Bericht zur globalen Marktgröße, zum Marktanteil und zu den Trends im Bereich Datenbanken für Grafikprozessoren (GPU) – Branchenüberblick und Prognose bis 2033

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Bericht zur globalen Marktgröße, zum Marktanteil und zu den Trends im Bereich Datenbanken für Grafikprozessoren (GPU) – Branchenüberblick und Prognose bis 2033

  • ICT
  • Upcoming Reports
  • Mar 2021
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60
  • Author : Megha Gupta

Umgehen Sie die Zollherausforderungen mit agiler Supply-Chain-Beratung

Die Analyse des Supply-Chain-Ökosystems ist jetzt Teil der DBMR-Berichte

Global Graphics Processing Units Gpu Database Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 603.75 Million USD 2,444.29 Million 2025 2033
Diagramm Prognosezeitraum
2026 –2033
Diagramm Marktgröße (Basisjahr)
USD 603.75 Million
Diagramm Marktgröße (Prognosejahr)
USD 2,444.29 Million
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • OmniSciInc.
  • SQream Technologies
  • Kinetica DB Inc.
  • Neo4jInc.
  • NVIDIA Corporation

Globale Marktsegmentierung für GPU-Datenbanken nach Komponenten (Tools und Services), Bereitstellung (Cloud und On-Premises), Anwendung (Governance, Risiko und Compliance; Bedrohungsanalyse; Kundenerlebnismanagement; Betrugserkennung und -prävention; Lieferkettenmanagement; und Sonstige), Endnutzer (Banken, Finanzdienstleistungen und Versicherungen, Einzelhandel und E-Commerce, Telekommunikation und IT, Transport und Logistik, Gesundheitswesen und Pharma, Regierung und Verteidigung sowie Sonstige) – Branchentrends und Prognose bis 2033

Markt für Datenbanken für Grafikprozessoren (GPUs) z

Marktgröße für Datenbanken für Grafikprozessoren (GPUs)

  • Der globale Markt für Datenbanken für Grafikprozessoren (GPUs) hatte im Jahr 2025 einen Wert von 603,75 Millionen US-Dollar und wird voraussichtlich bis 2033 auf 2444,29 Millionen US-Dollar anwachsen , was einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 19,10 % im Prognosezeitraum entspricht.
  • Das Marktwachstum wird maßgeblich durch die zunehmende Verbreitung von künstlicher Intelligenz, maschinellem Lernen und Echtzeitanalysen angetrieben, die leistungsstarke Datenverarbeitungskapazitäten erfordern, welche durch GPU-beschleunigte Datenbanken unterstützt werden.
  • Darüber hinaus beschleunigt das steigende Volumen strukturierter und unstrukturierter Daten in Unternehmen, verbunden mit dem Bedarf an schnellerer Abfrageausführung und Erkenntnissen mit geringer Latenz, die Einführung von GPU-Datenbanken und steigert dadurch das Marktwachstum insgesamt erheblich.

Marktanalyse für Datenbanken für Grafikprozessoren (GPUs)

  • GPU-Datenbanken, die die Parallelverarbeitungsfähigkeiten von GPUs für Datenspeicherung und -analyse nutzen, entwickeln sich aufgrund ihrer Fähigkeit, umfangreiche und rechenintensive Workloads effizient zu verarbeiten, zu kritischen Komponenten moderner Datenarchitekturen in Cloud- und On-Premises-Umgebungen.
  • Die zunehmende Bedeutung von Echtzeit-Entscheidungsfindung, fortschrittlicher Analytik und KI-gestützten Anwendungen in den Bereichen Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel, Gesundheitswesen und IT ist ein Schlüsselfaktor für die anhaltende Nachfrage nach GPU-Datenbanklösungen.
  • Nordamerika dominierte den Markt für GPU-Datenbanken mit einem Anteil von 34,57 % im Jahr 2025. Dies ist auf die frühe Einführung von Hochleistungsrechnern, die starke Präsenz von Hyperscale-Cloud-Anbietern und die rasche Bereitstellung von KI- und datenintensiven Anwendungen zurückzuführen.
  • Der asiatisch-pazifische Raum wird im Prognosezeitraum voraussichtlich die am schnellsten wachsende Region im Markt für GPU-Datenbanken sein, bedingt durch die rasante Digitalisierung, den Ausbau der Cloud-Infrastruktur und die zunehmende Verbreitung von KI-Technologien.
  • Das Segment der Datenbanktools dominierte den Markt mit einem Marktanteil von 59,14 % im Jahr 2025. Grund dafür war die entscheidende Rolle von GPU-beschleunigten Datenbank-Engines, Abfrageoptimierern und Analyseplattformen bei der Verarbeitung großer paralleler Datenmengen. Unternehmen setzen zunehmend auf GPU-Datenbanktools, um schnellere Abfrageausführungen, Echtzeitanalysen und eine verbesserte Performance für KI- und ML-basierte Workloads zu erzielen. Die wachsende Verbreitung datenintensiver Anwendungen in den Bereichen Finanzen, Einzelhandel und wissenschaftliche Forschung verstärkt die Nachfrage nach fortschrittlichen GPU-Datenbanktools zusätzlich. Ihre Fähigkeit zur nahtlosen Integration in bestehende Datenarchitekturen und Analyseframeworks fördert die breite Akzeptanz in Unternehmen.

