Global Graph Database Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2031

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Jetzt kaufenJetzt kaufen Vor dem Kauf anfragen Vorher anfragen Kostenloser Beispielbericht Kostenloser Beispielbericht

Global Graph Database Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2031

  • ICT
  • Upcoming Reports
  • Nov 2024
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60

Global Graph Database Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 2.29 Billion USD 8.72 Billion 2023 2031
Diagramm Prognosezeitraum
2024 –2031
Diagramm Marktgröße (Basisjahr)
USD 2.29 Billion
Diagramm Marktgröße (Prognosejahr)
USD 8.72 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

>Global Graph Database Market Segmentation, By Type (Resource Description Framework (RDF) and Labeled Property Graph (LPG)), Application (Fraud Detection, Prevention and Recommendation Engine), Database (Relational (SQL) and Non-relational (NoSQL)), Deployment Model (On-premise and Cloud), Analysis Type (Path Analysis, Connectivity Analysis, Community Analysis, and Centrality Analysis), Size (Large Enterprises, Small and Medium Enterprises), Component (Software and Services), End User (Banking, Financial Services and Insurance, Telecom and IT, Healthcare and Lifesciences, Transportation and Logistics, Retail and E-commerce, Energy and Utilities, Government and Public, Manufacturing, and Others) – Industry Trends and Forecast to 2031

Global Graph Database Market

Graph Database Market Analysis

The graph database market is experiencing significant growth, driven by the increasing need for advanced data management solutions that can efficiently handle complex relationships within large datasets. Graph databases, which utilize graph structures to represent and store data, offer enhanced performance for applications requiring real-time analytics and flexible data modeling. Their ability to seamlessly connect diverse data points makes them ideal for various sectors, including finance, telecommunications, and social networking. Recent developments, such as the integration of artificial intelligence and machine learning capabilities, further enhance the functionality of graph databases, enabling businesses to gain deeper insights and improve decision-making. Additionally, the growing adoption of cloud-based graph database solutions is expanding accessibility and reducing operational costs. As organizations continue to prioritize data-driven strategies, the graph database market is poised for robust growth in the coming years, reflecting a broader trend toward more sophisticated data architectures.

Graph Database Market Size

The global graph database market size was valued at USD 2.29 billion in 2023 and is projected to reach USD 8.72 billion by 2031, with a CAGR of 18.20% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.

Graph Database Market Trends

“Increasing Adoption of Cloud-Based Graph Databases”

Der Markt für Graphdatenbanken entwickelt sich rasant, angetrieben von Innovationen, die die Datenkonnektivität und Analysefunktionen verbessern. Ein herausragender Trend ist die zunehmende Nutzung von Cloud-basierten Graphdatenbanken, die Skalierbarkeit, Flexibilität und geringere Infrastrukturkosten bieten. Diese Lösungen ermöglichen es Unternehmen, die Leistungsfähigkeit von Graphdatenbanken zu nutzen, ohne die Last der Verwaltung lokaler Hardware tragen zu müssen. Darüber hinaus werden Fortschritte im Bereich des maschinellen Lernens und der künstlichen Intelligenz in Graphdatenbanken integriert, was prädiktive Analysen und tiefere Erkenntnisse aus komplexen Datenbeziehungen ermöglicht. Dieser Trend ist besonders in Branchen wie dem Finanz- und Gesundheitswesen von Bedeutung, in denen das Verständnis komplexer Datenverbindungen für die Verbesserung der Betriebseffizienz und Entscheidungsfindung von entscheidender Bedeutung ist. Da diese Innovationen den Markt weiterhin prägen, sind Unternehmen besser gerüstet, um das volle Potenzial ihrer Daten auszuschöpfen.

