Globaler MLOps-Markt: Analysebericht zu Größe, Marktanteil und Trends – Branchenüberblick und Prognose bis 2032

Inhaltsverzeichnis anfordernInhaltsverzeichnis anfordern Mit Analyst sprechen Mit Analyst sprechen Kostenloser Beispielbericht Kostenloser Beispielbericht Vor dem Kauf anfragen Vorher anfragen Jetzt kaufenJetzt kaufen

Globaler MLOps-Markt: Analysebericht zu Größe, Marktanteil und Trends – Branchenüberblick und Prognose bis 2032

  • ICT
  • Upcoming Reports
  • Apr 2024
  • Global
  • 350 Seiten
  • Anzahl der Tabellen: 220
  • Anzahl der Abbildungen: 60
  • Author : Megha Gupta

Umgehen Sie die Zollherausforderungen mit agiler Supply-Chain-Beratung

Die Analyse des Supply-Chain-Ökosystems ist jetzt Teil der DBMR-Berichte

Global Mlops Market

Marktgröße in Milliarden USD

CAGR :  % Diagram

Chart Image USD 2.19 Billion USD 34.21 Billion 2024 2032
Diagramm Prognosezeitraum
2025 –2032
Diagramm Marktgröße (Basisjahr)
USD 2.19 Billion
Diagramm Marktgröße (Prognosejahr)
USD 34.21 Billion
Diagramm CAGR
%
Diagramm Wichtige Marktteilnehmer
  • Databricks
  • Domino Data Lab
  • Kubeflow (by Google)
  • Amazon SageMaker
  • Paperspace Gradient

Globale MLOps-Marktsegmentierung nach Komponenten (Plattform und Service), Bereitstellungsmodus (On-Premise, Cloud und Hybrid), Unternehmensgröße (Großunternehmen, kleine und mittlere Unternehmen (KMU)), Branchenvertikalen (Finanzdienstleistungen (BFSI), Fertigung, Informationstechnologie (IT) und Telekommunikation, Einzelhandel und E-Commerce, Gesundheitswesen und andere) – Branchentrends und Prognose bis 2032

MLOPs-Markt z

MLOps-Marktgröße

  • Der globale MLOps-Markt wird im Jahr 2024 auf 2,19 Milliarden US-Dollar geschätzt  und soll  bis 2032 34,21 Milliarden US-Dollar erreichen , bei einer CAGR von 41,00 % im Prognosezeitraum.
  • Das Marktwachstum wird maßgeblich durch die zunehmende Nutzung künstlicher Intelligenz (KI) und maschinellen Lernens (ML) in allen Branchen vorangetrieben, wodurch ein Bedarf an optimierter Modellbereitstellung und Lebenszyklusmanagement entsteht.
  • Die wachsende Nachfrage nach Automatisierung in ML-Workflows, einschließlich Modelltraining, Überwachung und Umschulung, beschleunigt die Einführung von MLOps-Plattformen und -Tools weiter

MLOps-Marktanalyse

  • Der MLOps-Markt erlebt ein rasantes Wachstum, da Unternehmen ML-Modelle in großem Maßstab operationalisieren und dabei Zuverlässigkeit, Reproduzierbarkeit und Governance gewährleisten wollen.
  • Cloudbasierte MLOps-Lösungen gewinnen aufgrund ihrer Skalierbarkeit und Integration in bestehende DevOps-Pipelines an Bedeutung und sind daher sowohl für große Unternehmen als auch für KMU attraktiv.
  • Nordamerika dominierte den MLOps-Markt mit dem größten Umsatzanteil von 41 % im Jahr 2024, getrieben durch die starke Verbreitung von künstlicher Intelligenz und maschinellem Lernen in Unternehmen sowie die Präsenz großer Technologieanbieter und fortschrittlicher Cloud-Infrastruktur.
  • Im asiatisch-pazifischen Raum wird voraussichtlich die höchste Wachstumsrate im globalen MLOps- Markt verzeichnet, getrieben durch die großflächige Einführung von KI-Technologien, steigende Investitionen in Cloud-Plattformen, den Ausbau von IT-Diensten und die Rolle der Region als globale Drehscheibe für digitale Transformation und Innovation.
  • Das Plattformsegment hatte im Jahr 2024 den größten Marktanteil, angetrieben durch die steigende Nachfrage nach integrierten Lösungen, die die Datenaufbereitung, das Training, die Bereitstellung und die Überwachung von Machine-Learning-Modellen optimieren. Diese Plattformen gewährleisten Skalierbarkeit, Reproduzierbarkeit und Compliance und sind daher die bevorzugte Wahl für die Einführung in großen Unternehmen.

