MEDICILON INC.
25.2.1 COMPANY OVERVIEW
25.2.2 REVENUE ANALYSIS
25.2.3 PRODUCT PORTFOLIO
25.2.4 RECENT DEVELOPMENTS
25.3 NVIDIA CORPORATION + ASTRAZENECA
25.3.1 COMPANY OVERVIEW
25.3.2 REVENUE ANALYSIS
25.3.3 PRODUCT PORTFOLIO
25.3.4 RECENT DEVELOPMENTS
25.4 ATOMWISE INC.
25.4.1 COMPANY OVERVIEW
25.4.2 REVENUE ANALYSIS
25.4.3 PRODUCT PORTFOLIO
25.4.4 RECENT DEVELOPMENTS
25.5 DEEP GENOMICS
25.5.1 COMPANY OVERVIEW
25.5.2 REVENUE ANALYSIS
25.5.3 PRODUCT PORTFOLIO
25.5.4 RECENT DEVELOPMENTS
25.6 CLOUD PHARMACEUTICALS INC.
25.6.1 COMPANY OVERVIEW
25.6.2 REVENUE ANALYSIS
25.6.3 PRODUCT PORTFOLIO
25.6.4 RECENT DEVELOPMENTS
25.7 INSILICO MEDICINE
25.7.1 COMPANY OVERVIEW
25.7.2 REVENUE ANALYSIS
25.7.3 PRODUCT PORTFOLIO
25.7.4 RECENT DEVELOPMENTS
25.8 BENEVOLENTAI
25.8.1 COMPANY OVERVIEW
25.8.2 REVENUE ANALYSIS
25.8.3 PRODUCT PORTFOLIO
25.8.4 RECENT DEVELOPMENTS
25.9 EXSCIENTIA
25.9.1 COMPANY OVERVIEW
25.9.2 REVENUE ANALYSIS
25.9.3 PRODUCT PORTFOLIO
25.9.4 RECENT DEVELOPMENTS
25.1 CYCLICA
25.10.1 COMPANY OVERVIEW
25.10.2 REVENUE ANALYSIS
25.10.3 PRODUCT PORTFOLIO
25.10.4 RECENT DEVELOPMENTS
25.11 OWKIN, INC
25.11.1 COMPANY OVERVIEW
25.11.2 REVENUE ANALYSIS
25.11.3 PRODUCT PORTFOLIO
25.11.4 RECENT DEVELOPMENTS
25.12 ENVISAGENICS
25.12.1 COMPANY OVERVIEW
25.12.2 REVENUE ANALYSIS
25.12.3 PRODUCT PORTFOLIO
25.12.4 RECENT DEVELOPMENTS
25.13 NUMEDII, INC.
25.13.1 COMPANY OVERVIEW
25.13.2 REVENUE ANALYSIS
25.13.3 PRODUCT PORTFOLIO
25.13.4 RECENT DEVELOPMENTS
25.14 BIOSYNTAGMA
25.14.1 COMPANY OVERVIEW
25.14.2 REVENUE ANALYSIS
25.14.3 PRODUCT PORTFOLIO
25.14.4 RECENT DEVELOPMENTS
25.15 COLLABORATIONS PHARMACEUTICALS, INC.
25.15.1 COMPANY OVERVIEW
25.15.2 REVENUE ANALYSIS
25.15.3 PRODUCT PORTFOLIO
25.15.4 RECENT DEVELOPMENTS
25.16 INVENIAI LLC
25.16.1 COMPANY OVERVIEW
25.16.2 REVENUE ANALYSIS
25.16.3 PRODUCT PORTFOLIO
25.16.4 RECENT DEVELOPMENTS
25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION
25.17.1 COMPANY OVERVIEW
25.17.2 REVENUE ANALYSIS
25.17.3 PRODUCT PORTFOLIO
25.17.4 RECENT DEVELOPMENTS
25.18 VALO HEALTH
25.18.1 COMPANY OVERVIEW
