Global Graph Database Market
Marktgröße in Milliarden USD
CAGR :
%
USD
2.70 Billion
USD
10.28 Billion
2024
2032
| 2025 –2032 | |
| USD 2.70 Billion | |
| USD 10.28 Billion | |
|
|
|
|
Globale Marktsegmentierung für Graphdatenbanken nach Typ (Resource Description Framework (RDF) und Labeled Property Graph (LPG)), Anwendung (Betrugserkennung, -prävention und Empfehlungs-Engine), Datenbank (relational (SQL) und nicht-relational (NoSQL)), Bereitstellungsmodell (vor Ort und in der Cloud), Analysetyp (Pfadanalyse, Konnektivitätsanalyse, Community-Analyse und Zentralitätsanalyse), Größe (Großunternehmen, kleine und mittlere Unternehmen), Komponente (Software und Dienste), Endbenutzer (Bankwesen, Finanzdienstleistungen und Versicherungen, Telekommunikation und IT, Gesundheitswesen und Biowissenschaften, Transport und Logistik, Einzelhandel und E-Commerce, Energie und Versorgung, Regierung und öffentliche Hand, Fertigung und andere) – Branchentrends und Prognose bis 2032
Marktgröße für Graphdatenbanken
- Der globale Markt für Graphdatenbanken hatte im Jahr 2024 einen Wert von 2,70 Milliarden US-Dollar und wird bis 2032 voraussichtlich 10,28 Milliarden US-Dollar erreichen , bei einer CAGR von 18,20 % im Prognosezeitraum.
- Das Marktwachstum wird maßgeblich durch die zunehmende Nutzung von Graphdatenbanken für Echtzeit-Datenanalysen, Betrugserkennung und Empfehlungsmaschinen in Sektoren wie BFSI, Telekommunikation und E-Commerce vorangetrieben.
- Darüber hinaus positionieren die zunehmende Komplexität von Unternehmensdaten und die wachsende Nachfrage nach skalierbaren, leistungsstarken Lösungen, die verborgene Zusammenhänge aufdecken, Graphdatenbanken als wichtiges Werkzeug für die moderne Dateninfrastruktur und beschleunigen damit die Marktexpansion erheblich.
Marktanalyse für Graphdatenbanken
- Graphdatenbanken, die zum Speichern, Verwalten und Abfragen von Daten auf der Grundlage von Beziehungen entwickelt wurden, werden für Unternehmen, die Erkenntnisse aus stark vernetzten und komplexen Datensätzen für verschiedene Anwendungen wie Betrugserkennung, Empfehlungssysteme und Netzwerkanalyse gewinnen möchten, immer wichtiger.
- Die steigende Nachfrage nach Graphdatenbanken ist vor allem auf den wachsenden Bedarf an Echtzeitanalysen, die zunehmende Nutzung von KI und maschinellem Lernen sowie das steigende Volumen unstrukturierter und halbstrukturierter Daten zurückzuführen, die branchenübergreifend generiert werden.
- Nordamerika dominierte den Markt für Graphdatenbanken mit einem Anteil von 42,5 % im Jahr 2024 aufgrund der frühen Einführung fortschrittlicher Analysetools, starker Investitionen in KI und maschinelles Lernen sowie des steigenden Bedarfs an Echtzeit-Datenverarbeitung in Branchen wie BFSI, Gesundheitswesen und IT.
- Der asiatisch-pazifische Raum dürfte im Prognosezeitraum die am schnellsten wachsende Region im Markt für Graphdatenbanken sein. Dies ist auf die zunehmende Digitalisierung von Unternehmen, staatlich geförderte Smart-City-Initiativen und die schnelle Cloud-Einführung in Volkswirtschaften wie China, Indien, Japan und Südkorea zurückzuführen.
- Das Cloud-Segment dominierte den Markt im Jahr 2024 aufgrund der wachsenden Präferenz für skalierbare, kostengünstige und wartungsfreie Bereitstellungsoptionen. Cloudbasierte Graphdatenbanken bieten On-Demand-Leistung, vereinfachte Integration mit anderen Cloud-Diensten und globalen Zugriff und sind damit ideal für verteilte Teams und moderne Anwendungsentwicklung.
Berichtsumfang und Marktsegmentierung für Graphdatenbanken
|
Eigenschaften |
Wichtige Markteinblicke für Graphdatenbanken |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
Europa
Asien-Pazifik
Naher Osten und Afrika
Südamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Wertschöpfungsdaten-Infosets |
Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team kuratierte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse. |
Markttrends für Graphdatenbanken
„Zunehmende Akzeptanz von Cloud-basierten Graphdatenbanken“
- Ein bedeutender und sich beschleunigender Trend auf dem globalen Markt für Graphdatenbanken ist die zunehmende Einführung cloudbasierter Bereitstellungsmodelle, die eine verbesserte Skalierbarkeit, Flexibilität und Echtzeit-Zusammenarbeit in verteilten Datenumgebungen ermöglichen.
- Beispielsweise unterstützt Amazon Neptune, ein vollständig verwalteter Graphdatenbankdienst auf AWS, sowohl RDF- als auch Property-Graph-Modelle und wird häufig für Wissensgraphen und Betrugserkennung eingesetzt. Ebenso bietet Microsofts Azure Cosmos DB native Unterstützung für die Gremlin-API und ermöglicht so skalierbare Graphdatenbanklösungen in der Cloud.
- Cloudbasierte Graphdatenbanken ermöglichen Unternehmen die Verwaltung riesiger Mengen vernetzter Daten mit minimalem Infrastrukturaufwand. Dies ermöglicht eine schnellere Bereitstellung und eine einfachere Integration in bestehende Cloud-native Dienste. Die Integration von Google Cloud mit Neo4j AuraDB ermöglicht es Nutzern, erweiterte Analyse- und Empfehlungs-Engines zu erstellen, ohne Backend-Systeme verwalten zu müssen.