Berichtsumfang und MLOps-Marktsegmentierung      

Eigenschaften

Wichtige Markteinblicke zu MLOps

Abgedeckte Segmente

  • Nach Komponente: Plattform und Dienst
  • Nach Bereitstellungsmodus: Vor Ort, Cloud und Hybrid
  • Nach Unternehmensgröße: Großunternehmen, kleine und mittlere Unternehmen (KMU)
  • Nach Branchen: Finanzdienstleistungen (BFSI), Fertigung, Informationstechnologie (IT) und Telekommunikation, Einzelhandel und E-Commerce, Gesundheitswesen und andere

Abgedeckte Länder

Nordamerika

  • UNS
  • Kanada
  • Mexiko

Europa

  • Deutschland
  • Frankreich
  • Vereinigtes Königreich
  • Niederlande
  • Schweiz
  • Belgien
  • Russland
  • Italien
  • Spanien
  • Truthahn
  • Restliches Europa

Asien-Pazifik

  • China
  • Japan
  • Indien
  • Südkorea
  • Singapur
  • Malaysia
  • Australien
  • Thailand
  • Indonesien
  • Philippinen
  • Restlicher Asien-Pazifik-Raum

Naher Osten und Afrika

  • Saudi-Arabien
  • Vereinigte Arabische Emirate
  • Südafrika
  • Ägypten
  • Israel
  • Rest des Nahen Ostens und Afrikas

Südamerika

  • Brasilien
  • Argentinien
  • Restliches Südamerika

Wichtige Marktteilnehmer

Marktchancen

• Integration von MLOps mit Cloud-nativen Plattformen
• Steigende Akzeptanz von Lösungen für automatisiertes maschinelles Lernen (AutoML)

Wertschöpfungsdaten-Infosets

Zusätzlich zu den Markteinblicken wie Marktwert, Wachstumsrate, Marktsegmenten, geografischer Abdeckung, Marktteilnehmern und Marktszenario enthält der vom Data Bridge Market Research-Team kuratierte Marktbericht eine eingehende Expertenanalyse, Import-/Exportanalyse, Preisanalyse, Produktionsverbrauchsanalyse und PESTLE-Analyse.

MLOps-Markttrends

Zunahme automatisierter und skalierbarer Machine-Learning-Operationen

Der zunehmende Trend zu automatisierten Workflows im maschinellen Lernen (ML) verändert die MLOps-Landschaft, indem er die Bereitstellung, Überwachung und Steuerung von Modellen in Echtzeit ermöglicht. Die Skalierbarkeit und Geschwindigkeit dieser Plattformen ermöglichen es Unternehmen, KI in großem Maßstab zu operationalisieren, was zu schnelleren Innovationen und verbesserter Entscheidungsfindung führt.

Der hohe Bedarf an Effizienz bei der Verwaltung großer Mengen von ML-Modellen beschleunigt die Einführung von Cloud-nativen MLOps-Lösungen und integrierten DevOps-Pipelines. Diese Plattformen sind besonders effektiv für Unternehmen, bei denen kontinuierliches Training und Deployment entscheidend sind, um sicherzustellen, dass die Modelle präzise und relevant bleiben.

Die Erschwinglichkeit und Zugänglichkeit von Open-Source-MLOps-Tools macht sie für kleine und mittlere Unternehmen (KMU) attraktiv und ermöglicht eine breitere Beteiligung an der KI-gesteuerten Transformation. Dies verbessert die organisatorische Agilität und reduziert gleichzeitig die technischen und finanziellen Hürden für die Implementierung von KI.