25.18.2 REVENUE ANALYSIS
25.18.3 PRODUCT PORTFOLIO
25.18.4 RECENT DEVELOPMENTS
25.19 AIFORIA
25.19.1 COMPANY OVERVIEW
25.19.2 REVENUE ANALYSIS
25.19.3 PRODUCT PORTFOLIO
25.19.4 RECENT DEVELOPMENTS
25.2 CHEMALIVE
25.20.1 COMPANY OVERVIEW
25.20.2 REVENUE ANALYSIS
25.20.3 PRODUCT PORTFOLIO
25.20.4 RECENT DEVELOPMENTS
25.21 DEEPMATTER GROUP LIMITED
25.21.1 COMPANY OVERVIEW
25.21.2 REVENUE ANALYSIS
25.21.3 PRODUCT PORTFOLIO
25.21.4 RECENT DEVELOPMENTS
25.22 MABSILICO.
25.22.1 COMPANY OVERVIEW
25.22.2 REVENUE ANALYSIS
25.22.3 PRODUCT PORTFOLIO
25.22.4 RECENT DEVELOPMENTS
25.23 OPTIBRIUM, LTD.
25.23.1 COMPANY OVERVIEW
25.23.2 REVENUE ANALYSIS
25.23.3 PRODUCT PORTFOLIO
25.23.4 RECENT DEVELOPMENTS
25.24 ABBVIE AND BIGHAT BIOSCIENCES
25.24.1 COMPANY OVERVIEW
25.24.2 REVENUE ANALYSIS
25.24.3 PRODUCT PORTFOLIO
25.24.4 RECENT DEVELOPMENTS
25.25 ADAGENE
25.25.1 COMPANY OVERVIEW
25.25.2 REVENUE ANALYSIS
25.25.3 PRODUCT PORTFOLIO
25.25.4 RECENT DEVELOPMENTS
25.26 PEPTICOM LTD.
25.26.1 COMPANY OVERVIEW
25.26.2 REVENUE ANALYSIS
25.26.3 PRODUCT PORTFOLIO
25.26.4 RECENT DEVELOPMENTS
25.27 DEARGEN INC.
25.27.1 COMPANY OVERVIEW
25.27.2 REVENUE ANALYSIS
25.27.3 PRODUCT PORTFOLIO
25.27.4 RECENT DEVELOPMENTS
25.28 GERO.AI
25.28.1 COMPANY OVERVIEW
25.28.2 REVENUE ANALYSIS
25.28.3 PRODUCT PORTFOLIO
25.28.4 RECENT DEVELOPMENTS
25.29 3BIGS CO. LTD.
25.29.1 COMPANY OVERVIEW
25.29.2 REVENUE ANALYSIS
25.29.3 PRODUCT PORTFOLIO
25.29.4 RECENT DEVELOPMENTS
25.3 BPGBIO INC.
25.30.1 COMPANY OVERVIEW
25.30.2 REVENUE ANALYSIS
25.30.3 PRODUCT PORTFOLIO
25.30.4 RECENT DEVELOPMENTS
25.31 SCHRÖDINGER, INC.
25.31.1 COMPANY OVERVIEW
25.31.2 REVENUE ANALYSIS
25.31.3 PRODUCT PORTFOLIO
25.31.4 RECENT DEVELOPMENTS
25.32 XTALPI INC.
25.32.1 COMPANY OVERVIEW
25.32.2 REVENUE ANALYSIS
25.32.3 PRODUCT PORTFOLIO
25.32.4 RECENT DEVELOPMENTS
25.33 BIOAGE INC.
25.33.1 COMPANY OVERVIEW
25.33.2 REVENUE ANALYSIS
25.33.3 PRODUCT PORTFOLIO
25.33.4 RECENT DEVELOPMENTS
26 RELATED REPORTS
27 QUESTIONNAIRE
28 CONCLUSION
29 ABOUT DATA BRIDGE MARKET RESEARCH
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

