Global Data Science Platform Market
Marktgröße in Milliarden USD
CAGR :
%
USD
204.58 Billion
USD
1,568.85 Billion
2024
2032
| 2025 –2032 | |
| USD 204.58 Billion | |
| USD 1,568.85 Billion | |
|
|
|
|
Globale Marktsegmentierung für Data-Science-Plattformen nach Komponententyp (Plattform, Dienste, Support und Wartung, Beratung sowie Bereitstellung und Integration), Funktionsabteilung (Marketing, Vertrieb, Logistik, Finanzen und Buchhaltung, Kundensupport, Geschäftsbetrieb und andere), Bereitstellungsmodell (vor Ort und Cloud-basiert), Unternehmensgröße (kleine und mittlere Unternehmen (KMU) und große Unternehmen), Endbenutzeranwendung (Bankwesen, Finanzdienstleistungen und Versicherungen (BFSI), Telekommunikation und IT, Einzelhandel und E-Commerce, Gesundheitswesen und Biowissenschaften, Fertigung, Energie und Versorgung, Medien und Unterhaltung, Transport und Logistik, Regierung und andere) – Branchentrends und Prognose bis 2032
Marktgröße für Data-Science-Plattformen
- Der globale Markt für Data-Science-Plattformen wurde im Jahr 2024 auf 204,58 Milliarden US-Dollar geschätzt und soll bis 2032 1568,85 Milliarden US-Dollar erreichen , bei einer CAGR von 29,00 % im Prognosezeitraum.
- Dieses Wachstum wird durch Faktoren wie den exponentiellen Anstieg der Datengenerierung, Fortschritte in der künstlichen Intelligenz (KI) und im maschinellen Lernen (ML), die weit verbreitete Nutzung von Cloud Computing und die zunehmende Betonung datengesteuerter Entscheidungsfindung vorangetrieben.
Marktanalyse für Data-Science-Plattformen
- Eine Data-Science-Plattform ist eine integrierte Umgebung, die Datenwissenschaftlern Tools, Bibliotheken und Infrastruktur für die Entwicklung, Verwaltung und Durchführung datenbasierter Projekte bietet. Sie ermöglicht es Nutzern, große Datensätze zu sammeln, zu analysieren und zu visualisieren und erleichtert gleichzeitig die Zusammenarbeit zwischen Teams.
- Diese Plattformen unterstützen häufig verschiedene Programmiersprachen (wie Python, R und SQL), Algorithmen für maschinelles Lernen und Datenpipelines für eine effiziente Modellerstellung und -bereitstellung.
- Data-Science-Plattformen bieten außerdem Funktionen wie Versionskontrolle, Automatisierung und Skalierbarkeit, wodurch es für Unternehmen einfacher wird, Erkenntnisse aus Daten strukturiert und wiederholbar für die Entscheidungsfindung zu nutzen.
- Nordamerika wird voraussichtlich mit 34,6 % den Markt für Data-Science-Plattformen dominieren, da dort eine gut etablierte technologische Infrastruktur vorhanden ist, die datenintensive Arbeitslasten unterstützt und die Einführung von Data-Science-Plattformen erleichtert.
- Der asiatisch-pazifische Raum dürfte im Prognosezeitraum die am schnellsten wachsende Region im Markt für Data-Science-Plattformen sein, da die Menge an Unternehmens- und Verbraucherdaten stark ansteigt und eine Nachfrage nach fortschrittlichen Analyselösungen entsteht.
- Das Plattformsegment wird voraussichtlich mit einem Marktanteil von 83,9 % den Markt dominieren, da technologische Verbesserungen wie Data Mining, Advanced Computing und Robotik das Wachstum des Segments maßgeblich vorantreiben. Diese Fortschritte ermöglichen es Datenwissenschaftlern, Machine-Learning-Algorithmen effektiver zu erstellen, zu trainieren, zu skalieren und zu teilen.