• Beispielsweise implementierten im Jahr 2023 mehrere Finanzinstitute in Nordamerika automatisierte MLOps-Pipelines, um Betrugserkennungsmodelle zu überwachen, Fehlalarme zu reduzieren und die Transaktionssicherheit zu verbessern, während gleichzeitig die Betriebskosten gesenkt wurden

Automatisierung und Skalierbarkeit beschleunigen zwar die Einführung von MLOps, ihre Wirkung hängt jedoch von kontinuierlicher Innovation, robuster Datenverwaltung und der Integration in bestehende Unternehmens-IT-Systeme ab. Anbieter müssen sich auf Interoperabilität, Sicherheit und benutzerfreundliche Lösungen konzentrieren, um diese Nachfrage zu bedienen.

MLOps-Marktdynamik

Treiber

Steigende Nutzung von KI in Unternehmen und Nachfrage nach Modell-Lebenszyklusmanagement

Die rasante Verbreitung von künstlicher Intelligenz und maschinellem Lernen in allen Branchen veranlasst Unternehmen, in MLOps zu investieren, um ein effizientes Modell-Lebenszyklusmanagement zu gewährleisten. Von der Schulung bis zur Bereitstellung gewährleistet MLOps Zuverlässigkeit, Reproduzierbarkeit und Compliance und ermöglicht es Unternehmen, KI verantwortungsvoll zu skalieren und Innovationen schnell voranzutreiben.

Unternehmen werden sich zunehmend der Risiken unmanaged ML-Modelle bewusst, darunter Verzerrungen, Abweichungen und die Nichteinhaltung gesetzlicher Vorschriften. Dies unterstreicht die Notwendigkeit robuster MLOps-Frameworks. Indem MLOps diese Herausforderungen bewältigt, ermöglicht es Unternehmen, die Modellleistung aufrechtzuerhalten, Reputationsrisiken zu vermeiden und das Vertrauen in KI-gesteuerte Entscheidungen zu gewährleisten.

Initiativen des öffentlichen und privaten Sektors, wie KI-fokussierte Investitionen, der Ausbau der Cloud-Infrastruktur und regulatorische Richtlinien für verantwortungsvolle KI, stärken das MLOps-Ökosystem. Diese Bemühungen ermutigen Unternehmen nicht nur, Best Practices zu übernehmen, sondern prägen auch globale Standards für einen ethischen, transparenten und sicheren KI-Einsatz.

So kündigte die US-Regierung im Jahr 2022 eine Erhöhung der Mittel für KI-Infrastruktur und -Governance an, was die Nachfrage nach unternehmenstauglichen MLOps-Plattformen in Sektoren wie dem Gesundheitswesen, der Verteidigung und dem Finanzwesen steigerte. Diese Initiative spiegelt einen breiteren globalen Trend wider, KI-Innovationen mit Verantwortlichkeit und langfristiger Wettbewerbsfähigkeit in Einklang zu bringen.

• Während die Akzeptanz steigt, hängt nachhaltiges Wachstum von der Bewältigung von Problemen wie Standardisierung, Datensicherheit und Mitarbeiterschulung ab, um eine verantwortungsvolle und weit verbreitete Nutzung von MLOps-Lösungen zu gewährleisten. Unternehmen müssen ein Gleichgewicht zwischen schneller Bereitstellung und verantwortungsvoller Governance finden, um das volle transformative Potenzial von KI auszuschöpfen.

Einschränkung/Herausforderung

Hohe Implementierungskosten und Talentmangel im MLOps-Bereich

Die hohen Kosten für die Implementierung von MLOps-Plattformen auf Unternehmensniveau, insbesondere für solche, die eine fortschrittliche Cloud-Infrastruktur und Überwachungstools erfordern, stellen für kleine Unternehmen und Schwellenländer weiterhin ein Hindernis dar. Diese Kosten decken oft nicht nur die Software, sondern auch Integration, Compliance und laufende Wartung ab, was eine breitere Zugänglichkeit einschränkt.

In vielen Regionen herrscht zudem ein Mangel an qualifizierten Fachkräften, die komplexe MLOps-Pipelines verwalten können, einschließlich Modellbereitstellung, Überwachung und Compliance-Prozessen. Der Mangel an Talenten führt zu Engpässen für Unternehmen, die KI skalieren wollen, und zwingt sie, auf externe Berater oder unterqualifiziertes Personal zurückzugreifen.