Berichtsumfang und Marktsegmentierung für Graphdatenbanken    

Eigenschaften

Wichtige Markteinblicke in Graphdatenbanken

Abgedeckte Segmente

  • Nach Typ : Resource Description Framework (RDF) und Labeled Property Graph (LPG)
  • Nach Anwendung: Betrugserkennung, -prävention und Empfehlungs-Engine
  • Nach Datenbank: Relational (SQL) und Nicht-relational (NoSQL)
  • Nach Bereitstellungsmodell: Vor Ort und in der Cloud
  • Nach Analysetyp: Pfadanalyse, Konnektivitätsanalyse, Community-Analyse und Zentralitätsanalyse
  • Nach Größe: Große Unternehmen, kleine und mittlere Unternehmen
  • Nach Komponente: Software und Dienste
  • Nach Endbenutzer: Banken, Finanzdienstleistungen und Versicherungen, Telekommunikation und IT, Gesundheitswesen und Biowissenschaften, Transport und Logistik, Einzelhandel und E-Commerce, Energie und Versorgungsunternehmen, Regierung und öffentliche Hand, Fertigung und andere

Abgedeckte Länder

USA, Kanada und Mexiko in Nordamerika, Deutschland, Frankreich, Großbritannien, Niederlande, Schweiz, Belgien, Russland, Italien, Spanien, Türkei, Restliches Europa in Europa, China, Japan, Indien, Südkorea, Singapur, Malaysia, Australien, Thailand, Indonesien, Philippinen, Restlicher Asien-Pazifik-Raum (APAC) in Asien-Pazifik (APAC), Saudi-Arabien, Vereinigte Arabische Emirate, Südafrika, Ägypten, Israel, Restlicher Naher Osten und Afrika (MEA) als Teil von Naher Osten und Afrika (MEA), Brasilien, Argentinien und Restliches Südamerika als Teil von Südamerika

Wichtige Marktteilnehmer

Hewlett Packard Enterprise Development LP (USA), IBM (USA), Microsoft (USA), Siemens (Deutschland), ANSYS, Inc. (USA), SAP SE (Deutschland), Oracle (USA), Robert Bosch GmbH (Deutschland), Atos SE (Frankreich), ABB (Schweiz), Kellton (Indien), AVEVA Group Limited (Großbritannien), DXC Technology Company (USA), Altair Engineering, Inc. (USA), Hexaware Technologies Limited (Indien), Tata Consultancy Services Limited (Indien), Infosys Limited (Indien), NTT DATA Group Corporation (Japan), Cloud Software Group, Inc. (USA), Redis Ltd (USA)

Marktchancen

  • Verstärkte Nutzung im Gesundheitswesen und in den Biowissenschaften
  • Expansion in IoT und Smart Cities

Wertschöpfende Dateninfosets

Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team zusammengestellte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.

Marktdefinition für Graphdatenbanken

Eine Graphdatenbank ist eine Art NoSQL-Datenbank, die zum Speichern, Verwalten und Abfragen stark vernetzter Daten entwickelt wurde. Im Gegensatz zu herkömmlichen relationalen Datenbanken, die Daten in Zeilen und Tabellen organisieren, verwenden Graphdatenbanken Knoten, Kanten und Eigenschaften, um Datenpunkte direkt darzustellen und zu verbinden. Knoten repräsentieren Entitäten (wie Personen oder Produkte), Kanten repräsentieren Beziehungen zwischen diesen Entitäten und Eigenschaften speichern relevante Details zu beiden. Diese Struktur ermöglicht es Graphdatenbanken, komplexe Beziehungen schnell und effizient zu analysieren, was sie ideal für Anwendungen wie soziale Netzwerke, Betrugserkennung, Empfehlungsmaschinen und Netzwerkanalysen macht, bei denen das Verständnis von Datenverbindungen von entscheidender Bedeutung ist.

Marktdynamik für Graphdatenbanken

Treiber

  • Steigender Bedarf an Echtzeit-Datenanalyse

Die Nachfrage nach Echtzeitanalysen großer und komplexer Datenmengen wächst branchenübergreifend. Dies ist auf den Bedarf an genaueren Erkenntnissen für anspruchsvolle Anwendungen wie Betrugserkennung, Empfehlungsmaschinen und Social-Network-Analysen zurückzuführen. Herkömmliche Datenbanken haben mit dem komplexen Beziehungsgeflecht dieser Datentypen zu kämpfen. Graphdatenbanken sind daher aufgrund ihrer Effizienz bei der Verwaltung und Abfrage verknüpfter Daten eine ideale Lösung. Mit Graphdatenbanken können Unternehmen Datenbeziehungen sofort visualisieren und analysieren, verborgene Muster aufdecken und die Entscheidungsfindung verbessern. Diese Fähigkeit, hochgradig verknüpfte Daten in Echtzeit zu verarbeiten, ist ein wichtiger Treiber des Marktwachstums für Graphdatenbanktechnologie.