Berichtsumfang und Marktsegmentierung für Datenbanken für Grafikprozessoren (GPUs)

Attribute

Datenbank für Grafikprozessoren (GPU): Wichtigste Markteinblicke

Abgedeckte Segmente

  • Nach Komponente: Werkzeuge und Dienstleistungen
  • Nach Bereitstellungsart: Cloud und On-Premises
  • Anwendungsbereiche: Unternehmensführung, Risikomanagement und Compliance; Bedrohungsanalyse; Kundenerlebnismanagement; Betrugserkennung und -prävention; Lieferkettenmanagement; und Sonstiges
  • Nach Endnutzer: Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel und E-Commerce, Telekommunikation und IT, Transport und Logistik, Gesundheitswesen und Pharmazie, Regierung und Verteidigung sowie Sonstige

Abgedeckte Länder

Nordamerika

  • UNS
  • Kanada
  • Mexiko

Europa

  • Deutschland
  • Frankreich
  • Vereinigtes Königreich
  • Niederlande
  • Schweiz
  • Belgien
  • Russland
  • Italien
  • Spanien
  • Truthahn
  • Restliches Europa

Asien-Pazifik

  • China
  • Japan
  • Indien
  • Südkorea
  • Singapur
  • Malaysia
  • Australien
  • Thailand
  • Indonesien
  • Philippinen
  • Übriges Asien-Pazifik

Naher Osten und Afrika

  • Saudi-Arabien
  • VAE
  • Südafrika
  • Ägypten
  • Israel
  • Übriger Naher Osten und Afrika

Südamerika

  • Brasilien
  • Argentinien
  • Restliches Südamerika

Wichtige Marktteilnehmer

  • OmniSci, Inc. (USA)
  • SQream Technologies (Israel)
  • Kinetica DB Inc. (USA)
  • Neo4j, Inc. (USA)
  • NVIDIA Corporation (USA)
  • Brytlyt (UK)
  • Jedox Inc. (Deutschland)
  • Blazegraph (USA)
  • BlazingSQL, Inc. (USA)
  • Zilliz (USA)
  • HeteroDB (Japan)
  • H2O.ai. (USA)
  • FASTDATA (USA)
  • Fuzzy Logix, Inc. (USA)
  • Graphistik (USA)
  • Anaconda Inc. (USA)

Marktchancen

  • Zunehmende Nutzung cloudbasierter GPU-Datenbanken
  • Zunehmende Nutzung in Schwellenländern

Mehrwertdaten-Infosets

Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team erstellte Marktbericht detaillierte Expertenanalysen, Import-/Exportanalysen, Preisanalysen, Produktions- und Verbrauchsanalysen sowie eine PESTLE-Analyse.