- Diese Plattformen unterstützen Anwendungsfälle wie Identitätszugriffsverwaltung, Echtzeit-Betrugsanalyse und personalisierte Inhaltsbereitstellung durch die Nutzung beziehungszentrierter Datenmodellierung in einer kostengünstigen On-Demand-Umgebung.
- Dieser Wandel hin zu Cloud-nativen Graph-Lösungen verändert grundlegend die Art und Weise, wie Unternehmen Erkenntnisse aus komplexen Daten gewinnen. Unternehmen wie Neo4j und TigerGraph erweitern aktiv ihre Cloud-Angebote, um der steigenden Nachfrage aus Branchen wie Finanzdienstleistungssektor, Telekommunikation und Einzelhandel gerecht zu werden.
- Die Nachfrage nach Cloud-basierten Graphdatenbanken steigt rasant, da Unternehmen ihre Dateninfrastruktur modernisieren, die Zeit bis zur Erkenntnisgewinnung verkürzen und eine nahtlose Integration mit KI- und Machine-Learning-Workflows erreichen möchten.
Marktdynamik von Graphdatenbanken
Treiber
„Steigender Bedarf an Echtzeit-Datenanalyse“
- Der steigende Bedarf an Echtzeit-Datenanalysen in allen Branchen ist ein wesentlicher Treiber für die wachsende Nachfrage nach Graphdatenbanken
- So kündigte Neo4j im März 2024 wichtige Updates seiner Graph-Data-Science-Plattform an, die die Echtzeit-Empfehlungen und die Betrugserkennungsfunktionen verbessern. Diese werden von Fintech-Unternehmen und E-Commerce-Plattformen schnell angenommen. Solche Entwicklungen wichtiger Akteure dürften den Markt für Graphdatenbanken in den kommenden Jahren vorantreiben.
- Da Unternehmen mit zunehmenden Mengen hochgradig vernetzter Daten konfrontiert sind, ermöglichen Graphdatenbanken die sofortige Analyse von Beziehungen und Mustern, die herkömmliche Datenbanken nicht effizient verarbeiten können. Dies ist entscheidend für Anwendungsfälle wie die Erkennung betrügerischer Transaktionen, die Identifizierung von Lieferkettenunterbrechungen und die Bereitstellung personalisierter Content-Engines.
- Darüber hinaus führt die wachsende Nachfrage nach sofortigen Erkenntnissen in Branchen wie dem Bankwesen, der Telekommunikation und dem Einzelhandel dazu, dass Unternehmen von Batchverarbeitungsmodellen auf Echtzeit-Analyselösungen umsteigen, die auf Graphentechnologien basieren.
- Cloud-basierte Lösungen von Unternehmen wie TigerGraph, Amazon Neptune und Microsoft Azure Cosmos DB erweitern den Zugriff auf Echtzeit-Graphanalysen und ermöglichen es Unternehmen, diese Funktionen schnell und kostengünstig in unterschiedlichen Betriebsumgebungen einzusetzen.
Einschränkung/Herausforderung
„Begrenzte Fachkompetenz der Belegschaft“
- Die begrenzte Expertise der Mitarbeiter im Bereich Graphdatenbanktechnologien stellt eine erhebliche Herausforderung für eine breitere Marktakzeptanz und -einführung dar. Da Graphdatenbanken spezielle Kenntnisse in Graphentheorie, Abfragesprachen wie Cypher oder Gremlin und Schemadesign erfordern, haben viele Unternehmen Schwierigkeiten, qualifizierte Fachkräfte zu finden, die diese Systeme effektiv implementieren und verwalten können.
- Trotz der weiten Verbreitung von Neo4j stehen viele Unternehmen vor einem steilen Lernprozess bei der Einarbeitung von Entwicklern, die mit der Architektur und der Graph-Abfragesprache vertraut sind. Dieser Mangel an Fachwissen kann zu längeren Bereitstellungszeiten, falsch konfigurierten Implementierungen und einer unzureichenden Nutzung der Graphdatenbank-Funktionen führen.
- Die Bewältigung dieser Herausforderung durch gezielte Schulungsprogramme, Zertifizierungskurse und benutzerfreundliche Entwicklungstools ist für die Marktexpansion entscheidend. Unternehmen wie TigerGraph und Neo4j haben Bildungsinitiativen und Community-Support-Plattformen gestartet, um eine qualifizierte Nutzerbasis aufzubauen. Dennoch bleibt der Fachkräftemangel ein Engpass für die Skalierung fortschrittlicher graphenbasierter Lösungen.
- Darüber hinaus kann das rasante Innovationstempo in der Graphentechnologie traditionelle IT-Teams überfordern und die Kompetenzlücke weiter vergrößern. Dieses Problem ist besonders bei kleinen und mittleren Unternehmen ausgeprägt, denen möglicherweise die Ressourcen für Investitionen in spezialisierte Schulungen fehlen.
- Die Überbrückung dieses Fachkräftemangels durch strategische Partnerschaften, akademische Zusammenarbeit und vereinfachte Tools wird von entscheidender Bedeutung sein, um sicherzustellen, dass Unternehmen das Potenzial von Graphdatenbanken für Echtzeitanalysen, Betrugserkennung und Wissensgraphenanwendungen voll ausschöpfen können.
Marktumfang für Graphdatenbanken
Der Markt ist nach Typ, Anwendung, Datenbank, Bereitstellungsmodell, Analysetyp, Größe, Komponente und Endbenutzer segmentiert.