Die Marktdurchdringung wird durch Integrationsprobleme zusätzlich eingeschränkt, da viele Unternehmen noch immer veraltete IT-Systeme einsetzen, die nicht mit modernen MLOps-Plattformen kompatibel sind. Diese Lücke führt zu längeren Implementierungszeiten, höheren Kosten und einem verzögerten ROI und hält kleinere Unternehmen davon ab, KI in großem Maßstab einzuführen.

• So berichteten beispielsweise im Jahr 2023 mehrere Fertigungsunternehmen im asiatisch-pazifischen Raum von Herausforderungen bei der Einführung von MLOps aufgrund des Mangels an qualifizierten Arbeitskräften und der hohen Kosten für die Cloud-Migration und Plattformintegration. Diese Schwierigkeiten verdeutlichen das ungleiche Tempo der MLOps-Einführung in Industrie- und Entwicklungsländern.

Während sich MLOps-Technologien weiterentwickeln, bleibt die Lösung der Herausforderungen hinsichtlich Kosten, Integration und Talenten unerlässlich. Anbieter und Unternehmen müssen Low-Code-Lösungen, Schulungsprogramme und hybride Bereitstellungsmodelle priorisieren, um Lücken zu schließen, die Komplexität zu reduzieren und das volle Potenzial des globalen MLOps-Marktes auszuschöpfen.

MLOps-Marktumfang

Der Markt ist nach Komponenten, Bereitstellungsmodus, Unternehmensgröße und Branchen segmentiert.

  • Nach Komponente

Der MLOps-Markt ist nach Komponenten in Plattformen und Dienste unterteilt. Das Plattformsegment hatte 2024 den größten Marktanteil, angetrieben durch die steigende Nachfrage nach integrierten Lösungen, die die Datenaufbereitung, das Training, die Bereitstellung und die Überwachung von Machine-Learning-Modellen optimieren. Diese Plattformen gewährleisten Skalierbarkeit, Reproduzierbarkeit und Compliance und sind daher die bevorzugte Wahl für die Einführung in großen Unternehmen.

Das Dienstleistungssegment wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, was auf die zunehmende Abhängigkeit von Beratung, Integration und Managed Services zurückzuführen ist. Unternehmen wenden sich zunehmend an Dienstleister, um Fachkräftemangel zu überwinden und komplexe Implementierungsprobleme zu bewältigen. So können sie die KI-Einführung beschleunigen und gleichzeitig Kosten und Betriebseffizienz optimieren.

  • Nach Bereitstellungsmodus

Basierend auf dem Bereitstellungsmodus ist der MLOps-Markt in On-Premise, Cloud und Hybrid segmentiert. Das Cloud-Segment hatte 2024 den größten Marktanteil, unterstützt durch die zunehmende Nutzung skalierbarer Cloud-Infrastrukturen, die es Unternehmen ermöglichen, ML-Modelle schneller zu trainieren und bereitzustellen und gleichzeitig die Vorlaufkosten zu minimieren. Cloudbasierte MLOps-Lösungen lassen sich zudem nahtlos in moderne Datenpipelines integrieren und bieten Flexibilität und Zugänglichkeit.

Das Hybridsegment wird voraussichtlich zwischen 2025 und 2032 die schnellste Wachstumsrate verzeichnen. Angetrieben wird dies von Unternehmen, die ein Gleichgewicht zwischen Cloud-Skalierbarkeit und der Sicherheit der lokalen Infrastruktur suchen. Hybride MLOps-Modelle werden zunehmend in stark regulierten Branchen wie dem Bankwesen, der Verteidigung und dem Gesundheitswesen eingesetzt, wo der Umgang mit sensiblen Daten von entscheidender Bedeutung ist und gleichzeitig von Cloud-Innovationen profitiert werden soll.

  • Nach Unternehmensgröße

Der MLOps-Markt ist nach Unternehmensgröße in Großunternehmen sowie kleine und mittlere Unternehmen (KMU) unterteilt. Großunternehmen erwirtschafteten 2024 den größten Umsatzanteil, da sie frühzeitig auf unternehmensweite KI-Lösungen setzen und über die Ressourcen verfügen, in fortschrittliche MLOps-Plattformen zu investieren. Diese Unternehmen profitieren von der Möglichkeit, KI-Initiativen abteilungsübergreifend zu skalieren und so Produktivität und Innovation zu steigern.

