North America Data Fabric Market
Marktgröße in Milliarden USD
CAGR :
%
USD
0.81 Billion
USD
5.79 Billion
2024
2032
| 2025 –2032 | |
| USD 0.81 Billion | |
| USD 5.79 Billion | |
|
|
|
|
Marktsegmentierung für Data Fabric in Nordamerika nach Bereitstellung (Cloud und On-Premise), Typ (festplattenbasiert und speicherbasiert), Anwendung (Betrugserkennung und Sicherheitsmanagement, Governance, Risiko- und Compliance-Management, Kundenerlebnismanagement, Vertriebs- und Marketingmanagement, Geschäftsprozessmanagement und Sonstige), Unternehmensgröße (Großunternehmen und KMU), Branche (Banken, Finanzdienstleistungen und Versicherungen, IT und Telekommunikation, Einzelhandel und E-Commerce, Gesundheitswesen und Biowissenschaften, Fertigung, Regierung, Energie und Versorgung und Sonstige) – Branchentrends und Prognose bis 2032
Marktgröße für Data Fabric
- Der nordamerikanische Markt für Data Fabric wurde im Jahr 2024 auf 0,81 Milliarden US-Dollar geschätzt und wird voraussichtlich bis 2032 auf 5,79 Milliarden US-Dollar anwachsen , was einer durchschnittlichen jährlichen Wachstumsrate (CAGR) von 27,87 % im Prognosezeitraum entspricht.
- Dieses Wachstum wird durch Faktoren wie die digitale Transformation und die zunehmende Nutzung von Online-Plattformen angetrieben, die den Datengenerierungsprozess befeuert haben.
Data Fabric Marktanalyse
- Data Fabric ist eine aufstrebende Datenmanagementarchitektur, die den nahtlosen Zugriff auf, die Integration und den Austausch von Daten über verschiedene Umgebungen und Plattformen hinweg ermöglicht. Sie spielt eine entscheidende Rolle bei Echtzeitanalysen, künstlicher Intelligenz und Cloud-Datenmanagement.
- Die Nachfrage nach Data-Fabric-Lösungen wird in erster Linie durch das rasante Wachstum von Big Data, die zunehmende Verbreitung von Hybrid- und Multi-Cloud-Strategien sowie den Bedarf an agiler und skalierbarer Dateninfrastruktur in Unternehmen getrieben.
- Die USA sind führend im Markt für Dateninfrastrukturen, was vor allem auf die starke Präsenz zahlreicher Anbieter von Datenmanagementlösungen in der Region zurückzuführen ist. Die Region gilt als Vorreiter bei der Einführung fortschrittlicher Technologien.
- Es wird erwartet, dass der Cloud-Sektor den Markt im Jahr 2025 dominieren wird, da er die von Unternehmen benötigte Effizienz, Auswahl und Flexibilität bietet. Unternehmen skalieren ihre Projekte im Bereich künstliche Intelligenz und fortgeschrittene Analytik in der Cloud und können so in zunehmend wettbewerbsintensiven Märkten bessere datengestützte Entscheidungen treffen.
Berichtsumfang und Marktsegmentierung der Dateninfrastruktur
|
Attribute |
Data Fabric – Wichtigste Markteinblicke |
|
Abgedeckte Segmente |
|
|
Abgedeckte Länder |
Nordamerika
|
|
Wichtige Marktteilnehmer |
|
|
Marktchancen |
|
|
Mehrwertdaten-Infosets |
Zusätzlich zu den Erkenntnissen über Marktszenarien wie Marktwert, Wachstumsrate, Segmentierung, geografische Abdeckung und Hauptakteure enthalten die von Data Bridge Market Research erstellten Marktberichte auch Import-Export-Analysen, einen Überblick über die Produktionskapazität, eine Analyse des Produktionsverbrauchs, eine Preistrendanalyse, ein Klimawandelszenario, eine Lieferkettenanalyse, eine Wertschöpfungskettenanalyse, einen Überblick über Rohstoffe/Verbrauchsmaterialien, Kriterien für die Lieferantenauswahl, eine PESTLE-Analyse, eine Porter-Analyse und den regulatorischen Rahmen. |
Markttrends für Data Fabric
„Zunehmende Nutzung von Echtzeit-Datenintegration und intelligenten Dateninfrastrukturlösungen“
- Ein bedeutender Trend auf dem weltweiten Markt für Dateninfrastrukturen ist der verstärkte Fokus auf Echtzeit-Datenintegration und Analysefunktionen in hybriden und Multi-Cloud-Umgebungen.
- Intelligente Dateninfrastrukturen, die mit KI und maschinellem Lernen ausgestattet sind, ermöglichen es Unternehmen, Prozesse im Zusammenhang mit Datenermittlung, -integration und -verwaltung zu automatisieren.
