Globaler Bericht zur Marktgröße, Marktanteil und Trendanalyse für Deep Learning Neural Networks (DNNs) – Branchenüberblick und Prognose bis 2032

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Globaler Bericht zur Marktgröße, Marktanteil und Trendanalyse für Deep Learning Neural Networks (DNNs) – Branchenüberblick und Prognose bis 2032

  • ICT
  • Upcoming Reports
  • Mar 2021
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60
  • Author : Megha Gupta

Umgehen Sie die Zollherausforderungen mit agiler Supply-Chain-Beratung

Die Analyse des Supply-Chain-Ökosystems ist jetzt Teil der DBMR-Berichte

Global Deep Learning Neural Networks Dnns Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 52.30 Billion USD 349.40 Billion 2024 2032
Diagramm Prognosezeitraum
2025 –2032
Diagramm Marktgröße (Basisjahr)
USD 52.30 Billion
Diagramm Marktgröße (Prognosejahr)
USD 349.40 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Alyuda ResearchLLC.
  • IBM
  • Micron TechnologyInc.
  • Neural Technologies Limited
  • NeuroDimensionInc.

Globale Marktsegmentierung für Deep Learning Neural Networks (DNNs) nach Komponenten (Hardware, Software und Dienste), Anwendungen (Bilderkennung, Verarbeitung natürlicher Sprache, Spracherkennung und Data Mining), Endbenutzern (Banken, Finanzdienstleistungen und Versicherungen (BFSI), IT und Telekommunikation, Gesundheitswesen, Einzelhandel, Automobilindustrie, Fertigung, Luft- und Raumfahrt und Verteidigung, Sicherheit und andere) – Branchentrends und Prognose bis 2032

Markt für Deep Learning Neural Networks (DNNs)

Marktgröße für Deep Learning Neuronale Netze (DNNs)

  • Der globale Markt für Deep Learning Neural Networks (DNNs) wird im Jahr 2024 auf 52,3 Milliarden US-Dollar geschätzt  und soll  bis 2032 349,4 Milliarden US-Dollar erreichen , bei einer CAGR von 31,2 % im Prognosezeitraum.
  • Das Marktwachstum wird maßgeblich durch technologische Durchbrüche, zunehmende Datenverfügbarkeit und wachsende Branchenanwendungen vorangetrieben. Künstliche Intelligenz (KI) findet in Branchen wie dem Gesundheitswesen, der Automobilindustrie, dem Finanzwesen und der Fertigung zunehmend Verbreitung. DNNs zeichnen sich durch ihre Fähigkeit aus, riesige Datensätze zu verarbeiten und komplexe Muster zu extrahieren.
  • Darüber hinaus machen Fortschritte im Bereich Cloud Computing und Edge-KI DNNs zugänglicher und skalierbarer. Regierungen und Unternehmen weltweit investieren verstärkt in KI-Forschung und -Entwicklung und treiben so die Einführung DNN-basierter Lösungen weiter voran.

Marktanalyse für Deep Learning Neural Networks (DNNs)

  • Der globale Markt für Deep Learning Neural Networks (DNNs) wird durch robuste technologische Fortschritte bei KI-spezifischer Hardware vorangetrieben, die ein schnelleres und effizienteres Trainieren und Bereitstellen von Modellen ermöglichen.
  • Der Anstieg autonomer Systeme wie selbstfahrender Autos und Serviceroboter sowie die wachsende Rolle des Deep Learning in der natürlichen Sprachverarbeitung und Bilderkennung fördern die Akzeptanz in allen Sektoren.
  • Nordamerika dominiert den Markt für Deep Learning Neural Networks (DNNs) mit dem größten Umsatzanteil von 39,01 % im Jahr 2024, was durch die zunehmende Akzeptanz in autonomen Fahrzeugen und intelligenter Robotik gekennzeichnet ist.
  • Der asiatisch-pazifische Raum dürfte im Prognosezeitraum aufgrund der zunehmenden Anwendung in der Verarbeitung natürlicher Sprache (NLP) und der Computervision die am schnellsten wachsende Region auf dem Markt für Deep Learning Neural Networks (DNNs) sein.
  • Das Softwaresegment dominiert den Markt für Deep Learning Neural Networks (DNNs) mit einem Marktanteil von 45,2 % im Jahr 2024, bedingt durch die Verbreitung von Big Data und die zunehmende Datenkomplexität.

