Global Deep Learning Cognitive Computing Market
Marktgröße in Milliarden USD
CAGR :
%
USD
41.97 Billion
USD
336.10 Billion
2025
2033
| 2026 –2033 | |
| USD 41.97 Billion | |
| USD 336.10 Billion | |
|
|
|
|
Globale Marktsegmentierung für kognitives Deep Learning nach Komponenten (Plattformen und Services), Geschäftsfunktionen (Personalwesen, Betrieb, Finanzen, Marketing und Vertrieb sowie Sonstige), Bereitstellungsmodus (On-Premises, Cloud und Hybrid), Unternehmensgröße (KMU und Großunternehmen), Anwendung (Automatisierung, intelligente virtuelle Assistenten und ChatbotsVerhaltensanalyse , Biometrie und Sonstige) und Endnutzer (Bankwesen, Finanzdienstleistungen und Versicherungen, Einzelhandel und E-Commerce , Reise und Gastgewerbe, Regierung, IT und Telekommunikation, Gesundheitswesen und Biowissenschaften, Fertigung, Medien und Unterhaltung sowie Sonstige) – Branchentrends und Prognose bis 2033
Wie groß ist der globale Markt für kognitives Deep Learning und wie hoch ist seine Wachstumsrate?
- Der globale Markt für kognitives Deep Learning wurde im Jahr 2025 auf 41,97 Milliarden US-Dollar geschätzt und wird voraussichtlich bis 2033 auf 336,10 Milliarden US-Dollar anwachsen , was einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 29,70 % im Prognosezeitraum entspricht.
- Die ständige Weiterentwicklung der Computerumgebung, beispielsweise in den Bereichen Cloud, Mobile und Analytik, hat das Wachstum des Marktes für kognitives Deep Learning direkt beeinflusst.
- Die steigende Nachfrage nach intelligenten Geschäftsprozessen beflügelt zudem das Wachstum des Marktes für kognitives Deep Learning.
Was sind die wichtigsten Erkenntnisse aus dem Markt für kognitives Deep Learning?
- Die rasanten technologischen Fortschritte sowie die verstärkte Kundenbindung über Social-Media-Plattformen wirken sich ebenfalls positiv auf das Marktwachstum aus. Darüber hinaus tragen die zunehmende Verbreitung fortschrittlicher Technologien der künstlichen Intelligenz und des maschinellen Lernens sowie die fortschreitende Digitalisierung maßgeblich zum Wachstum des Marktes für kognitives Deep Learning bei.
- Die Unfähigkeit, Kundenabsichten zu erkennen und effizient darauf zu reagieren, stellt jedoch die größten Einschränkungen für das Wachstum von Deep-Learning-basierten kognitiven Systemen dar, während Datenmanagement und regulatorische Rahmenbedingungen das Wachstum des Marktes für Deep-Learning-basierte kognitive Systeme potenziell gefährden können.
- Nordamerika dominierte den Markt für kognitives Deep Learning mit einem Umsatzanteil von 41,69 % im Jahr 2025. Dies ist auf die frühe Einführung fortschrittlicher KI-Technologien, eine leistungsstarke Cloud-Infrastruktur und die rasche Ausweitung von KI- und kognitiven Analyseinitiativen in Unternehmen in den USA und Kanada zurückzuführen.
- Für den asiatisch-pazifischen Raum wird von 2026 bis 2033 mit einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 8,25 % das schnellste Wachstum erwartet. Treiber dieser Entwicklung sind die rasche digitale Transformation, die zunehmende Nutzung von Cloud-Lösungen und steigende Investitionen in KI in China, Japan, Indien, Südkorea und Südostasien.
- Das Plattformsegment dominierte den Markt mit einem Anteil von 62,4 % im Jahr 2025, angetrieben durch die weitverbreitete Nutzung von Deep-Learning-Frameworks, kognitiven Analyseplattformen, KI-Orchestrierungstools und Modellentwicklungsumgebungen.