Berichtsumfang und Marktsegmentierung für Data-Science-Plattformen
|
Eigenschaften |
Wichtige Markteinblicke für Data-Science-Plattformen |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
Europa
Asien-Pazifik
Naher Osten und Afrika
Südamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Wertschöpfungsdaten-Infosets |
Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team kuratierte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse. |
Markttrends für Data-Science-Plattformen
„Beschleunigte KI-Integration und Plattformkonsolidierung“
- Der globale Markt für Data-Science-Plattformen erlebt einen deutlichen Wandel hin zu KI-basierten Lösungen und Plattformkonsolidierung
- Unternehmen integrieren zunehmend fortschrittliche KI-Funktionen in ihre Data-Science-Plattformen, um Automatisierung, prädiktive Analysen und Entscheidungsprozesse zu verbessern.
- Ein Beispiel für diesen Trend ist die kürzlich erfolgte Übernahme von Neon durch Databricks, einem Datenbank-Startup, das auf PostgreSQL-basierte Technologie spezialisiert ist.
- Dieser strategische Schritt zielt darauf ab, die KI-gestützten Datenverwaltungsfunktionen von Databricks zu stärken und Unternehmen die effizientere Entwicklung von KI-Bots und -Agenten zu ermöglichen.
- Solche Konsolidierungen sollen die Daten-Workflows rationalisieren und einheitlichere Lösungen bieten, um der wachsenden Nachfrage nach KI-gestützten Erkenntnissen gerecht zu werden.
Marktdynamik von Data-Science-Plattformen
Treiber
„Exponentielles Wachstum der Datengenerierung“
- Die zunehmende Verbreitung digitaler Aktivitäten hat zu einem beispiellosen Anstieg der Datengenerierung geführt und damit die Nachfrage nach robusten Data-Science-Plattformen angeheizt.
- Mit dem Aufkommen von IoT-Geräten, sozialen Medien und E-Commerce sammeln Unternehmen täglich riesige Datenmengen an
- Um diese Daten effektiv nutzen zu können, benötigen Unternehmen hochentwickelte Tools und Plattformen zur Analyse, Verarbeitung und Ableitung umsetzbarer Erkenntnisse.
- So meldete Databricks beispielsweise ein Umsatzwachstum von 60 % im Vergleich zum Vorjahr, das auf den steigenden Bedarf an fortschrittlichen Datenanalyselösungen zur Verwaltung unstrukturierter Daten und zur Unterstützung von KI-Anwendungen zurückzuführen ist.
- Dieser Datenanstieg unterstreicht die Notwendigkeit skalierbarer und effizienter Data-Science-Plattformen
Gelegenheit
„Demokratisierung von KI- und ML-Tools“
- Die Demokratisierung von Tools für künstliche Intelligenz (KI) und maschinelles Lernen (ML) bietet eine bedeutende Chance für den Markt für Data-Science-Plattformen
- Da diese Technologien immer zugänglicher werden, können Unternehmen erweiterte Analysen nutzen, ohne dass umfangreiches Fachwissen erforderlich ist.
- Dieser Trend wird durch die Zusammenarbeit von Microsoft mit NVIDIA veranschaulicht, um Innovationen im Gesundheitswesen und in den Biowissenschaften mithilfe von Cloud-KI und beschleunigtem Computing voranzutreiben.
- Ziel der Partnerschaft ist es, die Patientenversorgung durch einen schnelleren Zugang zu Präzisionsmedizin und KI-gestützter Diagnostik zu verbessern.
- Solche Initiativen unterstreichen das Potenzial von KI- und ML-Tools, Innovationen in verschiedenen Sektoren voranzutreiben und Möglichkeiten für Data-Science-Plattformen zu schaffen, ein breiteres Publikum anzusprechen.
Einschränkung/Herausforderung
„Bedenken hinsichtlich Datenschutz und Sicherheit“
- Trotz der Wachstumsaussichten stellen Datenschutz- und Sicherheitsbedenken erhebliche Herausforderungen für die Einführung von Data-Science-Plattformen dar
- Die zunehmende Häufigkeit von Datenschutzverletzungen und strenge Vorschriften wie die DSGVO und der CCPA zwingen Unternehmen dazu, Datenschutzmaßnahmen Priorität einzuräumen.
- So stellen beispielsweise die steigenden Fälle von Datenschutzverletzungen in verschiedenen Branchen erhebliche Hindernisse für die Implementierung von Data-Science-Plattformen dar.