Berichtsumfang und Marktsegmentierung für Deep Learning Neural Networks (DNNs)    

Eigenschaften

Markteinblicke für Deep Learning Neural Networks (DNNs)

Abgedeckte Segmente

  • Nach Komponenten: Hardware, Software und Dienste
  • Nach Anwendung: Bilderkennung, Verarbeitung natürlicher Sprache, Spracherkennung und Data Mining
  • Nach Endbenutzer: Banken, Finanzdienstleistungen und Versicherungen (BFSI), IT und Telekommunikation, Gesundheitswesen, Einzelhandel, Automobilindustrie, Fertigung, Luft- und Raumfahrt und Verteidigung, Sicherheit und andere

Abgedeckte Länder

Nordamerika

  • UNS
  • Kanada
  • Mexiko

Europa

  • Deutschland
  • Frankreich
  • Vereinigtes Königreich
  • Niederlande
  • Schweiz
  • Belgien
  • Russland
  • Italien
  • Spanien
  • Truthahn
  • Restliches Europa

Asien-Pazifik

  • China
  • Japan
  • Indien
  • Südkorea
  • Singapur
  • Malaysia
  • Australien
  • Thailand
  • Indonesien
  • Philippinen
  • Restlicher Asien-Pazifik-Raum

Naher Osten und Afrika

  • Saudi-Arabien
  • Vereinigte Arabische Emirate
  • Südafrika
  • Ägypten
  • Israel
  • Rest des Nahen Ostens und Afrikas

Südamerika

  • Brasilien
  • Argentinien
  • Restliches Südamerika

Wichtige Marktteilnehmer

  • ALYUDA RESEARCH, LLC
  • Google
  • IBM
  • Micron Technologies, Inc.
  • Neural Technologies Limited
  • NEURODIMENSION, INC.
  • NEURALWARE
  • NVIDIA CORPORATION
  • SKYMIND INC
  • SAMSUNG
  • Qualcomm Technologies, Inc.
  • Intel Corporation
  • Amazon Web Services, Inc.
  • Microsoft
  • GMDH LLC.
  • Sensory Inc
  • Ward Systems Group, Inc.
  • Xilinx Inc.
  • Sternengeist

Marktchancen

  • Das enorme Datenwachstum wird die Nachfrage nach Deep-Learning-Lösungen erhöhen
  • Integration von DNNs mit Edge Computing und IoT-Geräten.

Wertschöpfungsdaten-Infosets

Zusätzlich zu den Einblicken in Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und wichtige Akteure enthalten die von Data Bridge Market Research kuratierten Marktberichte auch ausführliche Expertenanalysen, Preisanalysen, Markenanteilsanalysen, Verbraucherumfragen, demografische Analysen, Lieferkettenanalysen, Wertschöpfungskettenanalysen, eine Übersicht über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, PESTLE-Analysen, Porter-Analysen und regulatorische Rahmenbedingungen.

Markttrends für Deep Learning Neural Networks (DNNs)

Ausweitung der Anwendungen über Branchen hinweg

  • Ein wichtiger Trend auf dem globalen Markt für Deep Learning Neural Networks (DNNs) ist die rasante Verbreitung von DNN-Anwendungen in verschiedenen Branchen, darunter Gesundheitswesen, Automobilindustrie, Finanzen und Fertigung. Diese Netzwerke ermöglichen Durchbrüche in der medizinischen Diagnostik, Betrugserkennung, dem autonomen Fahren und der vorausschauenden Wartung.
    • Im Gesundheitswesen werden DNNs beispielsweise zunehmend für die bildbasierte Diagnostik eingesetzt, etwa zur Tumorerkennung in Röntgenaufnahmen. Unternehmen wie Aidoc und Zebra Medical Vision nutzen DNNs, um Radiologen dabei zu unterstützen, schnellere und präzisere Diagnosen zu stellen.
  • Im Automobilsektor sind Nordamerika und Europa führend bei der Einführung von DNN-gestützten Fahrerassistenzsystemen (ADAS) und autonomen Fahrzeugen. Tesla, NVIDIA und Waymo nutzen Deep Learning, um die Entscheidungsfindung und die Echtzeit-Bilderkennung im Straßenverkehr zu verbessern.
  • Auch die Finanzbranche nutzt DNNs, um Anomalien zu erkennen und Markttrends mit hoher Genauigkeit vorherzusagen. JP Morgan Chase und Goldman Sachs investieren massiv in KI-Teams, die sich auf den Aufbau DNN-basierter Handels- und Risikobewertungssysteme konzentrieren.  
  • In der Fertigung ermöglichen DNNs intelligente Fabriken durch die Automatisierung von Sichtprüfungen, Fehlererkennung und vorausschauender Anlagenwartung. Unternehmen wie Siemens und GE sind Vorreiter bei der Entwicklung dieser intelligenten Systeme, um Ausfallzeiten zu reduzieren und die Betriebseffizienz zu steigern.
  • Der asiatisch-pazifische Raum entwickelt sich dank starker KI-Strategien von Ländern wie China, Südkorea und Indien zur am schnellsten wachsenden Region. Staatlich geförderte Initiativen und erhebliche Mittel für KI-Forschung und -Entwicklung treiben die Einführung von DNNs in großem Maßstab voran.

