Global Cloud Based Workload Scheduling Software Market
Marktgröße in Milliarden USD
CAGR :
%
USD
3.50 Billion
USD
7.13 Billion
2024
2032
| 2025 –2032 | |
| USD 3.50 Billion | |
| USD 7.13 Billion | |
|
|
|
|
Nach Komponente (Software, Dienste), Bereitstellungsmodus (Public Cloud, Private Cloud, Hybrid Cloud), Unternehmensgröße (Kleine und mittlere Unternehmen, Große Unternehmen), Anwendung (IT-Betrieb, Geschäftsbetrieb, Datenverarbeitung, Personalmanagement), Branche (IT und Telekommunikation, BFSI, Gesundheitswesen, Einzelhandel, Fertigung, Regierung, Sonstige) und Region – Branchentrends und Prognose bis 2032
Marktgröße für Cloud-basierte Workload-Planungssoftware
- Der globale Markt für cloudbasierte Workload-Scheduling-Software hatte im Jahr 2024 einen Wert von 3,50 Milliarden US-Dollar und dürfte bis 2032 einen Wert von 7,13 Milliarden US-Dollar erreichen , was einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 9,3 % im Prognosezeitraum entspricht.
- Dieses Wachstum wird durch die zunehmende Nutzung von Cloud Computing, die steigende Nachfrage nach Automatisierung im Geschäftsbetrieb und die Notwendigkeit eines effizienten Ressourcenmanagements in komplexen IT-Umgebungen vorangetrieben.
Marktanalyse für Cloud-basierte Workload-Scheduling-Software
- Mithilfe cloudbasierter Workload-Scheduling-Software können Unternehmen die Ausführung von Aufgaben und Arbeitsabläufen in verteilten Cloud-Umgebungen automatisieren, überwachen und optimieren und so die Betriebseffizienz und Ressourcenzuweisung sicherstellen.
- Der Markt wird durch die zunehmende Komplexität der IT-Infrastrukturen, die Integration von KI und maschinellem Lernen für die vorausschauende Planung und die Verlagerung hin zu Hybrid- und Multi-Cloud-Umgebungen vorangetrieben.
- Nordamerika verfügt aufgrund seiner fortschrittlichen IT-Infrastruktur, der hohen Akzeptanz von Cloud-Lösungen und der Präsenz wichtiger Akteure wie IBM Corporation, Microsoft Corporation und Amazon Web Services über einen bedeutenden Marktanteil.
- Im asiatisch-pazifischen Raum wird voraussichtlich das schnellste Wachstum verzeichnet, angetrieben durch die zunehmende digitale Transformation, die steigende Nutzung der Cloud sowie staatliche Initiativen für Smart-City-Projekte in Ländern wie China, Indien und Japan.
- Prognosen zufolge wird das Segment der Großunternehmen im Jahr 2025 einen signifikanten Marktanteil von etwa 60 % erreichen, was auf die weite Verbreitung von Workload-Scheduling-Lösungen in komplexen IT-Betriebsabläufen zurückzuführen ist.
Berichtsumfang und Marktsegmentierung für Cloud-basierte Workload-Scheduling-Software
|
Eigenschaften |
Wichtige Markteinblicke in cloudbasierte Workload-Planungssoftware |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
Europa
Asien-Pazifik
Naher Osten und Afrika
Südamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Wertschöpfungsdaten-Infosets |
Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch Import-Export-Analysen, eine Übersicht über die Produktionskapazität, eine Analyse des Produktionsverbrauchs, eine Preistrendanalyse, ein Szenario des Klimawandels, eine Lieferkettenanalyse, eine Wertschöpfungskettenanalyse, eine Übersicht über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, eine PESTLE-Analyse, eine Porter-Analyse und regulatorische Rahmenbedingungen. |
Markttrends für cloudbasierte Workload-Planungssoftware
„Fortschritte bei KI-gesteuerten und hybriden Cloud-basierten Planungstechnologien“
- Der Einsatz von KI und maschinellem Lernen in cloudbasierter Workload-Planungssoftware ermöglicht eine vorausschauende Aufgabenoptimierung und Echtzeit-Anpassung und steigert so die Effizienz von IT- und Geschäftsabläufen.
- Die Integration von Hybrid-Cloud-Lösungen unterstützt ein nahtloses Workload-Management über öffentliche und private Clouds hinweg und geht auf die unterschiedlichen Anforderungen der Organisation ein.