Berichtsumfang und Marktsegmentierung für Deep Learning und kognitives Computing
|
Attribute |
Deep Learning und Cognitive Computing: Wichtige Markteinblicke |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
Europa
Asien-Pazifik
Naher Osten und Afrika
Südamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Mehrwertdaten-Infosets |
Zusätzlich zu Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und Hauptakteure enthalten die von Data Bridge Market Research erstellten Marktberichte auch detaillierte Expertenanalysen, Preisanalysen, Markenanteilsanalysen, Verbraucherumfragen, demografische Analysen, Lieferkettenanalysen, Wertschöpfungskettenanalysen, einen Überblick über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, PESTLE-Analysen, Porter-Analysen und den regulatorischen Rahmen. |
Was ist der wichtigste Trend auf dem Markt für kognitives Deep Learning?
„ Zunehmende Verbreitung kompakter, leistungsstarker und Edge-fähiger kognitiver Deep-Learning-Systeme “
- Der Markt für kognitives Deep-Learning-Computing verzeichnet eine zunehmende Verbreitung kompakter, schneller und Edge-fähiger Computing-Plattformen, die Echtzeitanalysen, autonome Entscheidungsfindung und intelligente Automatisierung unterstützen.
- Anbieter stellen KI-Beschleuniger mit hoher Dichte, Mehrkernprozessoren und softwaredefinierte kognitive Plattformen vor, die schnellere Schlussfolgerungen, adaptives Lernen und die nahtlose Integration in Unternehmens-IT- und Cloud-Ökosysteme ermöglichen.
- Die wachsende Nachfrage nach leichten, skalierbaren und PC-integrierten kognitiven Systemen treibt deren Verbreitung in IoT-Netzwerken, intelligenter Fertigung, medizinischer Diagnostik und Finanzanalyse voran.
- Beispielsweise haben Unternehmen wie Microsoft, IBM, Google und Amazon Web Services ihre kognitiven Computing-Plattformen durch fortschrittliche Deep-Learning-Frameworks, Edge-KI-Funktionen und cloudbasierte Modelloptimierung erweitert.
- Die steigende Nachfrage nach Echtzeit-Einblicken, Verarbeitung mit geringer Latenz und intelligenter Entscheidungsunterstützung beschleunigt den Wandel hin zu leistungsstarken, kompakten kognitiven Computerlösungen.
- Mit zunehmendem Datenvolumen und komplexeren KI-Workloads bleibt kognitives Deep Learning unerlässlich für autonome Systeme, prädiktive Analysen und die nächste Generation von Unternehmensanalysen.
Was sind die wichtigsten Treiber des Marktes für kognitives Deep Learning?
- Steigende Nachfrage nach präzisen, skalierbaren und kosteneffizienten KI-gestützten Entscheidungssystemen zur Unterstützung von Automatisierung, prädiktiver Analytik und intelligentem Betrieb
- Beispielsweise haben Unternehmen wie IBM, Google und das SAS Institute Inc. im Jahr 2025 ihr Angebot an kognitiven Deep-Learning-Lösungen um verbesserte Modellerklärbarkeit, höhere Verarbeitungseffizienz und branchenspezifische KI-Lösungen erweitert.
- Die rasche Einführung KI-gestützter Anwendungen im Gesundheitswesen, im Finanzdienstleistungssektor, im Einzelhandel, in der Automobilindustrie und im Bereich intelligenter Infrastrukturen steigert die Nachfrage in den USA, Europa und im asiatisch-pazifischen Raum.
- Fortschritte bei tiefen neuronalen Netzen, der Verarbeitung natürlicher Sprache, dem bestärkenden Lernen und kognitiven Algorithmen verbessern die Genauigkeit und Leistungsfähigkeit der Systeme.
- Der zunehmende Einsatz von Edge-KI, KI-Chips und hybriden Cloud-Architekturen erzeugt eine Nachfrage nach kognitiven Hochleistungsrechnerplattformen mit geringer Latenz.
- Unterstützt durch kontinuierliche Investitionen in KI-Forschung und -Entwicklung, digitale Transformation und intelligente Automatisierung wird für den Markt für Deep Learning und Cognitive Computing ein robustes langfristiges Wachstum erwartet.
Welcher Faktor bremst das Wachstum des Marktes für kognitives Deep Learning?
- Die hohen Kosten für fortschrittliche KI-Infrastruktur, spezialisierte Hardwarebeschleuniger und Premium-KI-Plattformen schränken die Akzeptanz bei kleinen und mittelständischen Unternehmen ein.