Marktdynamik für Deep Learning Neural Networks (DNNs)

Treiber

„Verbreitung von Big Data und zunehmende Rechenleistung“

  • Das exponentielle Wachstum der Datengenerierung aus Quellen wie IoT-Geräten, sozialen Medien und Unternehmenssystemen fördert die Einführung neuronaler Deep-Learning-Netzwerke für Aufgaben wie Bilderkennung, Verarbeitung natürlicher Sprache und prädiktive Analytik.
    • So stellte NVIDIA beispielsweise im März 2025 seine Blackwell-GPU-Architektur vor, die eine mehr als vierfache Leistungssteigerung für Deep-Learning-Trainings- und Inferenz-Workloads bietet und Echtzeitanwendungen im Gesundheitswesen, in der Automobilindustrie und im Finanzdienstleistungsbereich ermöglicht.
  • Cloud-Service-Provider, darunter AWS und Google Cloud, bieten zunehmend optimierte DNN-Frameworks als verwaltete Dienste an, was die Bereitstellung und Skalierung vereinfacht.
  • Laut IDC haben bis zum ersten Quartal 2025 über 70 % der Unternehmen weltweit DNN-basierte Lösungen in mindestens eine Geschäftsfunktion integriert, was eine starke Marktdynamik widerspiegelt.

Einschränkung/Herausforderung

Hoher Ressourcenverbrauch und Komplexität beim Modelltraining

  • Das Trainieren neuronaler Netzwerke für Deep Learning erfordert häufig erhebliche Rechenressourcen, spezielle Hardware (z. B. GPUs, TPUs) und verbraucht viel Energie, was die Kosten in die Höhe treiben kann.
    • Beispielsweise benötigte GPT-4 von OpenAI mehrere tausend Petaflop/s-Tage an Rechenleistung und Energie, was dem jährlichen Verbrauch mehrerer hundert US-Haushalte entspricht.
  • Darüber hinaus stellt die Komplexität der Feinabstimmung von Hyperparametern, der Umgang mit Überanpassung und die Erzielung der Modellinterpretierbarkeit weiterhin eine Herausforderung für Entwickler dar, insbesondere in regulierten Sektoren wie dem Finanz- und Gesundheitswesen.
  • Diese Barrieren sind besonders ausgeprägt für kleine und mittelgroße Unternehmen, die keinen Zugang zu einer Hochleistungsrechnerinfrastruktur und großen KI-Talentpools haben.

Marktumfang für Deep Learning Neural Networks (DNNs)

Der Markt ist nach Komponente, Anwendung und Endbenutzer segmentiert.

  • Nach Komponente

Der Markt für Deep Learning Neural Networks (DNNs) ist nach Komponenten in Hardware, Software und Dienstleistungen segmentiert. Das Softwaresegment dominiert den größten Marktumsatzanteil von 48,2 % im Jahr 2024, angetrieben durch robuste technologische Fortschritte bei KI-spezifischer Hardware, die ein schnelleres und effizienteres Modelltraining und -einsatz ermöglichen.