- Beispielsweise haben Microsoft und Oracle im September 2023 ihre Partnerschaft erweitert, um Oracle Database-Dienste in Azure zu integrieren und so die Workload-Planungsfunktionen für Cloud-basierte Anwendungen zu verbessern.
- Diese Innovationen beschleunigen die Einführung in den Bereichen IT, BFSI und Gesundheitswesen.
Marktdynamik für cloudbasierte Workload-Planungssoftware
Treiber
„Zunehmende Nutzung von Cloud Computing und Automatisierung“
- Der zunehmende Trend zu Cloud-basierten Infrastrukturen und der Bedarf an Automatisierung zur Optimierung von IT- und Geschäftsprozessen treiben die Nachfrage nach Software zur Arbeitslastplanung voran.
- Strenge gesetzliche Anforderungen wie die DSGVO und der CCPA erfordern robuste Planungslösungen, um Compliance und Datensicherheit zu gewährleisten.
- So wurde beispielsweise in einem Flexera-Bericht aus dem Jahr 2024 darauf hingewiesen, dass 80 % der Unternehmen Microsoft Azure für öffentliche Cloud-Zwecke verwenden. Dies unterstreicht die Abhängigkeit von Cloud-Lösungen, die eine effiziente Planung erfordern.
- Die steigende Datengenerierung und der Bedarf an Echtzeitverarbeitung treiben das Marktwachstum weiter voran.
Gelegenheit
„Einführung in kleinen und mittleren Unternehmen (KMU) und Smart City-Initiativen“
- Die Integration cloudbasierter Workload-Planungssoftware in KMU bietet kostengünstige Lösungen für die Verwaltung komplexer Workloads und unterstützt Skalierbarkeit und betriebliche Effizienz.
- Smart-City-Projekte, insbesondere im asiatisch-pazifischen Raum, nutzen die Arbeitslastplanung für die Echtzeit-Datenverarbeitung und Ressourcenverwaltung.
- Beispielsweise ging TeamPoint Software im Oktober 2023 eine Partnerschaft mit More-IQ ein, um cloudbasierte Planungslösungen für das Smart City-Außendienstmanagement bereitzustellen.
- Die wachsende Nachfrage nach flexiblen und skalierbaren Lösungen bietet erhebliche Wachstumschancen.
Einschränkung/Herausforderung
„Hohe Implementierungskosten und Bedenken hinsichtlich der Datensicherheit“
- Die Entwicklung und Bereitstellung fortschrittlicher cloudbasierter Planungslösungen, insbesondere KI-gesteuerter Systeme, ist mit hohen Forschungs- und Entwicklungs- sowie Implementierungskosten verbunden und stellt eine Herausforderung für die Skalierbarkeit des Marktes dar.
- Bedenken hinsichtlich Datensicherheit und Datenschutz, einschließlich Schwachstellen in Cloud-Umgebungen, beeinträchtigen die Zuverlässigkeit von Planungslösungen.
- So wurde beispielsweise in einem Cybersecurity Report aus dem Jahr 2024 ein Anstieg der Cloud-basierten Datenschutzverletzungen um 50 % festgestellt, was die Notwendigkeit robuster Sicherheitsmaßnahmen unterstreicht.
-
Der Mangel an Fachkräften im Bereich Cloud Computing und Cybersicherheit erschwert die Marktexpansion zusätzlich.
Marktumfang für Cloud-basierte Workload-Scheduling-Software
Der Markt ist nach Komponente, Bereitstellungsmodus, Unternehmensgröße, Anwendung und Branche segmentiert.
|
Segmentierung |
Untersegmentierung |
|
Nach Komponente |
|
|
Nach Bereitstellungsmodus |
|
|
Nach Organisationsgröße |
|
|
Nach Anwendung |
|
|
Nach Branchenvertikale |
|
Im Jahr 2025 wird das Segment der Großunternehmen voraussichtlich das Segment der Organisationsgrößen dominieren.
Das Segment der Großunternehmen wird voraussichtlich im Jahr 2025 einen Marktanteil von etwa 60 % halten, was auf die weite Verbreitung cloudbasierter Workload-Planungssoftware in komplexen IT-Vorgängen zurückzuführen ist.