Markttrends für Datenbanken für Grafikprozessoren (GPUs)

Zunehmende Nutzung von GPU-Datenbanken für Echtzeitanalysen

  • Ein wichtiger Trend im Markt für GPU-Datenbanken ist die zunehmende Nutzung GPU-beschleunigter Datenbanken für Echtzeitanalysen. Treiber dieser Entwicklung ist der Bedarf, in datenintensiven Branchen massive Datenmengen mit geringer Latenz zu verarbeiten. Unternehmen setzen verstärkt auf GPU-Datenbanken, um schnellere Abfrageausführung und parallele Datenverarbeitung zu ermöglichen, insbesondere für KI-gestützte und analytische Workloads.
    • Beispielsweise bieten Unternehmen wie Kinetica und SQream Technologies GPU-native Datenbanken an, die Echtzeitanalysen für Telekommunikation, Finanzdienstleistungen und Geodatenanwendungen ermöglichen. Diese Plattformen erlauben es Unternehmen, Streaming- und historische Daten gleichzeitig zu analysieren und so die Entscheidungsfindung zu beschleunigen und die betriebliche Effizienz zu steigern.
  • Die zunehmende Nutzung von GPU-Datenbanken in KI- und Machine-Learning-Pipelines verstärkt diesen Trend, da GPUs in Kombination mit Hochleistungsdatenbanken die Trainings- und Inferenzzeiten von Modellen deutlich reduzieren. Diese Fähigkeit wird für Anwendungen, die sofortige Erkenntnisse aus kontinuierlich generierten Daten benötigen, immer wichtiger.
  • Cloud-Service-Anbieter integrieren zunehmend GPU-Datenbanktechnologien in ihre Plattformen, um der Nachfrage von Unternehmen nach skalierbaren Echtzeitanalysen gerecht zu werden. Diese Integration macht GPU-Datenbanken zugänglicher und beschleunigt deren Einführung in mittelständischen und großen Unternehmen.
  • Branchen wie Einzelhandel, Finanzdienstleistungen und Gesundheitswesen setzen zunehmend auf GPU-Datenbanken, um Echtzeit-Personalisierung, Betrugserkennung und prädiktive Analysen zu unterstützen. Diese Anwendungsfälle unterstreichen die wachsende Bedeutung von GPU-Datenbanken als grundlegende Komponenten moderner Datenarchitekturen.
  • Insgesamt stärkt der zunehmende Fokus auf Geschwindigkeit, Skalierbarkeit und Echtzeit-Erkenntnisgenerierung die Position von GPU-Datenbanken als Schlüsseltechnologie für die Analytik der nächsten Generation und KI-gesteuerte Unternehmenssysteme.

Marktdynamik von Datenbanken für Grafikprozessoren (GPUs)

Treiber

Wachsende Nachfrage nach KI- und Machine-Learning-Workloads

  • Die rasante Zunahme von Anwendungen im Bereich der künstlichen Intelligenz und des maschinellen Lernens ist ein Haupttreiber für den Markt für GPU-Datenbanken, da diese Arbeitslasten einen hohen Durchsatz und parallele Datenverarbeitungskapazitäten erfordern. GPU-Datenbanken ermöglichen eine schnellere Verarbeitung komplexer Datensätze und unterstützen fortgeschrittene Analysen und die Modellentwicklung.
    • NVIDIA hat beispielsweise die Nutzung von GPU-Datenbanken durch Plattformen wie RAPIDS und Partnerschaften mit Cloud-Anbietern vorangetrieben und so eine beschleunigte Datenverarbeitung für KI-Workloads ermöglicht. Diese Lösungen erlauben Unternehmen, Datenaufbereitung, Analysen und maschinelles Lernen effizienter durchzuführen.
  • Der zunehmende Einsatz von KI in Branchen wie Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel und Gesundheitswesen treibt die Nachfrage nach Datenbanken an, die Echtzeit-Inferenz und das Training umfangreicher Modelle unterstützen. GPU-Datenbanken erfüllen diese Anforderungen durch eine signifikante Reduzierung der Verarbeitungszeiten.
  • Unternehmen setzen zunehmend auf GPU-Datenbanken, um Empfehlungssysteme, Bild- und Videoanalysen sowie Anwendungen zur Verarbeitung natürlicher Sprache zu unterstützen. Diese Workloads profitieren aufgrund ihrer rechenintensiven Natur von der GPU-Beschleunigung.
  • Die zunehmende Integration von KI in die Kernprozesse von Unternehmen verstärkt diesen Trend weiter. Mit der Skalierung ihrer KI-Initiativen dürfte die Abhängigkeit von GPU-beschleunigten Datenbanklösungen weiter zunehmen.