- Beispielsweise erhöhten die steigenden Kosten für GPUs, KI-Prozessoren und Cloud-Computing-Ressourcen im Zeitraum 2024–2025 die Gesamtbetriebskosten für kognitive Deep-Learning-Lösungen.
- Die Komplexität bei der Bereitstellung, dem Training und der Verwaltung von groß angelegten Deep-Learning-Modellen erhöht die Abhängigkeit von qualifizierten KI-Fachkräften und spezialisierten Schulungen.
- Das begrenzte Bewusstsein in Schwellenländern für Anwendungsfälle kognitiver Systeme, deren ROI-Potenzial und Integrationsmöglichkeiten verlangsamt deren Einführung.
- Der Wettbewerb durch traditionelle Analyseplattformen, regelbasierte Automatisierungssysteme und Open-Source-KI-Frameworks erzeugt Preisdruck und stellt Unternehmen vor die Herausforderung, sich zu differenzieren.
- Um diese Hürden zu überwinden, konzentrieren sich Anbieter auf kostenoptimierte Architekturen, erklärbare KI, Managed Services und Cloud-native kognitive Plattformen, um die weltweite Verbreitung von Deep Learning und kognitivem Computing zu fördern.
Wie ist der Markt für kognitives Deep Learning segmentiert?
Der Markt ist segmentiert nach Komponente, Geschäftsfunktion, Bereitstellungsmodus, Unternehmensgröße, Anwendung und Endbenutzer .
- Nach Komponente
Basierend auf den Komponenten ist der Markt für kognitives Deep Learning in Plattformen und Services unterteilt. Das Plattformsegment dominierte den Markt mit einem Anteil von 62,4 % im Jahr 2025. Treiber dieser Entwicklung war die weitverbreitete Nutzung von Deep-Learning-Frameworks, Plattformen für kognitive Analysen, KI-Orchestrierungstools und Modellentwicklungsumgebungen. Unternehmen setzen zunehmend auf Plattformen, um kognitive Anwendungen in Cloud- und Edge-Umgebungen zu entwickeln, zu trainieren, bereitzustellen und zu verwalten. Diese Plattformen unterstützen Funktionen wie die Verarbeitung natürlicher Sprache, Computer Vision, prädiktive Analysen und autonome Entscheidungsfindung und sind damit zentral für Initiativen zur digitalen Transformation.
Das Dienstleistungssegment wird voraussichtlich von 2026 bis 2033 die höchste durchschnittliche jährliche Wachstumsrate (CAGR) aufweisen. Dies wird durch die steigende Nachfrage nach Beratung, Systemintegration, Modellanpassung, Implementierungsunterstützung und Managed AI Services begünstigt. Die zunehmende Komplexität von Deep-Learning-Modellen, der Mangel an qualifizierten KI-Fachkräften und der Bedarf an kontinuierlicher Optimierung treiben Unternehmen dazu, auf externe Dienstleister zurückzugreifen. Mit der Skalierung kognitiver Lösungen spielen Dienstleistungen eine entscheidende Rolle für Leistung, Sicherheit und die Einhaltung regulatorischer Vorgaben.
- Nach Geschäftsbereich
Basierend auf den Geschäftsfunktionen ist der Markt in Personalwesen, Betrieb, Finanzen, Marketing und Vertrieb sowie Sonstige unterteilt. Das Segment Betrieb dominierte den Markt mit einem Anteil von 34,6 % im Jahr 2025, da Unternehmen zunehmend kognitive Systeme mit Deep Learning einsetzen, um Arbeitsabläufe zu optimieren, die Transparenz der Lieferkette zu verbessern, die vorausschauende Wartung zu optimieren und Entscheidungsprozesse zu automatisieren. Kognitive Systeme ermöglichen Echtzeitüberwachung, Anomalieerkennung und intelligente Ressourcenzuweisung und steigern so die betriebliche Effizienz branchenübergreifend deutlich.
Das Segment Marketing und Vertrieb wird voraussichtlich von 2026 bis 2033 das schnellste jährliche Wachstum verzeichnen. Treiber dieser Entwicklung ist der zunehmende Einsatz KI-gestützter Kundenanalysen, personalisierter Empfehlungen, Stimmungsanalysen und Bedarfsprognosen. Unternehmen nutzen kognitives Computing, um die Kundenbindung zu stärken, Konversionsraten zu verbessern und tiefere Einblicke in das Kundenverhalten zu gewinnen. Die wachsende Verfügbarkeit von Kundendaten sowie Fortschritte im Bereich der natürlichen Sprachverarbeitung und prädiktiven Analytik beschleunigen die Einführung dieser Technologien im digitalen Marketing und Vertrieb.