- Beispielsweise brachte IBM im Juni 2024 Cloud Pak for Data 5.0 auf den Markt und führte damit leistungsstarke Funktionen wie Immersive Experience, Remote Data Planes, Data Product Hub und Relationship Explorer ein, um Datenzugriff, Governance und KI-Bereitschaft zu verbessern. Das Update stärkte die Data-Fabric-Architektur von IBM, die Datenintegration, Governance, Observability, Datenherkunft und Stammdatenmanagement in einer einzigen, flexiblen Plattform vereint. Dadurch konnten Unternehmen Datensilos aufbrechen, die Datenqualität verbessern, regulatorische Vorgaben erfüllen und KI und Analysen mit vertrauenswürdigen Daten skalieren. Dies führte letztendlich zu gesteigerter Produktivität, Kostensenkung und schnelleren Erkenntnissen im gesamten Unternehmen.
- Diese Innovationen ermöglichen eine agilere Entscheidungsfindung, verbessern das Kundenerlebnis und optimieren den Datenbetrieb, wodurch die Nachfrage nach fortschrittlichen Data-Fabric-Lösungen steigt.
Marktdynamik der Dateninfrastruktur
Treiber
„Rasante Zunahme von Datenvolumen und Komplexität“
- Der massive Anstieg der Datenproduktion durch IoT-Geräte, soziale Medien, Unternehmensanwendungen und Cloud-Plattformen ist ein Schlüsselfaktor für die zunehmende Verbreitung von Data Fabric.
- Organisationen stehen zunehmend unter Druck, aus großen Mengen strukturierter und unstrukturierter Daten, die oft über verschiedene Umgebungen verteilt sind, schnell verwertbare Erkenntnisse zu gewinnen.
Zum Beispiel,
- Im Juni 2023 prognostizierten Experten, dass die nordamerikanische Datensphäre bis 2025 auf bis zu 200 Zettabyte anwachsen würde, wobei das Gesundheitswesen das Datenwachstum anführen würde. Unternehmen standen vor Herausforderungen wie begrenzten technologischen Möglichkeiten und fehlendem Fachwissen, erkannten aber gleichzeitig Chancen in KI, Cloud-Computing und Data-Lake-Analysen. Die Dateninfrastruktur trug dazu bei, indem sie die Integration und Verwaltung dieser riesigen Datenmengen ermöglichte und so verlässliche Erkenntnisse lieferte. Dies erlaubte es Unternehmen, die Personalisierung und Effizienz zu verbessern und wettbewerbsfähig zu bleiben.
- Data-Fabric-Lösungen ermöglichen es Unternehmen, komplexe Datensätze in Echtzeit zu integrieren und zu verarbeiten, wodurch die betriebliche Effizienz gesteigert und Innovationen beschleunigt werden.
Gelegenheit
„Integration von KI und ML in die Data Fabric Architektur“
- Die Integration von KI- und Machine-Learning-Funktionen in Data-Fabric-Plattformen schafft neue Möglichkeiten in den Bereichen Datenautomatisierung, Datenqualität und Datengovernance.
- Diese Technologien ermöglichen eine intelligente Datenkatalogisierung, Anomalieerkennung, prädiktive Analysen und eine dynamische Richtliniendurchsetzung und revolutionieren so das Datenmanagement und die Datennutzung.
Zum Beispiel,
- Im März 2025 berichtete ein Artikel in der Zeitschrift Data Management Review, dass KI-gesteuerte Datenstrukturen selbstständig Datenqualitätsprobleme erkennen und optimale Datenflüsse vorschlagen können, wodurch der Bedarf an manuellen Eingriffen erheblich verringert wird.
- Der Einsatz von KI verkürzt nicht nur die Zeit bis zur Erkenntnisgewinnung, sondern verbessert auch Compliance, Skalierbarkeit und Flexibilität und bietet damit erhebliche Wachstumschancen in Branchen wie Finanzen, Gesundheitswesen und Einzelhandel.
Zurückhaltung/Herausforderung
„Integrationskomplexitäten und Einschränkungen durch bestehende Infrastrukturen“
- Eine wesentliche Hürde auf dem nordamerikanischen Markt für Dateninfrastrukturen ist der komplizierte Prozess der Integration der Lösung in bestehende Legacy-Systeme.
- Zahlreiche Organisationen sind auf veraltete Dateninfrastrukturen angewiesen, die nicht für Echtzeitverarbeitung oder Hybrid-Cloud-Setups ausgelegt sind, was einen sowohl teuren als auch langwierigen Übergang zur Folge hat.
Zum Beispiel,
- Ein Bericht von TechTarget aus dem Januar 2024 hob hervor, dass mehr als 60 % der Unternehmen weiterhin veraltete ERP- und Data-Warehouse-Systeme nutzen, was Hindernisse für die umfassende Einführung einer Data Fabric darstellt.
- Darüber hinaus erhöht das Vorhandensein von Datenschutzbestimmungen und Compliance-Problemen in verschiedenen Regionen die Komplexität der Implementierung und behindert den Fortschritt in Branchen mit strengen regulatorischen Anforderungen.