Zurückhaltung/Herausforderung

Hohe Kosten und Implementierungskomplexität

  • Hohe Kosten und komplexer Einsatz stellen weiterhin zentrale Herausforderungen im Markt für GPU-Datenbanken dar, da Unternehmen in spezialisierte GPU-Hardware und die dazugehörige Infrastruktur investieren müssen. Diese Anforderungen erhöhen die anfänglichen Investitionskosten und schränken die Akzeptanz bei kostensensiblen Unternehmen ein.
    • Beispielsweise erfordert die Implementierung von GPU-Datenbanklösungen der Enterprise-Klasse von Anbietern wie OmniSci oder SQream Technologies häufig qualifizierte Fachkräfte für Konfiguration, Optimierung und Wartung. Dieser Bedarf an spezialisiertem Fachwissen erhöht die betriebliche Komplexität und die Kosten.
  • GPU-Datenbanken erfordern zudem eine sorgfältige Workload-Optimierung, um die erwarteten Leistungsvorteile zu erzielen. Dies kann für Organisationen ohne eigene technische Kapazitäten eine Herausforderung darstellen. Eine fehlerhafte Konfiguration kann zu einer Unterauslastung der GPU-Ressourcen führen.
  • Die Integration in bestehende Datenökosysteme und Altsysteme erschwert die Implementierung zusätzlich und verlängert die Implementierungszeiten. Dies kann die Einführung bei Unternehmen, die eine schnelle Kapitalrendite anstreben, verlangsamen.
  • Diese Kosten- und Komplexitätsbarrieren hemmen weiterhin das Marktwachstum, insbesondere bei kleinen und mittleren Unternehmen, trotz der Leistungsvorteile, die GPU-Datenbanktechnologien bieten.

Marktübersicht für Datenbanken für Grafikprozessoren (GPUs)

Der Markt ist segmentiert nach Komponente, Einsatzgebiet, Anwendung und Endnutzer.

  • Nach Komponente

Basierend auf den Komponenten ist der Markt für GPU-Datenbanken in Tools und Services unterteilt. Das Segment der Tools dominierte den Markt mit einem Umsatzanteil von 59,14 % im Jahr 2025. Dies ist auf die entscheidende Rolle von GPU-beschleunigten Datenbank-Engines, Abfrageoptimierern und Analyseplattformen bei der Verarbeitung großer paralleler Datenmengen zurückzuführen. Unternehmen setzen zunehmend auf GPU-Datenbank-Tools, um schnellere Abfrageausführungen, Echtzeitanalysen und eine verbesserte Performance für KI- und ML-basierte Workloads zu erzielen. Die wachsende Verbreitung datenintensiver Anwendungen in den Bereichen Finanzen, Einzelhandel und wissenschaftliche Forschung verstärkt die Nachfrage nach fortschrittlichen GPU-Datenbank-Tools zusätzlich. Ihre Fähigkeit zur nahtlosen Integration in bestehende Datenarchitekturen und Analyse-Frameworks fördert die breite Akzeptanz in Unternehmen.

Der Dienstleistungssektor dürfte von 2026 bis 2033 das schnellste Wachstum verzeichnen, angetrieben durch die steigende Nachfrage nach Bereitstellungs-, Integrations- und Managed Services für GPU-Datenbankumgebungen. Unternehmen, die GPU-Datenbanken einsetzen, benötigen häufig spezialisiertes Know-how für Workload-Optimierung, Migration und Leistungsoptimierung. Serviceanbieter spielen eine Schlüsselrolle bei der Reduzierung der Bereitstellungskomplexität und der Beschleunigung der Wertschöpfung. Der zunehmende Trend zu Hybrid- und Multi-Cloud-Strategien verstärkt den Bedarf an professionellen und Managed Services zusätzlich.

  • Durch Bereitstellung

Basierend auf der Bereitstellungsart ist der Markt für GPU-Datenbanken in Cloud- und On-Premises-Lösungen unterteilt. Das Cloud-Segment wird 2025 den größten Marktanteil halten, was auf die Skalierbarkeit, Flexibilität und Kosteneffizienz cloudbasierter GPU-Infrastrukturen zurückzuführen ist. Die Cloud-Bereitstellung ermöglicht Unternehmen den Zugriff auf leistungsstarke GPU-Datenbanken ohne hohe Hardware-Investitionen im Vorfeld. Sie unterstützt zudem elastische Skalierung für schwankende Datenlasten und Echtzeit-Analysen. Die Verfügbarkeit von GPU-Instanzen durch große Cloud-Anbieter hat die Einführungshürden für Unternehmen jeder Größe deutlich gesenkt.