- Nach Bereitstellungsmodus
Basierend auf dem Bereitstellungsmodell ist der Markt für kognitives Deep Learning in On-Premises, Cloud und Hybrid unterteilt. Das Cloud-Segment dominierte den Markt mit einem Anteil von 48,9 % im Jahr 2025. Gründe hierfür sind Skalierbarkeit, Kosteneffizienz, schnelle Bereitstellung und der einfache Zugang zu fortschrittlicher KI-Infrastruktur. Cloudbasierte kognitive Plattformen ermöglichen es Unternehmen, große Datensätze zu verarbeiten, Deep-Learning-Modelle schneller zu trainieren und KI-Funktionen ohne hohe Vorabinvestitionen zu integrieren.
Das Segment der Hybrid-Bereitstellungen wird voraussichtlich von 2026 bis 2033 die höchste durchschnittliche jährliche Wachstumsrate (CAGR) aufweisen, da Unternehmen ein Gleichgewicht zwischen Datensicherheit und Rechenflexibilität anstreben. Hybridmodelle ermöglichen es, sensible Workloads lokal zu betreiben und gleichzeitig Cloud-Ressourcen für Modelltraining und -analyse zu nutzen. Steigende regulatorische Anforderungen, Bedenken hinsichtlich des Datenschutzes und die Nachfrage nach latenzarmer Verarbeitung treiben die Einführung hybrider Architekturen für kognitives Computing in regulierten Branchen voran.
- Nach Organisationsgröße
Basierend auf der Unternehmensgröße ist der Markt in kleine und mittlere Unternehmen (KMU) und Großunternehmen unterteilt. Das Segment der Großunternehmen wird 2025 mit einem Marktanteil von 66,2 % dominieren. Gründe hierfür sind die starke Finanzkraft, die Verfügbarkeit umfangreicher Daten und die frühzeitige Einführung fortschrittlicher kognitiver Technologien. Großunternehmen setzen Deep Learning und Cognitive Computing für unternehmensweite Automatisierung, Risikomanagement, Kundenanalysen und strategische Entscheidungsunterstützung ein.
Es wird erwartet, dass der KMU-Sektor von 2026 bis 2033 die höchste durchschnittliche jährliche Wachstumsrate (CAGR) aufweisen wird. Unterstützt wird dies durch die zunehmende Verfügbarkeit cloudbasierter, abonnementbasierter und kosteneffizienter Lösungen für kognitives Computing. KMU nutzen KI-Plattformen, um ihre Produktivität zu steigern, Routineaufgaben zu automatisieren und Wettbewerbsvorteile zu gewinnen, ohne hohe Infrastrukturinvestitionen tätigen zu müssen. Die fortschreitende Digitalisierung, staatliche Förderprogramme für die KI-Nutzung und die verbesserte Zugänglichkeit von KI-Tools beschleunigen die Einführung von kognitivem Computing in KMU.
- Durch Bewerbung
Basierend auf den Anwendungsbereichen ist der Markt in Automatisierung, intelligente virtuelle Assistenten und Chatbots, Verhaltensanalyse, Biometrie und Sonstiges unterteilt. Das Segment Automatisierung dominierte den Markt mit einem Anteil von 37,8 % im Jahr 2025, da Unternehmen zunehmend kognitives Computing einsetzen, um Geschäftsprozesse, Entscheidungsfindung und operative Arbeitsabläufe zu automatisieren. Deep-Learning-basierte Automatisierung steigert die Effizienz, reduziert menschliche Fehler und ermöglicht branchenübergreifend Echtzeitreaktionen.