Das KMU-Segment wird voraussichtlich von 2025 bis 2032 die schnellste Wachstumsrate verzeichnen, angetrieben durch die zunehmende Erschwinglichkeit von Cloud-basierten MLOps-Lösungen und Low-Code-Plattformen. KMU setzen MLOps ein, um die Entscheidungsfindung zu verbessern, Abläufe zu rationalisieren und sich einen Wettbewerbsvorteil zu verschaffen, ohne hohe Infrastrukturkosten zu verursachen, was die weltweite Demokratisierung der KI-Einführung weiter vorantreibt.

  • Nach Branchen

Der MLOps-Markt ist branchenbezogen in Finanzdienstleistungen (BFSI), Fertigung, Informationstechnologie (IT) und Telekommunikation, Einzelhandel und E-Commerce, Gesundheitswesen und weitere Bereiche unterteilt. Das BFSI-Segment dominierte den Markt im Jahr 2024, angetrieben durch den zunehmenden Einsatz von KI zur Betrugserkennung, Risikobewertung und Compliance-Überwachung. Der Bedarf an robuster Modell-Governance und Echtzeitüberwachung verstärkt die Nachfrage nach MLOps in diesem Sektor zusätzlich.

Der Gesundheitssektor wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, angetrieben durch den zunehmenden Einsatz von KI in der medizinischen Bildgebung, Diagnostik und personalisierten Behandlung. MLOps-Lösungen tragen dazu bei, Modellgenauigkeit, Einhaltung gesetzlicher Vorschriften und Patientendatensicherheit zu gewährleisten und sind daher für die Skalierung von KI-Anwendungen im Gesundheitswesen unverzichtbar. Auch andere Branchen wie die Fertigung und der Einzelhandel integrieren MLOps schnell, um die Betriebseffizienz, das Lieferkettenmanagement und das Kundenerlebnis zu verbessern.

Regionale Analyse des MLOps-Marktes

• Nordamerika dominierte den MLOps-Markt mit dem größten Umsatzanteil von 41 % im Jahr 2024, getrieben durch die starke Einführung künstlicher Intelligenz und maschinellen Lernens in Unternehmen sowie die Präsenz großer Technologieanbieter und fortschrittlicher Cloud-Infrastruktur.

• Unternehmen in der Region schätzen die Zuverlässigkeit, Skalierbarkeit und Compliance-Funktionen von MLOps-Plattformen, die ein sicheres und effizientes Lebenszyklusmanagement von KI-Modellen gewährleisten.

• Diese Führungsposition wird durch hohe Investitionen in KI-Innovationen, eine positive Regierungspolitik und eine starke Nachfrage aus Branchen wie dem Finanzwesen, dem Gesundheitswesen und der IT weiter unterstützt, wodurch Nordamerika als führendes Zentrum für die Einführung von MLOps gefestigt wird.

Einblicke in den US-MLOps-Markt

Der US-amerikanische MLOps-Markt erzielte 2024 den größten Umsatzanteil in Nordamerika. Dies ist auf die schnelle digitale Transformation, den zunehmenden Einsatz cloudbasierter KI-Lösungen und die hohe Nachfrage der Unternehmen nach Automatisierung zurückzuführen. Unternehmen nutzen MLOps zunehmend, um KI-Workflows zu optimieren, Betriebsrisiken zu reduzieren und die Einhaltung sich entwickelnder Datenschutzvorschriften sicherzustellen. Darüber hinaus treibt die Integration von MLOps in fortschrittliche Cloud-Ökosysteme wie AWS, Microsoft Azure und Google Cloud das Wachstum in Branchen wie Finanzdienstleistungssektor, Einzelhandel und Gesundheitswesen weiter voran.