• Nach Typ
Der Markt für Graphdatenbanken ist nach Typ in Resource Description Framework (RDF) und Labeled Property Graph (LPG) segmentiert. Das Segment Labeled Property Graph (LPG) hatte 2024 den größten Marktanteil, was auf seine Flexibilität bei der Darstellung komplexer Beziehungen mit Knoten, Kanten und Schlüssel-Wert-Eigenschaften zurückzuführen ist. Die intuitive Datenmodellierungsstruktur von LPG unterstützt Anwendungsfälle wie Wissensgraphen, Empfehlungsmaschinen und Echtzeit-Betrugserkennung mit hoher Leistung und eignet sich daher sowohl für transaktionale als auch für analytische Workloads.
Das RDF-Segment wird voraussichtlich zwischen 2025 und 2032 die höchste durchschnittliche jährliche Wachstumsrate verzeichnen. Dies ist auf das standardisierte semantische Web-Framework und die hohe Kompatibilität mit Linked Data und ontologiebasiertem Denken zurückzuführen. RDF findet zunehmende Akzeptanz im öffentlichen und akademischen Sektor zur Datenintegration und Einhaltung von W3C-Standards, insbesondere in Projekten, die eine hohe Interoperabilität zwischen heterogenen Datenquellen erfordern.
• Nach Anwendung
Der Markt für Graphdatenbanken ist nach Anwendung in Betrugserkennung, -prävention und Empfehlungsmaschinen unterteilt. Betrugserkennung und -prävention hatten 2024 den größten Umsatzanteil, da sie zunehmend im Banken- und E-Commerce-Sektor eingesetzt werden, um verborgene Muster aufzudecken und Anomalien in Echtzeit zu erkennen. Graphdatenbanken zeichnen sich durch die Identifizierung verdächtigen Verhaltens durch vernetzte Datenerkenntnisse aus und bieten Unternehmen fortschrittliche Tools zur Bekämpfung immer ausgefeilterer Betrugssysteme.
Das Segment der Empfehlungsmaschinen wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, angetrieben durch die Nachfrage nach hyperpersonalisierten Benutzererlebnissen in Branchen wie Einzelhandel, Streaming und sozialen Plattformen. Graphenbasierte Empfehlungen nutzen mehrdimensionale Beziehungen, um präzise Inhalte und Produktvorschläge zu liefern und so die Kundenbindung und -zufriedenheit deutlich zu verbessern.
• Nach Datenbank
Der Markt für Graphdatenbanken ist nach Datenbanktyp in relationale (SQL) und nicht-relationale (NoSQL) Datenbanken unterteilt. Das nicht-relationale (NoSQL) Segment hatte 2024 den größten Marktanteil, was auf seine hohe Skalierbarkeit, Schemaflexibilität und die Fähigkeit zur Verarbeitung unstrukturierter und semistrukturierter Daten zurückzuführen ist. NoSQL-Graphdatenbanken unterstützen agile Anwendungsentwicklung und Echtzeitanalysen und finden daher in dynamischen Umgebungen wie sozialen Netzwerken, Cybersicherheit und Wissensmanagement breite Anwendung.
Das relationale (SQL) Segment wird voraussichtlich zwischen 2025 und 2032 mit der höchsten jährlichen Wachstumsrate wachsen, da Unternehmen Graphenfunktionen in traditionelle SQL-Umgebungen integrieren. Dieser hybride Ansatz ermöglicht es Unternehmen, die vorhandene relationale Infrastruktur zu nutzen und gleichzeitig erweiterte Funktionen für Beziehungsabfragen zu erhalten. Dadurch werden Betriebsunterbrechungen und Schulungsbedarf minimiert.
• Nach Bereitstellungsmodell
Basierend auf dem Bereitstellungsmodell ist der Markt für Graphdatenbanken in On-Premise und Cloud segmentiert. Das Cloud-Segment hatte 2024 den größten Umsatzanteil, getrieben durch die wachsende Präferenz für skalierbare, kostengünstige und wartungsfreie Bereitstellungsoptionen. Cloudbasierte Graphdatenbanken bieten On-Demand-Leistung, vereinfachte Integration mit anderen Cloud-Diensten und globalen Zugriff und eignen sich daher ideal für verteilte Teams und die moderne Anwendungsentwicklung.
Das On-Premise-Segment wird voraussichtlich zwischen 2025 und 2032 das schnellste Wachstum verzeichnen, insbesondere bei Unternehmen in stark regulierten Branchen wie Finanzen, Gesundheitswesen und Verteidigung. Diese Organisationen bevorzugen On-Premise-Setups für mehr Datenkontrolle, die Einhaltung strenger Datenschutzrichtlinien und Sicherheit vor externen Bedrohungen.
• Nach Analysetyp
Basierend auf dem Analysetyp ist der Markt für Graphdatenbanken in Pfadanalyse, Konnektivitätsanalyse, Community-Analyse und Zentralitätsanalyse segmentiert. Die Pfadanalyse hatte 2024 den größten Marktanteil, da sie eine entscheidende Rolle bei der Optimierung der Logistik, der Erkennung von Betrugsketten und der Abbildung von Customer Journeys spielt. Sie ermöglicht es Unternehmen, Abläufe, Abhängigkeiten und kausale Zusammenhänge in Transaktions- und Betriebsdaten zu verstehen.
Die Community-Analyse dürfte zwischen 2025 und 2032 die höchste durchschnittliche jährliche Wachstumsrate verzeichnen, angetrieben durch ihre Anwendungen in Marketing, Social-Network-Analyse und Cybersicherheit. Sie hilft bei der Identifizierung von Clustern, Influencer-Gruppen und Verhaltensmustern und ermöglicht so gezieltere Interventionen und tiefere Einblicke in die Dynamik des Ökosystems.