  • Anstieg bei Cloud-basierten Lösungen

Cloudbasierte Graphdatenbanklösungen verändern die Art und Weise, wie Unternehmen Graphtechnologien bereitstellen und verwalten, indem sie eine optimierte, skalierbare und flexible Infrastruktur bieten. Im Gegensatz zu On-Premise-Lösungen können Unternehmen mit cloudbasierten Graphdatenbanken Ressourcen je nach Bedarf vergrößern oder verkleinern, sodass sie sowohl für kleine als auch für große Unternehmen zugänglich und kostengünstig sind. Diese Flexibilität ist besonders in Branchen von Vorteil, in denen schwankende Datenmengen auftreten oder eine schnelle Bereitstellung erforderlich ist, da sie die Vorlaufkosten und den Infrastrukturbedarf minimiert. Darüber hinaus vereinfachen Cloudlösungen Wartung und Updates, sodass sich Unternehmen auf das Extrahieren von Erkenntnissen aus Daten konzentrieren können, anstatt Hardware zu verwalten. Diese Skalierbarkeit und einfache Bereitstellung treiben die zunehmende Nutzung cloudbasierter Graphdatenbanken voran.

Gelegenheiten

  • Verstärkte Nutzung im Gesundheitswesen und in den Biowissenschaften

Graphdatenbanken sind einzigartig positioniert, um Fortschritte im Gesundheitswesen zu unterstützen, insbesondere in Bereichen wie Arzneimittelforschung, Genomik und Patientendatenmanagement. Mit der Expansion der Bereiche personalisierte Medizin und Präzisionsmedizin wird die Fähigkeit, komplexe biomedizinische Datennetzwerke zu analysieren, von entscheidender Bedeutung. Graphdatenbanken können komplexe Beziehungen innerhalb genetischer Daten, Krankheitsverläufe und Patientengeschichten schnell abbilden und interpretieren und bieten Erkenntnisse, die herkömmliche Datenbanken nur schwer aufdecken können. Beispielsweise helfen Graphdatenbanken bei der Arzneimittelforschung, Verbindungen zwischen Verbindungen, Zielen und Krankheiten zu identifizieren und so die Forschungszeitpläne zu beschleunigen. Diese Fähigkeit, kritische biomedizinische Beziehungen aufzudecken, ist eine bedeutende Wachstumschance im Gesundheitssektor für die Graphdatenbanktechnologie.

  • Expansion in IoT und Smart Cities

Durch die rasante Zunahme von IoT-Geräten entstehen riesige Netzwerke aus miteinander verbundenen intelligenten Sensoren und Systemen, insbesondere in Smart Cities und industriellen IoT-Anwendungen. Graphdatenbanken bieten eine effektive Lösung für die Verwaltung und Analyse dieser komplexen Netzwerke und ermöglichen Echtzeiteinblicke in mehrere Geräte und Datenpunkte. In Smart Cities können Graphdatenbanken beispielsweise das Verkehrsmanagement unterstützen, indem sie Muster in Echtzeit analysieren, um den Fluss zu optimieren und Staus zu reduzieren. Ebenso erleichtern sie im industriellen IoT die vorausschauende Wartung, indem sie Geräteanomalien identifizieren und Ausfälle vorhersagen. Diese Fähigkeit, große, miteinander verbundene Datennetzwerke effizient zu handhaben, stellt eine große Wachstumschance für Graphdatenbanken in IoT-Anwendungen dar.