Das Segment der intelligenten virtuellen Assistenten und Chatbots wird voraussichtlich von 2026 bis 2033 das schnellste jährliche Wachstum verzeichnen. Treiber dieser Entwicklung ist die steigende Nachfrage nach KI-gestütztem Kundensupport, dialogorientiertem Handel und Tools zur Mitarbeiterunterstützung. Fortschritte in der Verarbeitung natürlicher Sprache, im Kontextverständnis und in der Spracherkennung verbessern die Genauigkeit und Akzeptanz von Chatbots deutlich. Da das Kundenerlebnis zu einem entscheidenden Wettbewerbsvorteil wird, ist mit einer beschleunigten Einführung kognitiver virtueller Assistenten zu rechnen.
- Vom Endbenutzer
Basierend auf den Endnutzern ist der Markt für kognitives Deep Learning in folgende Segmente unterteilt: Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel und E-Commerce, Reise und Gastgewerbe, Regierung, IT und Telekommunikation, Gesundheitswesen und Biowissenschaften, Fertigung, Medien und Unterhaltung sowie Sonstige. Das BFSI-Segment dominierte den Markt mit einem Anteil von 29,5 % im Jahr 2025, getrieben durch den umfassenden Einsatz von kognitivem Computing für Betrugserkennung, Risikobewertung, Kundenanalyse, algorithmischen Handel und Compliance-Management.
Das Segment Gesundheitswesen und Biowissenschaften wird voraussichtlich von 2026 bis 2033 das schnellste jährliche Wachstum verzeichnen. Unterstützt wird dies durch die zunehmende Nutzung von KI in der medizinischen Bildgebung, der klinischen Entscheidungsunterstützung, der Wirkstoffforschung und der personalisierten Medizin. Wachsende Datenmengen im Gesundheitswesen, der zunehmende Fokus auf prädiktive Diagnostik und Fortschritte bei Deep-Learning-Modellen beschleunigen den Einsatz kognitiver Systeme in den gesamten Gesundheitsökosystemen.
Welche Region hält den größten Anteil am Markt für kognitives Deep Learning?
- Nordamerika dominierte 2025 mit einem Umsatzanteil von 41,69 % den Markt für kognitives Deep Learning. Treiber dieses Wachstums waren die frühe Einführung fortschrittlicher KI-Technologien, eine leistungsstarke Cloud-Infrastruktur sowie die rasche Expansion von KI- und kognitiven Analyseinitiativen in Unternehmen in den USA und Kanada. Der weitverbreitete Einsatz von Deep-Learning-Plattformen in den Bereichen Banken, Finanzdienstleistungen und Versicherungen (BFSI), Gesundheitswesen, Einzelhandel, Fertigung und im öffentlichen Sektor treibt das Marktwachstum weiterhin an.
- Führende regionale Akteure verbessern kontinuierlich kognitive Computerplattformen mit fortschrittlichen Deep-Learning-Modellen, natürlicher Sprachverarbeitung, Computer Vision und Echtzeit-Entscheidungsanalyse und stärken so die technologische Führungsrolle Nordamerikas.
- Die starke Präsenz globaler KI-Anbieter, die hohe Konzentration qualifizierter KI-Fachkräfte, robuste Startup-Ökosysteme und nachhaltige Investitionen in KI-Forschung und -Entwicklung sowie die digitale Transformation stärken die regionale Vormachtstellung zusätzlich.
Einblick in den US-Markt für Deep Learning und kognitives Computing
Die USA sind der größte Marktteilnehmer in Nordamerika, was auf die weitverbreitete Nutzung von Cognitive Computing in Unternehmen, Cloud-Service-Anbietern und staatlichen Institutionen zurückzuführen ist. Die starke Nachfrage nach KI-gestützter Automatisierung, prädiktiver Analytik, Betrugserkennung und intelligenten virtuellen Assistenten in den Bereichen Banken, Finanzdienstleistungen und Versicherungen (BFSI), Gesundheitswesen, Einzelhandel, IT & Telekommunikation sowie Verteidigung treibt das Marktwachstum an. Die Präsenz großer Technologieunternehmen, Hyperscale-Cloud-Anbieter und fortschrittlicher Forschungseinrichtungen beschleunigt die Innovation bei Deep-Learning-Modellen und kognitiven Plattformen. Der zunehmende Einsatz von generativer KI, Edge-KI und hybriden Cloud-Architekturen stärkt das langfristige Marktwachstum zusätzlich.