Das Segment der On-Premise-Lösungen wird im Prognosezeitraum voraussichtlich am schnellsten wachsen. Treiber dieser Entwicklung sind die steigenden Anforderungen an Datensicherheit, Latenz und Compliance. Branchen wie Banken, Finanzdienstleistungen und Versicherungen (BFSI), Behörden und das Gesundheitswesen bevorzugen On-Premise-GPU-Datenbanken, um die volle Kontrolle über sensible Daten zu gewährleisten. Die On-Premise-Bereitstellung ermöglicht es Unternehmen zudem, GPU-Ressourcen für konsistente Workloads mit hohem Durchsatz zu optimieren. Der Bedarf an vorhersehbarer Leistung in unternehmenskritischen Anwendungen trägt zum anhaltenden Wachstum dieses Segments bei.

  • Durch Bewerbung

Basierend auf den Anwendungsbereichen ist der Markt für GPU-Datenbanken in Governance, Risikomanagement und Compliance, Bedrohungsanalyse, Kundenerlebnismanagement, Betrugserkennung und -prävention, Lieferkettenmanagement und weitere Segmente unterteilt. Betrugserkennung und -prävention entwickelten sich 2025 zum führenden Anwendungssegment, getrieben durch den Bedarf an Echtzeitanalysen großer Transaktionsdatenmengen. GPU-Datenbanken ermöglichen eine schnelle Mustererkennung und Anomalieerkennung, die für die Aufdeckung betrügerischer Aktivitäten unerlässlich ist. Die zunehmende Nutzung digitaler Zahlungen und Online-Bankings beschleunigt die Nachfrage in diesem Segment zusätzlich. Dank ihrer hohen Analysegeschwindigkeit und geringen Latenzzeiten sind GPU-Datenbanken die bevorzugte Wahl für Betrugspräventionssysteme.

Das Customer Experience Management (CEM) wird voraussichtlich von 2026 bis 2033 das am schnellsten wachsende Anwendungssegment sein, unterstützt durch die zunehmende Nutzung von Echtzeit-Kundendatenanalysen. Unternehmen setzen GPU-beschleunigte Datenbanken ein, um große Mengen an Verhaltens- und Interaktionsdaten zu verarbeiten und so personalisierte Kundenerlebnisse zu ermöglichen. Der Aufstieg von Omnichannel-Strategien erhöht den Bedarf an schneller Datenverarbeitung und -analyse. GPU-beschleunigte Datenbanken helfen Unternehmen, sofortige Erkenntnisse zu gewinnen und so die Kundenzufriedenheit und -bindung zu verbessern.

  • Vom Endbenutzer

Basierend auf den Endnutzern ist der Markt für GPU-Datenbanken in die Segmente Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel und E-Commerce, Telekommunikation und IT, Transport und Logistik, Gesundheitswesen und Pharmazie, Regierung und Verteidigung sowie Sonstige unterteilt. Das BFSI-Segment dominierte den Markt im Jahr 2025 aufgrund seiner starken Abhängigkeit von Hochgeschwindigkeits-Datenanalysen für Risikobewertung, Betrugserkennung und die Einhaltung regulatorischer Vorgaben. Finanzinstitute verarbeiten enorme Mengen strukturierter und unstrukturierter Daten, wodurch GPU-Datenbanken für die Leistungsoptimierung unerlässlich sind. Der Bedarf an Echtzeit-Entscheidungsfindung und fortschrittlichen Analysen fördert die starke Akzeptanz in diesem Sektor.

Der Einzelhandel und der E-Commerce werden im Prognosezeitraum voraussichtlich das schnellste Wachstum verzeichnen, angetrieben durch den zunehmenden Einsatz datengestützter Personalisierung und Bedarfsprognosen. GPU-Datenbanken ermöglichen es Einzelhändlern, Kundenverhalten, Preistrends und Bestandsdaten in Echtzeit zu analysieren. Die rasante Expansion von Online-Shopping-Plattformen und digitalem Marketing befeuert die Nachfrage zusätzlich. Leistungsstarke Analysefunktionen helfen Einzelhändlern, die betriebliche Effizienz und die Kundenbindung zu verbessern.