• Nach Größe
Der Markt wird anhand der Unternehmensgröße in Großunternehmen sowie kleine und mittlere Unternehmen (KMU) segmentiert. Großunternehmen erwirtschafteten 2024 den größten Umsatzanteil, da sie umfangreiche und komplexe Datensätze abteilungs- und regionenübergreifend verwalten müssen. Diese Unternehmen nutzen Graphdatenbanken für unternehmensweite Wissensgraphen, Betrugsanalysen und die Optimierung ihrer Lieferkette.
Das KMU-Segment wird voraussichtlich zwischen 2025 und 2032 aufgrund zunehmender Initiativen zur digitalen Transformation und des zunehmenden Zugangs zu Cloud-basierten Grafiklösungen am schnellsten wachsen. KMU profitieren von verbesserten Kundeneinblicken und optimierten Entscheidungsprozessen ohne hohe Investitionen in traditionelle Infrastruktur.
• Nach Komponente
Der Markt für Graphdatenbanken ist nach Komponenten in Software und Services unterteilt. Das Softwaresegment hatte 2024 den größten Marktanteil, was auf die zunehmende Verbreitung von Graph-Engines und Datenbankmanagementplattformen für Datenabfragen, -visualisierung und -integration zurückzuführen ist. Kontinuierliche Produktinnovationen und die zunehmende Verfügbarkeit von Open Source stärken dieses Segment zusätzlich.
Das Dienstleistungssegment wird voraussichtlich von 2025 bis 2032 die höchste durchschnittliche jährliche Wachstumsrate (CAGR) aufweisen, unterstützt durch die steigende Nachfrage nach Beratungs-, Schulungs-, Integrations- und Supportleistungen. Da immer mehr Unternehmen Graphentechnologie nutzen, sind Expertendienste unerlässlich, um eine reibungslose Einführung, Leistungsoptimierung und strategische Ausrichtung auf die Geschäftsziele zu gewährleisten.
• Nach Endbenutzer
Der Markt für Graphdatenbanken ist nach Endnutzern in die Bereiche Banken, Finanzdienstleistungen und Versicherungen (BFSI), Telekommunikation und IT, Gesundheitswesen und Biowissenschaften, Transport und Logistik, Einzelhandel und E-Commerce, Energie und Versorgung, öffentliche Verwaltung, Fertigung und Sonstige unterteilt. Das BFSI-Segment hatte 2024 den größten Marktanteil, getrieben durch den Bedarf an robuster Betrugserkennung, Risikomanagement und Einhaltung gesetzlicher Vorschriften. Graphdatenbanken bieten BFSI-Akteuren die Möglichkeit, komplexe Transaktionsbeziehungen abzubilden und Netzwerke der Finanzkriminalität aufzuspüren.
Der Bereich Gesundheitswesen und Biowissenschaften dürfte zwischen 2025 und 2032 aufgrund zunehmender Anwendungen in der Genomik, der Arzneimittelforschung und der Patientendatenintegration die höchste durchschnittliche jährliche Wachstumsrate verzeichnen. Graphentechnologie ermöglicht es Forschern und Klinikern, biologische Netzwerke und medizinische Aufzeichnungen in einem vernetzten Kontext zu analysieren und so Innovationen und eine personalisierte Versorgung zu beschleunigen.
Regionale Analyse des Graphdatenbankmarktes
- Nordamerika dominierte den Markt für Graphdatenbanken mit dem größten Umsatzanteil von 42,5 % im Jahr 2024, getrieben durch die frühe Einführung fortschrittlicher Analysetools, starke Investitionen in KI und maschinelles Lernen sowie den steigenden Bedarf an Echtzeit-Datenverarbeitung in Branchen wie BFSI, Gesundheitswesen und IT.
- Organisationen in der Region nutzen Graphdatenbanken zur Betrugserkennung, für Empfehlungsmaschinen und komplexe Netzwerkanalysen über strukturierte und unstrukturierte Datensätze hinweg.
- Die Expansion des Marktes wird durch die Präsenz führender Anbieter, die zunehmende Cloud-Nutzung und die Nachfrage der Unternehmen nach skalierbaren, leistungsstarken Datenmanagementlösungen unterstützt.
Markteinblick in Graphdatenbanken in den USA
Der US-Markt für Graphdatenbanken erzielte 2024 den größten Umsatzanteil in Nordamerika, angetrieben durch die weit verbreitete Digitalisierung von Unternehmen und die Integration graphenbasierter Analysen in Datenplattformen. Die fortschrittliche Cloud-Infrastruktur und das datenzentrierte regulatorische Umfeld des Landes fördern die Einführung in den Bereichen Finanzen, Gesundheitswesen und Einzelhandel. US-Unternehmen setzen zunehmend Graphdatenbanken zur Verbesserung des Kundenerlebnisses, der Cybersicherheit und der Beziehungsintelligenz ein, unterstützt durch ein robustes Ökosystem von Lösungsanbietern und Cloud-Plattformen.
Markteinblick in Graphdatenbanken in Europa
Der europäische Markt für Graphdatenbanken wird im Prognosezeitraum voraussichtlich mit einer starken jährlichen Wachstumsrate wachsen, vor allem aufgrund strenger Datenverwaltungsstandards wie der DSGVO und des zunehmenden Fokus der Region auf Datenherkunft, Transparenz und Interoperabilität. Die steigende Nachfrage nach KI-gestützten Erkenntnissen in den Bereichen Telekommunikation, Finanzwesen und öffentliche Dienste treibt das Wachstum voran. Unternehmen setzen Graphtechnologien ein, um die Betrugserkennung zu verbessern, die Transparenz der Lieferkette zu erhöhen und Personalisierungsstrategien über digitale Kanäle voranzutreiben.