Das Softwaresegment wird voraussichtlich zwischen 2025 und 2032 mit einer Rate von 21,7 % die höchste Wachstumsrate aufweisen. Befeuert wird dies durch die zunehmende Verbreitung autonomer Systeme wie selbstfahrender Autos und Serviceroboter. Zusammen mit der wachsenden Rolle des Deep Learning in NLP und Bilderkennung wird die Akzeptanz in allen Sektoren vorangetrieben.

  • Nach Anwendung

Der Markt für Deep Learning Neural Networks (DNNs) ist nach Anwendung in Bilderkennung, natürliche Sprachverarbeitung, Spracherkennung und Data Mining segmentiert. Das Segment Bilderkennung hatte 2024 den größten Marktanteil, angetrieben durch das exponentielle Wachstum von Big Data, das wertvolle Daten für diese Modelle liefert, insbesondere im Gesundheitswesen, wo DNNs die Diagnostik und die Personalisierung von Behandlungen revolutionieren.

Im Segment der natürlichen Sprachverarbeitung wird von 2025 bis 2032 voraussichtlich die höchste durchschnittliche jährliche Wachstumsrate (CAGR) zu verzeichnen sein. Die Konvergenz von Deep Learning mit Spitzentechnologien wie Quantencomputern und neuromorphen Chips verspricht eine Neudefinition der Leistungsgrenzen und eröffnet neue kommerzielle und wissenschaftliche Grenzen.

  • Nach Endbenutzer

Der Markt für Deep Learning Neural Networks (DNNs) ist nach Endnutzern segmentiert in Banken, Finanzdienstleistungen und Versicherungen (BFSI), IT und Telekommunikation, Gesundheitswesen, Einzelhandel, Automobilindustrie, Fertigung, Luft- und Raumfahrt und Verteidigung, Sicherheit und weitere. Das Bankensegment hielt 2024 den größten Marktanteil, angetrieben durch Hardware-Innovationen, wie die Entwicklung spezialisierter KI-Chips wie GPUs und TPUs, die die Effizienz von Deep-Learning-Prozessen steigern.

Im Gesundheitswesen wird von 2025 bis 2032 voraussichtlich die höchste durchschnittliche jährliche Wachstumsrate (CAGR) zu verzeichnen sein. Dies ist auf das exponentielle Wachstum der Datengenerierung aus Quellen wie IoT-Geräten, sozialen Medien und Unternehmenssystemen zurückzuführen, das die Einführung neuronaler Deep-Learning-Netzwerke für Aufgaben wie Bilderkennung, Verarbeitung natürlicher Sprache und prädiktive Analytik vorantreibt.

Regionale Marktanalyse für Deep Learning Neural Networks (DNNs)

  • Nordamerika dominiert den Markt für Deep Learning Neural Networks (DNNs) mit dem größten Umsatzanteil von 39,01 % im Jahr 2024. Dies ist auf technologische Durchbrüche, zunehmende Datenverfügbarkeit und wachsende Branchenanwendungen zurückzuführen. Künstliche Intelligenz (KI) wird in Branchen wie dem Gesundheitswesen, der Automobilindustrie, dem Finanzwesen und der Fertigung immer stärker verankert. DNNs zeichnen sich durch ihre Fähigkeit aus, riesige Datensätze zu verarbeiten und komplexe Muster zu extrahieren.
  • Dies eröffnet zahlreiche Wachstumstreiber und -chancen. Vor allem die steigende Nachfrage nach personalisierten Diensten, verbesserter Automatisierung und prädiktiver Analytik ist ein wichtiger Faktor. Darüber hinaus machen Fortschritte im Bereich Cloud Computing und Edge-KI DNNs zugänglicher und skalierbarer.
  • Regierungen und Unternehmen weltweit investieren verstärkt in KI-Forschung und -Entwicklung und treiben damit die Einführung DNN-basierter Lösungen weiter voran. Ein weiterer wichtiger Treiber ist die Verbreitung intelligenter Geräte und IoT-Sensoren, die Echtzeitdaten liefern, die das DNN-Training unterstützen.