Regionale Analyse des Marktes für Datenbanken für Grafikprozessoren (GPUs)

  • Nordamerika dominierte 2025 den Markt für GPU-Datenbanken mit dem größten Umsatzanteil von 34,57 %, angetrieben durch die frühe Einführung von Hochleistungsrechnern, die starke Präsenz von Hyperscale-Cloud-Anbietern und die rasche Bereitstellung von KI- und datenintensiven Anwendungen.
  • Unternehmen in der gesamten Region priorisieren Datenbanken mit Grafikprozessoren (GPU) für Echtzeitanalysen, maschinelles Lernen und beschleunigte Abfrageleistung bei großen Datensätzen.
  • Diese Dominanz wird zusätzlich durch eine fortschrittliche digitale Infrastruktur, hohe IT-Ausgaben von Unternehmen und die weitverbreitete Nutzung von Cloud- und Hybridarchitekturen unterstützt, wodurch sich GPU-Datenbanken als Kernkomponente in den Bereichen Banken, Finanzdienstleistungen und Versicherungen (BFSI), Technologie und im öffentlichen Sektor etablieren.

Markteinblicke in den US-amerikanischen Markt für Datenbanken für Grafikprozessoren (GPUs)

Der US-amerikanische Markt für GPU-Datenbanken erzielte 2025 den größten Umsatzanteil in Nordamerika. Treiber dieser Entwicklung waren starke Investitionen in künstliche Intelligenz, Big-Data-Analysen und Cloud Computing. Unternehmen setzen zunehmend GPU-Datenbanken ein, um Betrugserkennung in Echtzeit, Empfehlungssysteme und Hochfrequenzanalysen zu unterstützen. Die Präsenz führender Cloud-Service-Anbieter und GPU-Technologieanbieter beschleunigt die Markteinführung. Darüber hinaus treibt die steigende Nachfrage nach skalierbarer Datenverarbeitung mit geringer Latenz in den Bereichen Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel und IT das Marktwachstum weiter an.

Einblick in den europäischen Markt für Datenbanken für Grafikprozessoren (GPUs)

Der europäische Markt für GPU-Datenbanken wird im Prognosezeitraum voraussichtlich ein stetiges jährliches Wachstum verzeichnen. Treiber dieses Wachstums sind die zunehmende Nutzung fortschrittlicher Analysemethoden und der verstärkte Fokus auf Daten-Governance und Compliance. Unternehmen in der gesamten Region setzen GPU-Datenbanken ein, um große Mengen strukturierter und unstrukturierter Daten effizient zu verarbeiten. Die wachsende Zahl von Initiativen zur digitalen Transformation in verschiedenen Branchen unterstützt das Marktwachstum zusätzlich. Auch Forschungseinrichtungen und Unternehmen, die nach leistungsstarken Datenverarbeitungslösungen suchen, greifen vermehrt auf diese Technologien zurück.

Einblick in den britischen Markt für Datenbanken für Grafikprozessoren (GPUs).

Der britische Markt für GPU-Datenbanken wird voraussichtlich ein beachtliches jährliches Wachstum verzeichnen, unterstützt durch den zunehmenden Einsatz datengestützter Entscheidungsfindung in den Bereichen Banken, Finanzdienstleistungen und Versicherungen (BFSI), Einzelhandel und Medien. Unternehmen setzen GPU-Datenbanken ein, um Echtzeitanalysen zu verbessern und das Kundenerlebnismanagement zu optimieren. Die starke Verbreitung von Cloud-Lösungen und der Fokus auf KI-Innovationen tragen zusätzlich zum Marktwachstum bei. Die expandierende Digitalwirtschaft sorgt weiterhin für eine anhaltende Nachfrage nach Hochgeschwindigkeitsdatenbanklösungen.

Einblick in den deutschen Markt für Datenbanken für Grafikprozessoren (GPUs).