Markteinblick in Graphdatenbanken in Großbritannien
Der britische Markt für Graphdatenbanken wird im Prognosezeitraum voraussichtlich mit einer robusten jährlichen Wachstumsrate wachsen. Dies ist auf steigende Investitionen in die digitale Transformation und die wachsende Bedeutung von Netzwerkanalysen im öffentlichen Sektor und im Finanzsektor zurückzuführen. Die wachsende Fintech-Landschaft und der Fokus auf Cybersicherheit in Großbritannien treiben die Nachfrage nach graphenbasierten Lösungen zur Betrugserkennung und Customer Journey Mapping an. Auch in Forschungseinrichtungen und Unternehmen, die sich auf die Erstellung semantischer Wissensgraphen konzentrieren, nimmt die Akzeptanz zu.
Markteinblick in die Graphdatenbank Deutschland
Der deutsche Markt für Graphdatenbanken wird im Prognosezeitraum stetig wachsen, unterstützt durch die Fokussierung Deutschlands auf Industrie 4.0, Datenautomatisierung und intelligente Entscheidungsfindung. Deutsche Unternehmen nutzen Graphdatenbanken zur Optimierung von Produktionsnetzwerken, zur vorausschauenden Wartung und im IT-Betrieb. Die Integration von Graphanalysen in Legacy-Systeme und ERP-Plattformen gewinnt an Bedeutung, insbesondere in der Automobilindustrie, der Fertigung und im öffentlichen Sektor.
Markteinblicke für Graphdatenbanken im asiatisch-pazifischen Raum
Der Markt für Graphdatenbanken im asiatisch-pazifischen Raum wird zwischen 2025 und 2032 voraussichtlich die höchste jährliche Wachstumsrate aufweisen. Dies wird durch die zunehmende Digitalisierung von Unternehmen, staatlich geförderte Smart-City-Initiativen und die schnelle Cloud-Einführung in Volkswirtschaften wie China, Indien, Japan und Südkorea vorangetrieben. Unternehmen nutzen Graphdatenbanken zunehmend, um Betrugserkennung, personalisierte Dienste und komplexe Datenintegration in verteilten Umgebungen zu ermöglichen.
Markteinblick in die japanische Graphdatenbank
Der japanische Markt für Graphdatenbanken wächst stetig, angetrieben von der starken technologischen Infrastruktur des Landes und der steigenden Nachfrage nach KI-gestützten Datenlösungen. Unternehmen und Behörden nutzen Graphdatenbanken, um die semantische Suche zu verbessern, die Logistik zu optimieren und Muster bei Cybersicherheitsbedrohungen zu erkennen. Der Markt wird zudem durch die Integration von Graphanalysen in IoT- und intelligente Fertigungssysteme unterstützt, die den Zielen der japanischen Society 5.0 entsprechen.
Markteinblick in Graphdatenbanken in China
Der chinesische Markt für Graphdatenbanken hatte 2024 den größten Umsatzanteil im asiatisch-pazifischen Raum, was auf die staatliche Förderung von Dateninnovationen und die starke Nachfrage aus den Bereichen Technologie, Finanzen und Logistik zurückzuführen ist. Chinas schnell wachsendes digitales Ökosystem nutzt Graphdatenbanken zur Unterstützung von Empfehlungssystemen, Betrugserkennung und Supply-Chain-Intelligence. Inländische Anbieter entwickeln aktiv Innovationen im Graphenbereich, unterstützt durch einen großen Talentpool und günstige politische Rahmenbedingungen.
Marktanteil von Graphdatenbanken
Die Graphdatenbankbranche wird hauptsächlich von etablierten Unternehmen angeführt, darunter:
- Hewlett Packard Enterprise Development LP (USA)
- IBM (USA)
- Microsoft (US)
- Siemens (Deutschland)
- ANSYS, Inc. (USA)
- SAP SE (Deutschland)
- Oracle (USA)
- Robert Bosch GmbH (Deutschland)
- Atos SE (Frankreich)
- ABB (Schweiz)
- Kellton (Indien)
- AVEVA Group Limited (Großbritannien)
- DXC Technology Company (USA)
- Altair Engineering, Inc. (USA)
- Hexaware Technologies Limited. (Indien)
- Tata Consultancy Services Limited (Indien)
- Infosys Limited (Indien)
- NTT DATA Group Corporation (Japan)
- Cloud Software Group, Inc. US)
- Redis Ltd (USA)
Neueste Entwicklungen auf dem globalen Markt für Graphdatenbanken
- Im Mai 2023 ging AWS eine Partnerschaft mit Neo4j ein, einem wichtigen Akteur bei der Definition der Graphdatenbanklandschaft und der Festlegung von Open-Source-Standards. Als AWS Marketplace-Verkäufer hat sich Neo4j als führender Anbieter im Bereich Graphdatenbanken etabliert. Darüber hinaus wurde das Unternehmen mit der AWS Data and Analytics Competency ausgezeichnet, was seine Expertise bei der Bereitstellung fortschrittlicher Datenlösungen auf der AWS-Plattform unterstreicht.
- Im Mai 2023 gaben SAP und Google Cloud eine erweiterte Partnerschaft bekannt. Diese beinhaltet die Einführung eines umfassenden Open-Data-Angebots, das darauf abzielt, Datenlandschaften zu optimieren und das Potenzial von Geschäftsdaten zu maximieren. Diese neue Initiative kombiniert die Daten- und Analysetechnologien von SAP und Google Cloud, um die Zugänglichkeit und Nutzung von Unternehmensdaten zu verbessern. Darüber hinaus zielt sie darauf ab, die Entwicklung künstlicher Intelligenz in Unternehmen voranzutreiben und so mehr Innovation und Erkenntnisse für Unternehmen zu ermöglichen.