Einblick in den kanadischen Markt für Deep Learning und kognitives Computing
Kanada trägt maßgeblich zum regionalen Wachstum bei, angetrieben durch expandierende KI-Forschungszentren, förderliche Regierungspolitik und die zunehmende Verbreitung von Cognitive Computing im Gesundheitswesen, im öffentlichen Dienst und im Finanzsektor. Universitäten, Startups und Unternehmen setzen vermehrt Deep-Learning-Plattformen für datengestützte Entscheidungsfindung, Verhaltensanalysen und intelligente Automatisierung ein. Die Verfügbarkeit qualifizierter KI-Fachkräfte, die enge Zusammenarbeit zwischen Wissenschaft und Wirtschaft sowie steigende Investitionen in cloudbasierte KI-Infrastruktur fördern eine stetige Marktakzeptanz im ganzen Land.
Markt für kognitives Deep Learning im asiatisch-pazifischen Raum
Für den asiatisch-pazifischen Raum wird von 2026 bis 2033 mit einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 8,25 % das schnellste Wachstum prognostiziert. Treiber dieser Entwicklung sind die rasante digitale Transformation, die zunehmende Nutzung von Cloud-Lösungen und steigende Investitionen in KI in China, Japan, Indien, Südkorea und Südostasien. Unternehmen aus den Bereichen Fertigung, Einzelhandel, Banken, Finanzdienstleistungen und Versicherungen (BFSI), Gesundheitswesen und dem öffentlichen Sektor setzen verstärkt auf kognitives Deep Learning für Automatisierung, Kundenanalysen und prädiktive Analysen. Das Wachstum von Smart Cities, KI-gestützten Anwendungen und digitaler Infrastruktur beschleunigt weiterhin die regionale Nachfrage nach skalierbaren kognitiven Computing-Plattformen.
Einblick in den chinesischen Markt für Deep Learning und kognitives Computing
China ist der größte Akteur im asiatisch-pazifischen Raum, begünstigt durch starke staatliche Förderung der KI-Entwicklung, den massiven Ausbau der Cloud-Infrastruktur und die rasche Einführung kognitiver Technologien in Unternehmen. Der zunehmende Einsatz von Deep Learning in der intelligenten Fertigung, Finanzanalyse, Überwachung und personalisierten E-Commerce-Lösungen treibt die Nachfrage nach fortschrittlichen kognitiven Computerlösungen an. Die Präsenz inländischer KI-Technologieanbieter und die Verfügbarkeit großer Datenmengen stärken die Marktdurchdringung zusätzlich.
Einblick in den japanischen Markt für Deep Learning und kognitives Computing
Japan verzeichnet ein stetiges Wachstum, angetrieben durch die zunehmende Verbreitung von Cognitive Computing in der Fertigungsautomatisierung, Robotik, Gesundheitsanalytik und intelligenten Infrastruktur. Der starke Fokus auf Präzision, Zuverlässigkeit und intelligente Systeme stützt die Nachfrage nach hochwertigen Deep-Learning-Plattformen. Steigende Investitionen in KI-gestützte industrielle Transformation und digitale Modernisierung verstärken das langfristige Marktwachstum.
Einblick in den indischen Markt für Deep Learning und kognitives Computing
Indien entwickelt sich zu einem Wachstumsmarkt, unterstützt durch expandierende Startup-Ökosysteme, zunehmende Cloud-Nutzung und staatliche Digitalisierungsinitiativen. Der wachsende Einsatz von Cognitive Computing in den Bereichen Banken, Finanzdienstleistungen und Versicherungen (BFSI), IT-Services, Gesundheitswesen und E-Government treibt das Marktwachstum an. Die verstärkte Fokussierung von Unternehmen auf Automatisierung, Analytik und KI-gestützte Kundeninteraktion beschleunigt die landesweite Einführung.
Einblick in den südkoreanischen Markt für Deep Learning und kognitives Computing
Südkorea leistet aufgrund der hohen KI-Nutzung in den Bereichen Telekommunikation, intelligente Fertigung, Unterhaltungselektronik und Gesundheitswesen einen bedeutenden Beitrag. Die rasante Entwicklung von KI-Plattformen, eine leistungsstarke digitale Infrastruktur und der Innovationsfokus treiben die Nachfrage nach kognitiven Deep-Learning-Lösungen an. Kontinuierliche Investitionen in die KI-Forschung und die Digitalisierung von Unternehmen unterstützen ein nachhaltiges Marktwachstum.