Der deutsche Markt für GPU-Datenbanken wird im Prognosezeitraum voraussichtlich ein beachtliches Wachstum verzeichnen. Treiber dieser Entwicklung ist die starke Nachfrage aus der Fertigungsindustrie, der Automobilbranche und dem Bereich industrieller Analytik. Deutsche Unternehmen setzen GPU-Datenbanken zunehmend für vorausschauende Wartung, Optimierung der Lieferkette und KI-Anwendungen in der Industrie ein. Der Fokus des Landes auf technologische Innovation und Datensicherheit fördert die Akzeptanz sowohl in Cloud- als auch in On-Premise-Umgebungen. GPU-Datenbanken werden zu einem integralen Bestandteil von Industrie-4.0-Initiativen.

Markteinblicke für Datenbanken zu Grafikprozessoren (GPUs) im asiatisch-pazifischen Raum

Der Markt für GPU-Datenbanken im asiatisch-pazifischen Raum wird im Prognosezeitraum von 2026 bis 2033 voraussichtlich die höchste durchschnittliche jährliche Wachstumsrate (CAGR) aufweisen. Treiber dieser Entwicklung sind die rasante Digitalisierung, der Ausbau der Cloud-Infrastruktur und die zunehmende Nutzung von KI-Technologien. Unternehmen in der gesamten Region investieren massiv in fortschrittliche Analysen, um die Verarbeitung großer Datenmengen zu unterstützen. Staatliche Digitalisierungsinitiativen und wachsende Startup-Ökosysteme beschleunigen die Einführung dieser Technologien zusätzlich. Der starke Fokus der Region auf Skalierbarkeit und kosteneffiziente Leistung trägt maßgeblich zum schnellen Marktwachstum bei.

Einblick in den japanischen Markt für Datenbanken für Grafikprozessoren (GPUs)

Der japanische Markt für GPU-Datenbanken gewinnt aufgrund der starken Verbreitung von KI, fortschrittlicher Analytik und Hochleistungsrechnen in Unternehmen zunehmend an Dynamik. Organisationen nutzen GPU-Datenbanken für Echtzeitanalysen in der Fertigung, im Gesundheitswesen und im Finanzdienstleistungssektor. Japans Fokus auf Automatisierung und präzisionsgetriebene Prozesse harmoniert ideal mit den GPU-beschleunigten Datenbankfunktionen. Die zunehmende Integration mit Cloud-Plattformen trägt weiterhin zum Marktwachstum bei.

Einblick in den chinesischen Markt für Datenbanken für Grafikprozessoren (GPUs)

Der chinesische Markt für GPU-Datenbanken (Grafikprozessoren) wird 2025 den größten Umsatzanteil im asiatisch-pazifischen Raum erzielen. Treiber dieses Wachstums sind groß angelegte Initiativen zur digitalen Transformation und der rasante Ausbau von Cloud- und KI-Infrastrukturen. Chinesische Unternehmen setzen zunehmend GPU-Datenbanken ein, um die enormen Datenmengen aus E-Commerce, Fintech und Smart-City-Anwendungen zu verwalten. Starke inländische Technologie-Ökosysteme und die staatliche Förderung der KI-Entwicklung treiben das Marktwachstum zusätzlich an. Die Nachfrage nach schnellen und skalierbaren Datenverarbeitungslösungen bleibt ein zentraler Wachstumstreiber.

Marktanteil von Datenbanken für Grafikprozessoren (GPUs)

Die Branche der Grafikprozessoren (GPU)-Datenbanken wird hauptsächlich von etablierten Unternehmen dominiert, darunter:

  • OmniSci, Inc. (USA)
  • SQream Technologies (Israel)
  • Kinetica DB Inc. (USA)
  • Neo4j, Inc. (USA)
  • NVIDIA Corporation (USA)
  • Brytlyt (UK)
  • Jedox Inc. (Deutschland)
  • Blazegraph (USA)
  • BlazingSQL, Inc. (USA)
  • Zilliz (USA)
  • HeteroDB (Japan)
  • H2O.ai. (USA)
  • FASTDATA (USA)
  • Fuzzy Logix, Inc. (USA)
  • Graphistik (USA)
  • Anaconda Inc. (USA)

Neueste Entwicklungen auf dem globalen Markt für Datenbanken für Grafikprozessoren (GPUs).