- Im April 2023 ging Neo4j eine Partnerschaft mit Imperium Solutions ein, um der steigenden Nachfrage nach Graphentechnologie in Singapur gerecht zu werden. Durch diese Zusammenarbeit unterstützt Imperium Solutions Kunden dabei, das volle Potenzial von Neo4j auszuschöpfen, dem führenden Graphendatenbankanbieter, der für die Lösung komplexer Herausforderungen auf Unternehmensebene bekannt ist. Ziel der Partnerschaft ist es, die Fähigkeit zu verbessern, Beziehungen und Muster in riesigen Datensätzen effizient zu erkennen und so den Wert für Unternehmen in der Region zu steigern.
- Im Februar 2023 gab IBM die Übernahme von StepZen Inc. bekannt, dem Entwickler eines GraphQL-Servers mit innovativer Architektur, der es Entwicklern ermöglicht, GraphQL-APIs schnell und mit minimalem Programmieraufwand zu erstellen. StepZen ist auf hohe Flexibilität ausgelegt und lässt sich nahtlos in verschiedene API-Ansätze integrieren. Darüber hinaus wird es als Software-as-a-Service (SaaS)-Lösung angeboten und unterstützt auch die Bereitstellung in privaten Clouds und lokalen Rechenzentren, um unterschiedlichen Geschäftsanforderungen gerecht zu werden.
- Im Dezember 2022 schlossen LSEG und Microsoft eine zehnjährige strategische Partnerschaft mit dem Ziel, Daten- und Analyselösungen der nächsten Generation sowie Verbesserungen der Cloud-Infrastruktur zu entwickeln. Im Rahmen dieser Zusammenarbeit wird Microsoft durch einen Aktienerwerb eine Beteiligung an LSEG tätigen. Die Partnerschaft wird Microsoft Azure, künstliche Intelligenz und Microsoft Teams nutzen, um die Dateninfrastruktur von LSEG zu gestalten und innovative Produktivitäts-, Datenanalyse- und Modellierungslösungen für Nutzer zu entwickeln.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Inhaltsverzeichnis
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL GRAPH DATABASE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL GRAPH DATABASE MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 MULTIVARIATE MODELLING
2.2.5 TOP TO BOTTOM ANALYSIS
2.2.6 STANDARDS OF MEASUREMENT
2.2.7 VENDOR SHARE ANALYSIS
2.2.8 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.9 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL GRAPH DATABASE MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 PORTER’S FIVE FORCES ANALYSIS
5.2 REGULATORY STANDARDS
5.3 INDUSTRY ANALYSIS & FUTURISTIC SCENARIO
5.4 PENETRATION AND GROWTH POSPECT MAPPING
5.5 NEW BUSINESS AND EMERGING BUSINESS'S REVENUE OPPORTUNITIES
5.6 TECHNOLOGY ANALYSIS
5.6.1 KEY TECHNOLOGIES
5.6.2 COMPLEMENTARY TECHNOLOGIES
5.6.3 ADJACENT TECHNOLOGIES
FIGURE 1 TECHNOLOGY MATRIX
Company Product/Service offered
5.7 COMPANY COMPETITIVE ANALYSIS
5.7.1 STRATEGIC DEVELOPMENT
5.7.2 TECHNOLOGY IMPLEMENTATION PROCESS
5.7.2.1. CHALLENGES
5.7.2.2. INHOUSE IMPLEMENTATION/OUTSOURCED (THIRD PARTY) IMPLEMENTATION
5.7.3 CUSTOMER BASE
5.7.4 SERVICE POSITIONING
5.7.5 CUSTOMER FEEDBACK/RATING (B2B OR B2C)
5.7.6 APPLICATION REACH
5.7.7 SERVICE PLATFORM MATRIX
FIGURE 2 COMPANY COMPARATIVE ANALYSIS
Parameters Company A
Market Share
Growth (%)