MLOps-Markteinblicke für Europa

Der europäische MLOps-Markt wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, vor allem aufgrund strenger Datenschutzbestimmungen wie der DSGVO und des steigenden Bedarfs an sicheren und nachvollziehbaren KI-Modellen. Die zunehmende Verbreitung von KI in Finanzdienstleistungen, der Fertigung und im öffentlichen Sektor steigert die Nachfrage nach skalierbaren MLOps-Plattformen. Europäische Unternehmen legen zudem Wert auf einen verantwortungsvollen KI-Einsatz, Nachhaltigkeit und ethische KI-Praktiken und fördern die breite Integration von MLOps im öffentlichen und privaten Sektor.

Einblicke in den britischen MLOps-Markt

Der britische MLOps-Markt wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, unterstützt durch starke Investitionen in KI-Forschung, Fintech-Innovationen und Digital-First-Geschäftsstrategien. Der zunehmende Fokus auf regulatorische Compliance, Modelltransparenz und sicheres Datenmanagement treibt die Nachfrage nach MLOps-Lösungen für Unternehmen an. Darüber hinaus beschleunigen der florierende britische IT-Dienstleistungssektor und die weit verbreitete Nutzung hybrider Cloud-Infrastrukturen das Marktwachstum weiter.

MLOps-Markteinblicke in Deutschland

Der deutsche MLOps-Markt wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen, angetrieben durch den Fokus des Landes auf Industrie 4.0, intelligente Fertigung und Automatisierung. Deutsche Unternehmen integrieren MLOps zunehmend in ihre KI-Pipelines, um die Betriebseffizienz, prädiktive Analysen und die Optimierung der Lieferkette zu verbessern. Der Fokus auf Nachhaltigkeit, Compliance und Datensicherheit prägt auch die Nachfrage nach MLOps-Lösungen, insbesondere in den Bereichen Industrie, Automobil und Gesundheitswesen.

Einblicke in den MLOps-Markt im asiatisch-pazifischen Raum

Der MLOps-Markt im asiatisch-pazifischen Raum wird voraussichtlich zwischen 2025 und 2032 die höchste Wachstumsrate verzeichnen. Dies ist auf die rasante Digitalisierung, die zunehmende Nutzung der Cloud und steigende KI-Investitionen in Ländern wie China, Japan und Indien zurückzuführen. Unternehmen in der Region setzen zunehmend MLOps ein, um groß angelegte datengesteuerte Anwendungen zu verwalten, KI-Implementierungen zu optimieren und die Skalierbarkeit zu verbessern. Da sich die Region Asien-Pazifik sowohl als Verbraucher als auch als Hersteller von KI-Technologien etabliert, dürften die Erschwinglichkeit und Zugänglichkeit von MLOps-Plattformen die Akzeptanz sowohl bei KMU als auch bei Großunternehmen beschleunigen.

Einblicke in den MLOps-Markt in Japan

Der japanische MLOps-Markt wird voraussichtlich zwischen 2025 und 2032 die schnellste Wachstumsrate verzeichnen, da das Land auf Automatisierung, Robotik und Hightech-Innovationen setzt. Japanische Unternehmen nutzen MLOps für Anwendungen in der Fertigung, im Einzelhandel und im Gesundheitswesen und legen dabei großen Wert auf Effizienz, Genauigkeit und Sicherheit. Die Integration von MLOps in IoT- und Smart-Infrastrukturprojekte fördert die Akzeptanz zusätzlich. Darüber hinaus drängt Japans alternde Belegschaft Unternehmen dazu, KI-gesteuerte Automatisierung zu nutzen, was die Nachfrage nach MLOps-Plattformen weiter ankurbelt.

Einblicke in den MLOps-Markt in China

Der chinesische MLOps-Markt erzielte 2024 den größten Umsatzanteil im asiatisch-pazifischen Raum. Unterstützt wurde er durch massive staatliche Investitionen in KI, den Ausbau der Cloud-Infrastruktur und die schnelle Akzeptanz in Branchen wie E-Commerce, Finanzen und Fertigung. China entwickelt sich zu einem weltweit führenden Anbieter von KI-Innovationen, wobei MLOps als wichtiges Rückgrat für die Skalierung und Bereitstellung von Machine-Learning-Anwendungen dient. Der Aufstieg von Smart Cities, gepaart mit starken inländischen Technologieanbietern, fördert die Akzeptanz von MLOps weiter und macht China zu einem zentralen Akteur auf dem Weltmarkt.