Einschränkungen/Herausforderungen

  • Begrenzte Fachkompetenz der Belegschaft

Der Markt für Graphdatenbanken ist stark von einem Mangel an Fachkräften mit dem erforderlichen Fachwissen in Graphdatenbanktechnologien betroffen. Dieser Mangel an qualifiziertem Personal stellt eine große Herausforderung für Unternehmen dar, die diese fortschrittlichen Systeme implementieren und warten möchten. Während Unternehmen Graphdatenbanken aufgrund ihrer Fähigkeit zur Verwaltung komplexer Datenbeziehungen einführen möchten, wird der Mangel an qualifizierten Personen für Aufgaben wie Einrichtung, Optimierung und laufende Wartung zu einem Hindernis für eine erfolgreiche Integration. Diese Qualifikationslücke behindert die effektive Bereitstellung von Graphdatenbanklösungen und verlangsamt das allgemeine Marktwachstum, da Unternehmen die Einführung aufgrund von Bedenken hinsichtlich Support und Fachwissen verzögern können.

  • Fehlende Standardisierung

Das Fehlen einheitlicher Standards bei Graphdatenbanktechnologien stellt eine erhebliche Einschränkung auf dem Markt dar, insbesondere für Unternehmen, die unterschiedliche Datenbankökosysteme verwalten. Im Gegensatz zu relationalen Datenbanken, die klar definierten Strukturen und Standards folgen, unterscheiden sich Graphdatenbanken stark in Bezug auf Datenmodelle, Abfragesprachen und Speicheransätze. Diese Inkonsistenz führt zu Kompatibilitäts- und Interoperabilitätsproblemen und erschwert es Unternehmen, Graphdatenbanken nahtlos in bestehende Systeme zu integrieren. Unternehmen mit komplexen Umgebungen mit mehreren Datenbanken stehen häufig vor zusätzlichen Kosten und Komplexitäten, da sie möglicherweise benutzerdefinierte Lösungen oder Middleware benötigen, um diese Lücken zu schließen, was die breitere Einführung von Graphdatenbanken in allen Branchen behindert.

Marktumfang für Graphdatenbanken

Der Markt ist nach Typ, Anwendung, Datenbank, Bereitstellungsmodell, Analysetyp, Größe, Komponente und Endbenutzer segmentiert. Das Wachstum dieser Segmente hilft Ihnen bei der Analyse schwacher Wachstumssegmente in den Branchen und bietet den Benutzern einen wertvollen Marktüberblick und Markteinblicke, die ihnen bei der strategischen Entscheidungsfindung zur Identifizierung der wichtigsten Marktanwendungen helfen.

  Typ

  • Ressourcenbeschreibungsrahmen (RDF)
  • Beschrifteter Eigenschaftsgraph (LPG)

Anwendung

  • Betrugserkennung
  • Verhütung
  • Empfehlungsmaschine

Datenbank

  • Relational (SQL)
  • Nicht-relational (NoSQL)

Bereitstellungsmodell

  • Vor Ort
  • Wolke

Analysetyp

  • Pfadanalyse
  • Konnektivitätsanalyse
  • Community-Analyse
  • Zentralitätsanalyse

Größe

  • Große Unternehmen
  • Kleine und mittlere Unternehmen

Komponente

  • Software
  • Dienstleistungen

Endbenutzer

  • Bankwesen
  • Finanzdienstleistungen und Versicherungen
  • Telekommunikation und IT
  • Gesundheitswesen und Biowissenschaften
  • Transport und Logistik
  • Einzelhandel und E-Commerce
  • Energie und Versorgung
  • Regierung und Öffentlichkeit
  • Herstellung
  • Sonstiges

Regionale Analyse des Graphdatenbankmarktes

Der Markt wird analysiert und es werden Einblicke in die Marktgröße und Trends nach Typ, Anwendung, Datenbank, Bereitstellungsmodell, Analysetyp, Größe, Komponente und Endbenutzer wie oben angegeben bereitgestellt.

The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).

North America leads the graph database market in revenue and market share, primarily due to the presence of established fintech solutions and the region's early adoption of this technology. Additionally, continuous advancements in information technology are expected to further accelerate market growth in North America. The combination of a robust tech ecosystem and innovative developments positions this region at the forefront of the graph database industry.

Asia-Pacific region is anticipated to achieve the highest compound annual growth rate from 2024 to 2031, driven by the growing opportunities for smaller graph database vendors to introduce innovative solutions across various sectors. This surge in demand is fueled by the region's rapidly evolving technology landscape and the increasing recognition of the benefits of graph databases in managing complex data relationships. As more industries in Asia-Pacific embrace digital transformation, the market for graph database solutions is expected to expand significantly.