Das Segment der IT-Betriebsanwendungen wird im Prognosezeitraum voraussichtlich den größten Anteil am Anwendungsmarkt einnehmen
. Im Jahr 2025 wird das Segment der IT-Betriebsanwendungen voraussichtlich einen Marktanteil von 35 % erreichen, getrieben durch die weltweite Nachfrage nach effizienter Aufgabenautomatisierung und Ressourcenverwaltung in IT-Umgebungen.
„Nordamerika hält den größten Anteil am Markt für Cloud-basierte Workload-Scheduling-Software“
-
Nordamerika dominiert den Markt aufgrund seiner fortschrittlichen IT-Infrastruktur, der weit verbreiteten Nutzung cloudbasierter Workload-Planungssoftware und der Präsenz führender Anbieter wie IBM Corporation, Microsoft Corporation und Amazon Web Services.
- Die USA halten einen erheblichen Anteil, der durch die hohe Nachfrage nach Cloud-basierten Lösungen zur Arbeitslastplanung in IT-Betrieb, BFSI und Gesundheitsanwendungen, robuste Investitionen in Forschung und Entwicklung sowie strenge Datenschutzbestimmungen bedingt ist.
- Die Region profitiert von erheblichen Fortschritten in der KI-gesteuerten Automatisierung und in Hybrid-Cloud-Technologien.
„Im asiatisch-pazifischen Raum wird voraussichtlich die höchste jährliche Wachstumsrate im Markt für cloudbasierte Workload-Planungssoftware verzeichnet“
- Das Wachstum im asiatisch-pazifischen Raum wird durch die zunehmende Nutzung der Cloud, die Ausweitung von Initiativen zur digitalen Transformation und die staatliche Unterstützung von Smart-City-Projekten in Ländern wie China, Indien und Japan vorangetrieben.
- Aufgrund der steigenden Investitionen in Cloud-Infrastruktur und IT-Modernisierungsprogramme wird für Indien die höchste durchschnittliche jährliche Wachstumsrate erwartet.
- Der zunehmende Fokus der Region auf Datensicherheit und Automatisierung in IT- und Geschäftsabläufen beschleunigt das Marktwachstum zusätzlich.
Marktanteile cloudbasierter Workload-Scheduling-Software
Die Wettbewerbslandschaft des Marktes liefert detaillierte Informationen zu den einzelnen Wettbewerbern. Zu den Details gehören Unternehmensübersicht, Unternehmensfinanzen, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang sowie Anwendungsdominanz. Die oben genannten Datenpunkte beziehen sich ausschließlich auf die Marktausrichtung der Unternehmen.
Die wichtigsten Marktführer auf dem Markt sind:
- IBM Corporation (USA)
- Microsoft Corporation (USA)
- Amazon Web Services, Inc. (USA)
- Oracle Corporation (USA)
- SAP SE (Deutschland)
- BMC Software, Inc. (USA)
- Broadcom Inc. (CA, Inc.) (USA)
- VMware, Inc. (USA)
- Adaptive Computing Enterprises, Inc. (USA)
- Cisco Systems, Inc. (USA)
Neueste Entwicklungen auf dem globalen Markt für Cloud-basierte Workload-Scheduling-Software
- Im März 2022 entschied sich BMC Software für den Oracle Exadata Cloud Service als Antrieb für seine BMC Helix-Plattform und verbesserte so die cloudbasierte Workloadplanung für Unternehmenskunden.
- Im September 2023 gaben Microsoft und Oracle eine erweiterte Partnerschaft zur Bereitstellung von Oracle Database@Azure bekannt, wodurch die Workloadplanung für unternehmenskritische Anwendungen verbessert wird.
- Im Oktober 2023 haben sich TeamPoint Software und More-IQ zusammengetan, um eine cloudbasierte SaaS-Anwendung zur Planung und Optimierung für das Smart City-Außendienstmanagement bereitzustellen.
- Im Dezember 2023 brachte die IBM Corporation ein KI-gesteuertes Workload-Scheduling-Modul für ihre Hybrid-Cloud-Plattform auf den Markt, das auf eine verbesserte Automatisierung des IT-Betriebs abzielt.
- Im Juli 2024 führte Amazon Web Services ein neues Workload-Orchestrierungstool für AWS Batch ein, das die Skalierbarkeit für Datenverarbeitungsanwendungen verbessert.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