Target Audience
Price Structure
Market Strategies
Customer Feedback
Service Positioning
Customer Feedback/Rating
Strategic Development
Application Reach
6 COMPANY SERVICE PLATFORM MATRIX
6.1 USED CASES & ITS ANALYSIS
7 FIG 4. USED CASE ANALYSIS
Company Product/Service offered
8 GLOBAL GRAPH DATABASE MARKET, BY MODEL TYPE
8.1 OVERVIEW
8.2 RESOURCE DESCRIPTION FRAMEWORK (RDF)
8.3 LABELED PROPERTY GRAPH (LPG)
8.4 HYPERGRAPHS
8.5 OTHERS
9 GLOBAL GRAPH DATABASE MARKET, BY SET OF OBJECTS
9.1 OVERVIEW
9.2 NODES
9.3 EDGES
9.4 OTHERS
10 GLOBAL GRAPH DATABASE MARKET, BY OFFERING
10.1 OVERVIEW
10.2 SOLUTION
10.2.1 BY DEPLOYMENT TYPE
10.2.1.1. ON-PREMISE
10.2.1.2. CLOUD
10.3 SERVICES
10.3.1 PROFESSIONAL SERVICES
10.3.2 MANAGED SERVICES
11 GLOBAL GRAPH DATABASE MARKET, BY ANALYSIS TYPE
11.1 OVERVIEW
11.2 PATH ANALYSIS
11.3 CONNECTIVITY ANALYSIS
11.4 COMMUNITY ANALYSIS
11.5 CENTRALITY ANALYSIS
12 GLOBAL GRAPH DATABASE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 FRAUD DETECTION
12.3 REAL-TIME RECOMMENDATION ENGINES
12.4 MASTER DATA MANAGEMENT (MDM)
12.5 NETWORK AND IT OPERATIONS
12.6 IDENTITY AND ACCESS MANAGEMENT (IAM)
13 GLOBAL GRAPH DATABASE MARKET, BY ORGANISATION TYPE
13.1 OVERVIEW
13.2 LARGE ENTERPRISES
13.3 SMALL & MEDIUM ENTERPRISES
14 GLOBAL GRAPH DATABASE MARKET, BY DEPLOYMENT MODE
14.1 OVERVIEW
14.2 ON-PREMISE
14.3 CLOUD
15 GLOBAL GRAPH DATABASE MARKET, BY END USER
15.1 OVERVIEW
15.2 MANUFACTURING & AUTOMOTIVE
15.2.1 BY OFFERING
15.2.1.1. SOLUTION
15.2.1.1.1. BY DEPLOYMENT TYPE
15.2.1.1.1.1 ON-PREMISE
15.2.1.1.1.2 CLOUD
15.2.1.1.1.3 SERVICES
15.2.1.1.1.4 PROFESSIONAL SERVICES
15.2.1.1.1.5 MANAGED SERVICES
15.3 RETAIL AND E-COMMERCE
15.3.1 SOLUTION
15.3.1.1. BY DEPLOYMENT TYPE
15.3.1.1.1. ON-PREMISE
15.3.1.1.2. CLOUD
15.3.1.2. SERVICES
15.3.1.2.1. PROFESSIONAL SERVICES
15.3.1.2.2. MANAGED SERVICES
15.4 HEALTHCARE AND PHARMACEUTICALS
15.4.1 SOLUTION
15.4.1.1. BY DEPLOYMENT TYPE
15.4.1.1.1. ON-PREMISE
15.4.1.1.2. CLOUD
15.4.1.2. SERVICES
15.4.1.2.1. PROFESSIONAL SERVICES
15.4.1.2.2. MANAGED SERVICES
15.5 BANKING, FINANCIAL SERVICES & INSURANCE
15.5.1 SOLUTION
15.5.1.1. BY DEPLOYMENT TYPE
15.5.1.1.1. ON-PREMISE
15.5.1.1.2. CLOUD
15.5.1.2. SERVICES
15.5.1.2.1. PROFESSIONAL SERVICES
15.5.1.2.2. MANAGED SERVICES
15.6 ENERGY & UTILITIES
15.6.1 SOLUTION
15.6.1.1. BY DEPLOYMENT TYPE
15.6.1.1.1. ON-PREMISE
15.6.1.1.2. CLOUD
15.6.1.2. SERVICES
15.6.1.2.1. PROFESSIONAL SERVICES
15.6.1.2.2. MANAGED SERVICES
15.7 GOVERNMENT & PUBLIC
15.7.1 SOLUTION
15.7.1.1. BY DEPLOYMENT TYPE
15.7.1.1.1. ON-PREMISE
15.7.1.1.2. CLOUD
15.7.1.2. SERVICES
15.7.1.2.1. PROFESSIONAL SERVICES
15.7.1.2.2. MANAGED SERVICES
15.8 TELECOM & IT
15.8.1 SOLUTION
15.8.1.1. BY DEPLOYMENT TYPE
15.8.1.1.1. ON-PREMISE
15.8.1.1.2. CLOUD
15.8.1.2. SERVICES
15.8.1.2.1. PROFESSIONAL SERVICES
15.8.1.2.2. MANAGED SERVICES
15.9 TRANSPORTATION & LOGISTICS
15.9.1 SOLUTION
15.9.1.1. BY DEPLOYMENT TYPE
15.9.1.1.1. ON-PREMISE
15.9.1.1.2. CLOUD
15.9.1.2. SERVICES
15.9.1.2.1. PROFESSIONAL SERVICES
15.9.1.2.2. MANAGED SERVICES
15.1 OTHERS
16 GLOBAL GRAPH DATABASE MARKET, BY REGION
16.1 GLOBAL GRAPH DATABASE MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
16.1.1 NORTH AMERICA
16.1.1.1. U.S.
16.1.1.2. CANADA
16.1.1.3. MEXICO
16.1.2 EUROPE
16.1.2.1. GERMANY
16.1.2.2. FRANCE
16.1.2.3. U.K.
16.1.2.4. ITALY
16.1.2.5. SPAIN
16.1.2.6. RUSSIA
16.1.2.7. TURKEY
16.1.2.8. BELGIUM
16.1.2.9. NETHERLANDS
16.1.2.10. SWITZERLAND
16.1.2.11. SWEDEN
16.1.2.12. DENMARK
16.1.2.13. POLAND
16.1.2.14. REST OF EUROPE
16.1.3 ASIA PACIFIC
16.1.3.1. JAPAN
16.1.3.2. CHINA
16.1.3.3. SOUTH KOREA
16.1.3.4. INDIA
16.1.3.5. AUSTRALIA AND NEW ZEALAND
16.1.3.6. SINGAPORE