The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Graph Database Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

Graph Database Market Leaders Operating in the Market Are:

  • Hewlett Packard Enterprise Development LP (U.S.)
  • IBM (U.S.)
  • Microsoft (U.S.)
  • Siemens (Germany)
  • ANSYS, Inc. (U.S.)
  • SAP SE (Germany)
  • Oracle (U.S.)
  • Robert Bosch GmbH (Germany)
  • Atos SE (France)
  • ABB (Switzerland)
  • Kellton (India)
  • AVEVA Group Limited (U.K.)
  • DXC Technology Company (U.S.)
  • Altair Engineering, Inc. (U.S.)
  • Hexaware Technologies Limited. (India)
  • Tata Consultancy Services Limited (India)
  • Infosys Limited (India)
  • NTT DATA Group Corporation (Japan)
  • Cloud Software Group, Inc. U.S.)
  • Redis Ltd (U.S.)

Latest Developments in Graph Database Market

  • In May 2023, AWS partnered with Neo4j, a key player in defining the graph database landscape and setting open-source standards. As an AWS Marketplace seller, Neo4j has established itself as a leader in the graph database space. Additionally, the company has earned the AWS Data and Analytics Competency, highlighting its expertise in delivering advanced data solutions on the AWS platform
  • In May 2023, SAP and Google Cloud announced an enhanced partnership, featuring the launch of a comprehensive open data offering aimed at streamlining data landscapes and maximizing the potential of business data. This new initiative combines SAP's and Google Cloud's data and analytics technologies to enhance the accessibility and utility of enterprise data. Furthermore, it aims to propel advancements in enterprise artificial intelligence development, facilitating greater innovation and insights for businesses
  • In April 2023, Neo4j partnered with Imperium Solutions to address the rising demand for graph technology in Singapore. Through this collaboration, Imperium Solutions will help customers unlock the full potential of Neo4j, the leading graph database provider known for solving complex, enterprise-level challenges. This partnership aims to enhance the ability to efficiently identify relationships and patterns within vast datasets, driving greater value for businesses in the region
  • In February 2023, IBM announced its acquisition of StepZen Inc., the creator of a GraphQL server with an innovative architecture that enables developers to build GraphQL APIs rapidly and with minimal coding. StepZen is designed for high flexibility, seamlessly integrating with various API approaches. Additionally, it is offered as a Software as a Service (SaaS) solution, while also supporting deployments in private clouds and on-premises data centers, catering to diverse business needs
  • In December 2022, LSEG and Microsoft entered into a 10-year strategic partnership aimed at developing next-generation data and analytics solutions, alongside cloud infrastructure enhancements. As part of this collaboration, Microsoft will make an equity investment in LSEG through a share acquisition. The partnership will leverage Microsoft Azure, artificial intelligence, and Microsoft Teams to design LSEG's data infrastructure and create innovative productivity, data analytics, and modeling solutions for users


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

The Growing usage of graph database technology and Increasing demand for solutions with the capability to process low-latency queries are the growth drivers of the Graph Database Market.
The type, application, database, deployment model, analysis type, size, component and end user are the factors on which the Graph Database Market research is based.
The major companies in the Graph Database Market are Teradata (U.S.), Hewlett Packard Enterprise Development LP (U.S.), IBM Corporation (U.S.), Microsoft (U.S.), Siemens AG (Germany), ANSYS, Inc (U.S.), SAP SE (Germany), Oracle (U.S.), Robert Bosch GmbH (Germany), Swim.ai, Inc. (U.S.)., Atos S.E. (France), ABB (Switzerland), KELLTON TECH (India), AVEVA Group plc (U.K.), DXC Technology Company (U.S.), Altair Engineering, Inc (U.S.), Hexaware Technologies Limited (India), Tata Consultancy Services Limited (India), Infosys Limited (India), NTT DATA, Inc. (Japan), TIBCO Software Inc. (U.S.), Redis Ltd (U.S.).
Testimonial