Markteinblick in Deep Learning Neural Networks (DNNs) in den USA

Der US-Markt für Deep Learning Neural Networks (DNNs) erzielte 2024 mit 81 % den größten Umsatzanteil in Nordamerika, angetrieben durch staatliche und institutionelle Förderung der KI-Forschung, insbesondere in den Bereichen Verteidigung, Gesundheitswesen und Bildung. Deep Learning findet zunehmend Anwendung in verschiedenen Branchen. Im Gesundheitswesen wird es für prädiktive Analysen und die Früherkennung von Krankheiten eingesetzt. Die Automobilindustrie nutzt DNNs für die Weiterentwicklung autonomer Fahrzeuge, während der Einzelhandel sie zur Bilderkennung und Kundenverhaltensanalyse einsetzt.  

Markteinblick für Deep Learning Neural Networks (DNNs) in Europa

Der europäische Markt für Deep Learning Neuronale Netzwerke (DNNs) wird im Prognosezeitraum voraussichtlich mit einer deutlichen jährlichen Wachstumsrate wachsen. Dies ist vor allem auf Hardware-Innovationen zurückzuführen, wie beispielsweise die Entwicklung spezialisierter KI-Chips wie GPUs und TPUs, die die Effizienz von Deep-Learning-Prozessen steigern. Darüber hinaus macht das Aufkommen von Deep Learning as a Service (DLaaS)-Plattformen diese Technologien für Unternehmen zugänglicher, da dadurch der Bedarf an erheblichen Vorabinvestitionen in die Infrastruktur reduziert wird.

Markteinblick in Deep Learning Neural Networks (DNNs) in Großbritannien

Der britische Markt für Deep Learning Neural Networks (DNNs) wird im Prognosezeitraum voraussichtlich mit einer bemerkenswerten jährlichen Wachstumsrate wachsen. Dies ist auf die starken technologischen Fortschritte bei KI-spezifischer Hardware zurückzuführen, die ein schnelleres und effizienteres Modelltraining und -einsatz ermöglichen. Der Anstieg autonomer Systeme, wie selbstfahrende Autos und Serviceroboter, gepaart mit der wachsenden Rolle von Deep Learning in NLP und Bilderkennung, treibt die branchenübergreifende Akzeptanz voran. Das exponentielle Wachstum von Big Data liefert wertvolle Informationen für diese Modelle, insbesondere im Gesundheitswesen, wo DNNs die Diagnostik und die Personalisierung von Behandlungen revolutionieren.  

Markteinblick für Deep Learning Neural Networks (DNNs) in Deutschland

Der deutsche Markt für Deep Learning Neural Networks (DNNs) wird im Prognosezeitraum voraussichtlich mit einer beträchtlichen jährlichen Wachstumsrate wachsen. Begünstigt werden diese Entwicklungen durch zahlreiche Möglichkeiten im Bereich Edge-KI-Anwendungen, bei denen die Integration von DNNs in Smartgeräte Echtzeit-Erkenntnisse mit geringer Latenz liefert. Darüber hinaus verspricht die Konvergenz von Deep Learning mit Spitzentechnologien wie Quantencomputing und neuromorphen Chips, Leistungsgrenzen neu zu definieren und neue kommerzielle und wissenschaftliche Grenzen zu öffnen.  

Markteinblicke für Deep Learning Neural Networks (DNNs) im asiatisch-pazifischen Raum

Der Markt für Deep Learning Neural Networks (DNNs) im asiatisch-pazifischen Raum wird im Prognosezeitraum von 2025 bis 2032 voraussichtlich mit der höchsten CAGR von 24 % wachsen, angetrieben von schnellen Fortschritten bei GPU/TPU-Hardware und Quantencomputing, die eine effizientere und schnellere DNN-Verarbeitung ermöglichen.  

Markteinblick für Deep Learning Neural Networks (DNNs) in Japan

Der japanische Markt für Deep Learning Neural Networks (DNNs) gewinnt aufgrund der Hightech-Kultur des Landes, der rasanten Urbanisierung und des Komfortanspruchs an Dynamik. Der japanische Markt legt großen Wert auf Sicherheit, und die Einführung intelligenter Schlösser wird durch die Verbreitung autonomer Systeme (z. B. selbstfahrende Autos, Drohnen, Robotik) vorangetrieben, die stark auf Deep-Learning-Algorithmen basieren.  

Markteinblick in Deep Learning Neural Networks (DNNs) in China

Der chinesische Markt für Deep Learning Neural Networks (DNNs) hatte im Jahr 2024 den größten Marktanteil im asiatisch-pazifischen Raum. Da ethische und erklärbare KI zunehmend zum Thema wird, schafft die Möglichkeit zur Entwicklung interpretierbarer neuronaler Netzwerkmodelle auch neue Wachstumskanäle.