16.1.3.7. THAILAND
16.1.3.8. MALAYSIA
16.1.3.9. INDONESIA
16.1.3.10. PHILIPPINES
16.1.3.11. TAIWAN
16.1.3.12. VIETNAM
16.1.3.13. REST OF ASIA PACIFIC
16.1.4 SOUTH AMERICA
16.1.4.1. BRAZIL
16.1.4.2. ARGENTINA
16.1.4.3. REST OF SOUTH AMERICA
16.1.5 MIDDLE EAST AND AFRICA
16.1.5.1. SOUTH AFRICA
16.1.5.2. EGYPT
16.1.5.3. SAUDI ARABIA
16.1.5.4. U.A.E
16.1.5.5. ISRAEL
16.1.5.6. KUWAIT
16.1.5.7. QATAR
16.1.5.8. REST OF MIDDLE EAST AND AFRICA
16.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
17 GLOBAL GRAPH DATABASE MARKET, COMPANY LANDSCAPE
17.1 COMPANY SHARE ANALYSIS: GLOBAL
17.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
17.3 COMPANY SHARE ANALYSIS: EUROPE
17.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
17.5 MERGERS & ACQUISITIONS
17.6 NEW PRODUCT DEVELOPMENT & APPROVALS
17.7 EXPANSIONS
17.8 REGULATORY CHANGES
17.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
18 GLOBAL GRAPH DATABASE MARKET, SWOT ANALYSIS
19 GLOBAL GRAPH DATABASE MARKET, COMPANY PROFILE
19.1 MICROSOFT CORPORATION
19.1.1 COMPANY SNAPSHOT
19.1.2 REVENUE ANALYSIS
19.1.3 PRODUCT PORTFOLIO
19.1.4 RECENT DEVELOPMENTS
19.2 IBM CORPORATION
19.2.1 COMPANY SNAPSHOT
19.2.2 REVENUE ANALYSIS
19.2.3 PRODUCT PORTFOLIO
19.2.4 RECENT DEVELOPMENTS
19.3 NEO4J INC.
19.3.1 COMPANY SNAPSHOT
19.3.2 REVENUE ANALYSIS
19.3.3 PRODUCT PORTFOLIO
19.3.4 RECENT DEVELOPMENTS
19.4 ORACLE CORPORATION
19.4.1 COMPANY SNAPSHOT
19.4.2 REVENUE ANALYSIS
19.4.3 PRODUCT PORTFOLIO
19.4.4 RECENT DEVELOPMENTS
19.5 DATASTAX INC.
19.5.1 COMPANY SNAPSHOT
19.5.2 REVENUE ANALYSIS
19.5.3 PRODUCT PORTFOLIO
19.5.4 RECENT DEVELOPMENTS
19.6 ARANGOGRAPH DB
19.6.1 COMPANY SNAPSHOT
19.6.2 REVENUE ANALYSIS
19.6.3 PRODUCT PORTFOLIO
19.6.4 RECENT DEVELOPMENTS
19.7 TIGERGRAPH
19.7.1 COMPANY SNAPSHOT
19.7.2 REVENUE ANALYSIS
19.7.3 PRODUCT PORTFOLIO
19.7.4 RECENT DEVELOPMENTS
19.8 AMAZON WEB SERVICES INC.
19.8.1 COMPANY SNAPSHOT
19.8.2 REVENUE ANALYSIS
19.8.3 PRODUCT PORTFOLIO
19.8.4 RECENT DEVELOPMENTS
19.9 ONTOTEXT INC.
19.9.1 COMPANY SNAPSHOT
19.9.2 REVENUE ANALYSIS
19.9.3 PRODUCT PORTFOLIO
19.9.4 RECENT DEVELOPMENTS
19.1 STARDOG UNION
19.10.1 COMPANY SNAPSHOT
19.10.2 REVENUE ANALYSIS
19.10.3 PRODUCT PORTFOLIO
19.10.4 RECENT DEVELOPMENTS
19.11 SAP SE
19.11.1 COMPANY SNAPSHOT
19.11.2 REVENUE ANALYSIS
19.11.3 PRODUCT PORTFOLIO
19.11.4 RECENT DEVELOPMENTS
19.12 MARKLOGIC CORPORATION
19.12.1 COMPANY SNAPSHOT
19.12.2 REVENUE ANALYSIS
19.12.3 PRODUCT PORTFOLIO
19.12.4 RECENT DEVELOPMENTS
19.13 TIBCO SOFTWARE INC. (CLOUD SOFTWARE GROUP)
19.13.1 COMPANY SNAPSHOT
19.13.2 REVENUE ANALYSIS
19.13.3 PRODUCT PORTFOLIO
19.13.4 RECENT DEVELOPMENTS
19.14 FRANZ INC.
19.14.1 COMPANY SNAPSHOT
19.14.2 REVENUE ANALYSIS
19.14.3 PRODUCT PORTFOLIO
19.14.4 RECENT DEVELOPMENTS
19.15 OPENLINK SOFTWARE
19.15.1 COMPANY SNAPSHOT
19.15.2 REVENUE ANALYSIS
19.15.3 PRODUCT PORTFOLIO
19.15.4 RECENT DEVELOPMENTS
19.16 BITNINE CO. LTD.
19.16.1 COMPANY SNAPSHOT
19.16.2 REVENUE ANALYSIS
19.16.3 PRODUCT PORTFOLIO
19.16.4 RECENT DEVELOPMENTS
19.17 FLUREE
19.17.1 COMPANY SNAPSHOT
19.17.2 REVENUE ANALYSIS
19.17.3 PRODUCT PORTFOLIO
19.17.4 RECENT DEVELOPMENTS
19.18 DGRAPH
19.18.1 COMPANY SNAPSHOT
19.18.2 REVENUE ANALYSIS
19.18.3 PRODUCT PORTFOLIO
19.18.4 RECENT DEVELOPMENTS
19.19 REDIS LABS
19.19.1 COMPANY SNAPSHOT
19.19.2 REVENUE ANALYSIS
19.19.3 PRODUCT PORTFOLIO
19.19.4 RECENT DEVELOPMENTS
19.2 ALTAIR ENGINEERING INC.
19.20.1 COMPANY SNAPSHOT
19.20.2 REVENUE ANALYSIS
19.20.3 PRODUCT PORTFOLIO
19.20.4 RECENT DEVELOPMENTS
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
20 RELATED REPORTS
21 QUESTIONNAIRE
22 ABOUT DATA BRIDGE MARKET RESEARCH
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