- Diese Bedenken erfordern die Entwicklung sicherer und konformer Plattformen, die Risiken mindern und die ethische Nutzung von Daten gewährleisten können und so die Marktdynamik beeinflussen.
Marktumfang der Data-Science-Plattform
Der Markt ist nach Komponententyp, Funktionsaufteilung, Bereitstellungsmodell, Organisationsgröße und Endbenutzeranwendung segmentiert.
|
Segmentierung |
Untersegmentierung |
|
Nach Komponententyp |
|
|
Nach Funktionsabteilung |
|
|
Nach Bereitstellungsmodell |
|
|
Nach Organisationsgröße |
|
|
Nach Endbenutzeranwendung |
|
Im Jahr 2025 wird die Plattform voraussichtlich den Markt dominieren und den größten Anteil im Komponentensegment haben.
Es wird erwartet, dass das Plattformsegment den Markt für Data-Science-Plattformen mit einem Marktanteil von 83,4 % im Jahr 2025 dominieren wird. Technologische Verbesserungen wie Data Mining, Advanced Computing und Robotik tragen maßgeblich zum Wachstum des Segments bei. Diese Fortschritte ermöglichen es Datenwissenschaftlern, Machine-Learning-Algorithmen effektiver zu erstellen, zu trainieren, zu skalieren und zu teilen. Automatisierung erfreut sich in verschiedenen Branchen zunehmender Beliebtheit.
Es wird erwartet, dass der BFSI im Prognosezeitraum den größten Anteil im Segment der Endbenutzeranwendungen ausmacht
Im Jahr 2025 wird das BFSI-Segment voraussichtlich mit einem Marktanteil von 51,31 % den Markt dominieren, da es zunehmend Big-Data-Analysen nutzt, um die Entscheidungsfindung zu verbessern, das Kundenerlebnis zu optimieren und die betriebliche Effizienz zu steigern. Angesichts des wachsenden Volumens an Finanztransaktionen und Kundeninteraktionen setzen Banken und Finanzinstitute Data-Science-Plattformen ein, um riesige Datenmengen zu analysieren und Erkenntnisse zu gewinnen.
Regionale Analyse des Marktes für Data-Science-Plattformen
„Nordamerika hält den größten Anteil am Markt für Data-Science-Plattformen“
- Nordamerika hält mit 34,6 % einen bedeutenden Anteil am globalen Markt für Data-Science-Plattformen, angetrieben durch erhebliche Investitionen in fortschrittliche Analytik in verschiedenen Branchen, darunter BFSI (Banken, Finanzdienstleistungen und Versicherungen), Gesundheitswesen, Einzelhandel und Telekommunikation.
- Die Region verfügt über eine gut etablierte technologische Infrastruktur, die datenintensive Arbeitslasten unterstützt und die Einführung von Data-Science-Plattformen erleichtert.
- Zahlreiche einheimische Anbieter von Data-Science-Plattformen verfügen über einen bedeutenden Marktanteil in Nordamerika und tragen zur Dominanz der Region bei.
- Die robuste Wirtschaft und das günstige Geschäftsumfeld stärken Nordamerikas führende Position auf dem Markt für Data-Science-Plattformen weiter.
„Der asiatisch-pazifische Raum wird voraussichtlich die höchste durchschnittliche jährliche Wachstumsrate (CAGR) im Markt für Data-Science-Plattformen verzeichnen“
- Länder wie China, Indien und Indonesien durchlaufen einen tiefgreifenden digitalen Wandel, der zu einer verstärkten Nutzung von Data-Science-Plattformen führt.
- Richtlinien wie Chinas New Generation AI Development Plan und Indiens National Strategy for Artificial Intelligence fördern das Wachstum von Data-Science-Plattformen
- Die Region erlebt einen enormen Anstieg der Unternehmens- und Verbraucherdaten, was eine Nachfrage nach fortschrittlichen Analyselösungen schafft.
- Institutionen wie das IIT Guwahati, die Data-Science-Programme einführen, tragen zu einer qualifizierten Belegschaft bei und beschleunigen das Marktwachstum weiter.