Marktanteil von Deep Learning Neural Networks (DNNs)

Der Markt für Deep Learning Neural Networks (DNNs) wird hauptsächlich von etablierten Unternehmen angeführt, darunter:

  • ALYUDA RESEARCH, LLC
  • Google
  • IBM
  • Micron Technologies, Inc.
  • Neural Technologies Limited
  • NEURODIMENSION, INC.
  • NEURALWARE
  • NVIDIA CORPORATION
  • SKYMIND INC
  • SAMSUNG
  • Qualcomm Technologies, Inc.
  • Intel Corporation
  • Amazon Web Services, Inc.
  • Microsoft
  • GMDH LLC.
  • Sensory Inc
  • Ward Systems Group, Inc.
  • Xilinx Inc.
  • Sternengeist

Neueste Entwicklungen auf dem globalen Markt für Deep Learning Neural Networks (DNNs)

  • Im April 2025 veröffentlichte Google DeepMind, ein führendes Unternehmen in der KI-Forschung, fortschrittliche Modelle wie Gemma und PaliGemma 2, die sich auf Sprach- und Sehaufgaben konzentrieren. Ihre Innovationen, wie beispielsweise Ithaca, helfen bei der Restaurierung antiker Texte und zeigen die Vielseitigkeit von Deep-Learning-Anwendungen.
  • Im März 2024: IBM, das auf KI-Technologie zurückblickt, integriert mit seiner Watson-Plattform maschinelles Lernen in Geschäftsprozesse und bietet Lösungen wie Chatbots für den Kundenservice. Das Engagement des Unternehmens in der KI-Forschung beeinflusst weiterhin verschiedene Branchen.
  • Im März 2025 erweiterte Intel seine KI-Kompetenzen durch Akquisitionen wie Nervana und Movidius, verbesserte Deep-Learning-Software und brachte KI-Anwendungen auf stromsparende Geräte. Kooperationen, beispielsweise mit Microsoft zur KI-Beschleunigung von Bing, unterstreichen die Marktwirkung.
  • Im Februar 2025 integriert Microsoft KI in alle seine Produkte, vom Cortana-Assistenten bis zu den Machine-Learning-Diensten von Azure. Die Investitionen in KI-Startups und -Tools zeigen einen soliden Ansatz zur Weiterentwicklung von Deep-Learning-Technologien.
  • Im Januar 2025: OpenAI ist für die Entwicklung fortschrittlicher KI-Modelle bekannt und konzentriert sich auf die Entwicklung von KI, die der Menschheit zugutekommt. Ihr Open-Source-Ansatz und die Zusammenarbeit mit Unternehmen wie Microsoft und Amazon unterstreichen ihren Einfluss in der KI-Community.


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Globale Marktsegmentierung für Deep Learning Neural Networks (DNNs) nach Komponenten (Hardware, Software und Dienste), Anwendungen (Bilderkennung, Verarbeitung natürlicher Sprache, Spracherkennung und Data Mining), Endbenutzern (Banken, Finanzdienstleistungen und Versicherungen (BFSI), IT und Telekommunikation, Gesundheitswesen, Einzelhandel, Automobilindustrie, Fertigung, Luft- und Raumfahrt und Verteidigung, Sicherheit und andere) – Branchentrends und Prognose bis 2032 segmentiert.
Die Größe des Globaler Bericht zur Markt wurde im Jahr 2024 auf 52.30 USD Billion USD geschätzt.
Der Globaler Bericht zur Markt wird voraussichtlich mit einer CAGR von 31.2% im Prognosezeitraum 2025 bis 2032 wachsen.
Die Hauptakteure auf dem Markt sind Alyuda ResearchLLC., IBM, Micron TechnologyInc., Neural Technologies Limited, NeuroDimensionInc., NeuralWare, NVIDIA Corporation, SAMSUNG, Skymind, Qualcomm TechnologiesInc., Intel Corporation, Amazon Web ServicesInc., Microsoft, GMDH Inc., Sensory Inc., Ward Systems GroupInc., Xilinx, Starmind and Google LLC .
Testimonial