MLOps-Marktanteil

Die MLOps-Branche wird hauptsächlich von etablierten Unternehmen angeführt, darunter:

  • Databricks (USA)
  • Domino Data Lab (USA)
  • Kubeflow (von Google) (USA)
  • Amazon SageMaker (USA)
  • Papierbereichsverlauf (USA)
  • Fiddler AI (USA)
  • MLflow (von Databricks) (USA)
  • Valohai (Finnland)
  • Dickhäuter (USA)
  • ZenML (Deutschland)

Neueste Entwicklungen im globalen MLOps-Markt

  • Im März 2025 brachte Hewlett Packard Enterprise (HPE) in Zusammenarbeit mit NVIDIA neue Enterprise-KI-Lösungen im Rahmen des NVIDIA AI Computing by HPE-Portfolios auf den Markt, darunter HPE Private Cloud AI, integriert in die NVIDIA AI Data Platform. Basierend auf der Blackwell-Architektur von NVIDIA bieten die Angebote verbesserte Leistung, Sicherheit und Observability-Tools und ermöglichen gleichzeitig eine schnelle KI-Entwicklung und -Bereitstellung. Diese Initiative soll die Einführung generativer und agentenbasierter KI in Unternehmen beschleunigen, die Time-to-Value verkürzen und Innovationen fördern und so die Wettbewerbsfähigkeit beider Unternehmen im KI- und MLOps-Bereich stärken.
  • Im Juli 2024 stellte Microsoft das Architektur-Framework MLOps v2 für Azure vor, eine End-to-End-Lösung zur Optimierung von Machine-Learning-Prozessen in den Bereichen klassisches ML, Computer Vision und Natural Language Processing. Das Framework integriert branchenübliche Best Practices und bietet modulare Komponenten für Datenmanagement, Modellentwicklung, Bereitstellung und Überwachung. Durch die Gewährleistung wiederholbarer, sicherer und produktionsreifer KI-Workflows ermöglicht die Einführung Unternehmen, ihre KI-Initiativen mit verbesserter Skalierbarkeit und Effizienz zu beschleunigen und so die Position von Azure im globalen MLOps-Markt zu stärken.
  • Im Mai 2021 stellte Google Cloud Vertex AI vor, eine verwaltete Machine-Learning-Plattform, die mehrere Dienste für die Erstellung, das Training und die Bereitstellung von ML-Modellen vereint. Die Plattform wurde entwickelt, um den KI-Lebenszyklus zu vereinfachen, die betriebliche Komplexität zu reduzieren und die Modellentwicklung zu beschleunigen. Indem Vertex AI Unternehmen eine einfachere, schnellere und skalierbare KI-Einführung ermöglicht, hat es maßgeblich dazu beigetragen, Googles Präsenz im Enterprise-KI- und MLOps-Markt zu stärken.


SKU-

Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud

  • Interaktives Datenanalyse-Dashboard
  • Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
  • Zugriff für Research-Analysten für Anpassungen und Abfragen
  • Konkurrenzanalyse mit interaktivem Dashboard
  • Aktuelle Nachrichten, Updates und Trendanalyse
  • Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Demo anfordern

Forschungsmethodik

Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.

Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.

Anpassung möglich

Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

Häufig gestellte Fragen

Der Markt ist basierend auf Globale MLOps-Marktsegmentierung nach Komponenten (Plattform und Service), Bereitstellungsmodus (On-Premise, Cloud und Hybrid), Unternehmensgröße (Großunternehmen, kleine und mittlere Unternehmen (KMU)), Branchenvertikalen (Finanzdienstleistungen (BFSI), Fertigung, Informationstechnologie (IT) und Telekommunikation, Einzelhandel und E-Commerce, Gesundheitswesen und andere) – Branchentrends und Prognose bis 2032 segmentiert.
Die Größe des Globaler MLOps-Markt wurde im Jahr 2024 auf 2.19 USD Billion USD geschätzt.
Der Globaler MLOps-Markt wird voraussichtlich mit einer CAGR von 41% im Prognosezeitraum 2025 bis 2032 wachsen.
Die Hauptakteure auf dem Markt sind Databricks, Domino Data Lab, Kubeflow (by Google), Amazon SageMaker, Paperspace Gradient .
Testimonial