Welche sind die führenden Unternehmen auf dem Markt für Deep Learning und Cognitive Computing?
Die Branche für kognitives Deep Learning wird hauptsächlich von etablierten Unternehmen angeführt, darunter:
- Microsoft (USA)
- IBM (USA)
- SAS Institute Inc. (USA)
- Amazon Web Services, Inc. (USA)
- Kognitive Skala (USA)
- Numenta (USA)
- Enterra Solutions (USA)
- Expert System SpA (Italien)
- Google LLC (USA)
- Virtusa Corp (USA)
- Cisco Systems, Inc. (USA)
- Tata Consultancy Services Limited (Indien)
- Acuiti Group (UK)
- Infosys Limited (Indien)
- BurstIQ (USA)
- Red Skios (Indien)
- e-Zest Solutions (Indien)
- Vantage Labs (USA)
- Cognitive Software Group (USA)
- SparkCognition (USA)
Welche aktuellen Entwicklungen gibt es auf dem globalen Markt für kognitives Deep Learning?
- Im Mai 2024 kündigten IBM und SAP eine erweiterte Zusammenarbeit an, die sich auf generative KI-Funktionen und branchenspezifische Cloud-Lösungen konzentriert, um Unternehmen bei der Beschleunigung ihrer digitalen Transformation zu unterstützen. Ziel der Partnerschaft ist es, KI in die Geschäftsprozesse von SAP zu integrieren, indem IBMs Stärken in den Bereichen Hybrid Cloud und fortschrittliche KI-Technologien genutzt werden. Dies ermöglicht intelligentere Entscheidungsfindung und höhere betriebliche Effizienz in verschiedenen Branchen und stärkt somit die unternehmensweite Einführung kognitiver Computing-Lösungen.
- Im Mai 2024 ging Wipro, ein indisches IT-Dienstleistungsunternehmen, eine Partnerschaft mit Microsoft ein, um eine Reihe generativer, KI-gestützter kognitiver Assistenten für den Finanzdienstleistungssektor einzuführen. Die auf Microsoft Azure OpenAI und Document Intelligence basierenden Lösungen verbessern die Markteinschätzung, beschleunigen das Kunden-Onboarding und optimieren die Kreditvergabe bei gleichzeitiger Reduzierung des manuellen Aufwands. Dies trägt zu höherer Produktivität und einem verbesserten Nutzererlebnis im Banken-, Finanzdienstleistungs- und Versicherungswesen (BFSI) bei.
- Im Februar 2024 ging Microsoft eine Kooperation mit Mistral AI, einem französischen Unternehmen für künstliche Intelligenz, ein, um die KI-Innovation in den kommenden Jahren zu beschleunigen. Die Zusammenarbeit nutzt die fortschrittliche Infrastruktur von Azure, um Mistrals große Sprachmodelle, darunter Mistral Large, zu entwickeln und bereitzustellen und sie über Azure Models as a Service verfügbar zu machen. Dadurch wird der Zugang zu fortschrittlichen generativen KI-Funktionen weltweit erweitert.
- Im Mai 2023 kündigte IBM Pläne zum Aufbau einer GPU-as-a-Service-Infrastruktur zur Unterstützung KI-intensiver Workloads an. Parallel dazu wurde ein KI-gestütztes Dashboard zur Messung und Steuerung von Cloud-CO₂-Emissionen eingeführt. IBM gründete außerdem die neue IBM Consulting Practice mit Fokus auf WatsonX und generative KI, um Kunden bei der Implementierung zu unterstützen und eine skalierbare, nachhaltige und unternehmensweite KI-Einführung zu fördern.
- Im März 2023 stellte Tata Consultancy Services (TCS) den TCS Cognitive Plant Operations Adviser vor, eine 5G-fähige Lösung für die Microsoft Azure Private Mobile Edge Computing Plattform. Die Lösung unterstützt Branchen wie die Fertigungsindustrie, die Öl- und Gasindustrie, die Konsumgüterindustrie und die Pharmaindustrie durch den Einsatz von KI und maschinellem Lernen. Ziel ist es, Produktionsintelligenz, Agilität und Resilienz zu verbessern und so intelligentere und anpassungsfähigere industrielle Abläufe zu ermöglichen.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