  • Im März 2024 ging NVIDIA eine Partnerschaft mit Google Cloud ein, um GPU-beschleunigte Datenbanken und Analysen auf der Google Cloud Platform bereitzustellen. Dies steigert die Leistungsfähigkeit von umfangreichen Datenverarbeitungs- und KI-gestützten Workloads erheblich. Dank dieser Zusammenarbeit können Unternehmen komplexe Analysen und Echtzeit-Datenabfragen mit geringerer Latenz und höherem Durchsatz durchführen. Die Integration verbessert die Produktivität von Entwicklern und unterstützt das Training und die Inferenz fortschrittlicher KI-Modelle. Die Partnerschaft stärkt somit die Position beider Unternehmen im GPU-Datenbank-Ökosystem und beschleunigt die Einführung KI-fähiger Datenplattformen in Unternehmen.
  • Im Februar 2024 erweiterte NVIDIA seine Zusammenarbeit mit Oracle Cloud Infrastructure, um GPU-beschleunigte Datenbanken und KI-Analysen für Unternehmenskunden zu skalieren. Die Partnerschaft ermöglicht es Unternehmen, NVIDIA-GPUs zusammen mit Oracles Datenbank- und Cloud-Services für leistungsstarke Analyse- und KI-Workloads zu nutzen. Diese Entwicklung verbessert die Skalierbarkeit und Kosteneffizienz datenintensiver Anwendungen. Sie stärkt Oracles Wettbewerbsfähigkeit im Cloud-Bereich und erweitert gleichzeitig NVIDIAs Reichweite im Bereich unternehmensweiter Datenbankimplementierungen.
  • Im November 2023 vertiefte NVIDIA seine Zusammenarbeit mit Amazon Web Services (AWS) und erweiterte den Zugriff auf GPU-beschleunigte Datenanalysen und Datenbank-Workloads über die AWS-Cloud-Infrastruktur. Diese Entwicklung ermöglicht es Unternehmen, massive Datensätze effizient zu verarbeiten und gleichzeitig KI- und Machine-Learning-Anwendungen in großem Umfang zu unterstützen. Die Verfügbarkeit leistungsstarker GPU-Instanzen verbessert die Performance für Echtzeitanalysen und datenintensive Operationen. Zudem beschleunigt sie die Markteinführung von GPU-Datenbanken, indem sie High-Performance-Computing über die Cloud zugänglicher macht.
  • Im März 2023 ging NVIDIA eine Partnerschaft mit Microsoft Azure ein, um GPU-beschleunigte Datenbanken und Analysen in das Azure-Ökosystem zu integrieren und so die Verarbeitung komplexer und umfangreicher Datenworkloads zu beschleunigen. Durch die Kombination der NVIDIA AI Enterprise-Software mit Azure Machine Learning verbessert die Zusammenarbeit die KI-Entwicklung, -Bereitstellung und -Verwaltung. Diese Integration unterstützt Echtzeitanalysen und fortschrittliche KI-Anwendungsfälle branchenübergreifend. Die Partnerschaft festigt die führende Position beider Unternehmen im Bereich GPU-basierter Cloud-Datenbanklösungen.


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Globale Marktsegmentierung für GPU-Datenbanken nach Komponenten (Tools und Services), Bereitstellung (Cloud und On-Premises), Anwendung (Governance, Risiko und Compliance; Bedrohungsanalyse; Kundenerlebnismanagement; Betrugserkennung und -prävention; Lieferkettenmanagement; und Sonstige), Endnutzer (Banken, Finanzdienstleistungen und Versicherungen, Einzelhandel und E-Commerce, Telekommunikation und IT, Transport und Logistik, Gesundheitswesen und Pharma, Regierung und Verteidigung sowie Sonstige) – Branchentrends und Prognose bis 2033 segmentiert.
Die Größe des Bericht zur globalen Markt wurde im Jahr 2025 auf 603.75 USD Million USD geschätzt.
Der Bericht zur globalen Markt wird voraussichtlich mit einer CAGR von 19.1% im Prognosezeitraum 2026 bis 2033 wachsen.
Die Hauptakteure auf dem Markt sind OmniSciInc., SQream Technologies, Kinetica DB Inc., Neo4jInc., NVIDIA Corporation, Brytlyt, Jedox Inc., Blazegraph, BlazingSQLInc., Zilliz., HeteroDB, H2O.ai., FASTDATA, Fuzzy LogixInc, Graphistry, Anaconda Inc., GIGA-BYTE Technology Co.Ltd, SAPPHIRE Technology Limited, EVGA Corporation, ASUSTEK COMPUTER INC., .
Testimonial