- Steigende Investitionen in KI- und Machine-Learning-Technologien treiben die Einführung von Data-Science-Plattformen in verschiedenen Sektoren voran
Marktanteil von Data-Science-Plattformen
Die Wettbewerbslandschaft des Marktes liefert detaillierte Informationen zu den einzelnen Wettbewerbern. Zu den Details gehören Unternehmensübersicht, Unternehmensfinanzen, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, globale Präsenz, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführung, Produktbreite und -umfang sowie Anwendungsdominanz. Die oben genannten Datenpunkte beziehen sich ausschließlich auf die Marktausrichtung der Unternehmen.
Die wichtigsten Marktführer auf dem Markt sind:
- IBM (USA)
- DataRobot Inc. (USA)
- apheris AI GmbH (Deutschland)
- Das digitale Talent-Ökosystem (USA)
- Databand (Israel)
- dotData (USA)
- Explorium Inc., (USA)
- Noogata (Israel)
- Tecton Inc., (USA)
- Spell Designs Pty Ltd (USA)
- Arrikto Inc., (USA)
- Iterativ (USA)
- Google Inc. (USA)
- Microsoft (US)
- SAS Institute Inc., (USA)
- Amazon Web Services, Inc. (USA)
- The MathWorks, Inc. (USA)
- Cloudera Inc., (USA)
- Teradata (USA)
- TIBCO Software Inc. (USA)
Neueste Entwicklungen auf dem globalen Markt für Data-Science-Plattformen
- Im Juni 2024 gab die IBM Corporation eine Zusammenarbeit mit Telefónica Tech bekannt. Diese Zusammenarbeit wird die Einführung von Lösungen für künstliche Intelligenz (KI), Analytik und Datenverwaltung vorantreiben und den sich kontinuierlich und dynamisch entwickelnden Anforderungen von Unternehmen gerecht werden.
- Im März 2024 kündigte Microsoft eine Zusammenarbeit mit NVIDIA an, um Innovationen im Gesundheitswesen und in den Biowissenschaften mithilfe von Cloud-KI und beschleunigtem Computing voranzutreiben. Ziel der Zusammenarbeit ist es, die Patientenversorgung zu verbessern, indem der Zugang zu Präzisionsmedizin und KI-gestützter Diagnostik beschleunigt wird, was letztlich zu bedeutenden Fortschritten im Gesundheitswesen führt.
- Im Januar 2023 stellte Science Applications International Corp. die Data-Science-Plattform „Tenjin“ vor, eine vielseitige Lösung, die Low-Code- bis Full-Code-Entwicklung für KI- und Machine-Learning-Anwendungen unterstützt. Basierend auf Dataiku unterstützt Tenjin den gesamten Lebenszyklus der KI- und ML-Modellentwicklung – von der Bereitstellung über Training bis hin zur Automatisierung – und bietet zudem fortschrittliche Datenvisualisierungstools. Diese Plattform zielt darauf ab, komplexe Prozesse zu vereinfachen und KI einem breiteren Spektrum von Unternehmen zugänglich zu machen.
- Im Oktober 2022 brachte die IBM Corporation die Diamondback Tape Library auf den Markt, eine fortschrittliche Speicherlösung mit LTO-Technologie. Dieses innovative Produkt bietet eine beeindruckende Kapazität von bis zu 27 Petabyte (PB) Datenspeicher in einem einzigen Server-Rack. Die Diamondback wurde entwickelt, um den steigenden Anforderungen an die Datenspeicherung gerecht zu werden und bietet Skalierbarkeit und Zuverlässigkeit für Unternehmen, die große Informationsmengen sicher und effizient verwalten müssen.
- Im Juni 2022 erweiterte das SAS Institute seine Kapazitäten durch die Übernahme der Kamakura Corporation und ergänzte sein Portfolio um integrierte Risikolösungen. Der Schwerpunkt dieser Akquisition liegt auf der Bereitstellung spezialisierter professioneller Dienstleistungen im Asset Liability Management (ALM) und anderen Finanzsektoren, einschließlich des Bankwesens. Durch die Bündelung von Ressourcen und Expertise möchte SAS umfassende Lösungen anbieten, die komplexe Herausforderungen des Risikomanagements bewältigen und Unternehmen helfen, fundierte Finanzentscheidungen zu treffen und Marktunsicherheiten effektiv zu meistern.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