Marktübersicht Data Fabric
Der Markt ist segmentiert nach Bereitstellung, Typ, Anwendung, Unternehmenstyp und Branche.
|
Segmentierung |
Untersegmentierung |
|
Durch Bereitstellung |
|
|
Nach Typ |
|
|
Durch Bewerbung
|
|
|
Nach Unternehmenstyp
|
|
|
Nach Branchen
|
|
Im Jahr 2025 wird die Cloud voraussichtlich den Markt dominieren und den größten Anteil am Bereitstellungssegment aufweisen.
Es wird erwartet, dass der Cloud-Sektor den Markt im Jahr 2025 dominieren wird, da er die von Unternehmen benötigte Effizienz, Auswahl und Flexibilität bietet. Unternehmen skalieren ihre Projekte im Bereich künstliche Intelligenz und fortgeschrittene Analytik in der Cloud und können so in zunehmend wettbewerbsintensiven Märkten bessere datengestützte Entscheidungen treffen.
Es wird erwartet, dass Festplattenbasierte Systeme im Prognosezeitraum den größten Anteil im Segment dieser Systeme ausmachen werden.
Das Segment der diskbasierten Systeme dürfte aufgrund der geringeren Anschaffungs- und Betriebskosten sowie der einfacheren Einhaltung der Datenschutzbestimmungen und des stetig wachsenden Bedarfs an Datenintegration und -verwaltung über verschiedene Datenspeicher hinweg den größten Marktanteil erobern.
Regionale Analyse des Data-Fabric-Marktes
„Die USA halten den größten Anteil am Data-Fabric-Markt.“
- Die USA beherrschen einen bedeutenden Marktanteil aufgrund des steigenden Bedarfs an Echtzeit-Datenintegration in Sektoren wie dem Gesundheitswesen, dem Finanzwesen und dem Einzelhandel sowie aufgrund erheblicher Investitionen in Projekte zur digitalen Transformation.
- Die Region verfügt über ein gut etabliertes IT-Ökosystem und eine hohe Dichte an Cloud-Service-Anbietern, was die Implementierung skalierbarer und flexibler Dateninfrastrukturlösungen zusätzlich erleichtert.
- Darüber hinaus ermutigen regulatorische Vorgaben wie HIPAA, DSGVO und SOX Unternehmen dazu, Data-Fabric-Plattformen für die sichere und zentrale Datenverwaltung einzuführen und so das Marktwachstum insgesamt voranzutreiben.
„Für Kanada wird die höchste durchschnittliche jährliche Wachstumsrate (CAGR) im Data-Fabric-Markt prognostiziert .“
- Es wird erwartet, dass die Region Kanada das schnellste Wachstum im Markt für Data Fabric verzeichnen wird, angetrieben durch die rasante Digitalisierung, die zunehmende Nutzung von Cloud-Lösungen und den wachsenden Fokus von Unternehmen auf Echtzeitanalysen und Entscheidungsfindung.
- Kanada ist weiterhin führend bei der Einführung modernster Datenintegrationstechnologien, unterstützt durch einen technologisch fortschrittlichen Unternehmenssektor und günstige Regierungsinitiativen im Sinne von Industrie 4.0.
Marktanteil von Data Fabric
Die Wettbewerbsanalyse bietet detaillierte Informationen zu jedem einzelnen Wettbewerber. Diese umfassen Unternehmensübersicht, Finanzkennzahlen, Umsatz, Marktpotenzial, Investitionen in Forschung und Entwicklung, neue Marktinitiativen, Präsenz in Nordamerika, Produktionsstandorte und -anlagen, Produktionskapazitäten, Stärken und Schwächen des Unternehmens, Produkteinführungen, Produktportfolio und Anwendungsdominanz. Die genannten Datenpunkte beziehen sich ausschließlich auf den marktbezogenen Fokus der Unternehmen.
Die wichtigsten Marktführer, die auf dem Markt tätig sind, sind:
- IBM Corporation (USA)
- Oracle Corporation (USA)
- Hewlett Packard Enterprise Company (USA)
- SAP SE (Deutschland)
- NetApp, Inc. (USA)
- TIBCO Software Inc. (USA)
- Talend Inc. (USA)
- Denodo Technologies Inc. (USA)
- Cloudera, Inc. (USA)
- CluedIn (Dänemark)
Neueste Entwicklungen auf dem nordamerikanischen Data-Fabric-Markt
- Im Juli 2024 erwarb die IBM Corporation StreamSets, ein führendes Unternehmen für Echtzeit-Datenintegration. Diese Akquisition stärkt IBMs Kompetenzen im Bereich zukunftsweisender Dateninfrastrukturlösungen und ermöglicht es Unternehmen, fragmentierte Datenstrukturen zu adressieren, Integration und Governance zu optimieren und die Einführung generativer KI zu beschleunigen.
- Im August 2024 erweiterten SAP SE und Collibra ihre Partnerschaft durch native Integrationen in SAP Datasphere. Ziel dieser Zusammenarbeit ist es, unternehmensweit vertrauenswürdige und kontrollierte Daten bereitzustellen, Anwendern zuverlässige Erkenntnisse zu liefern und KI-gestützte Entscheidungsfindung in datengetriebenen Umgebungen zu unterstützen.
- Im Mai 2023 integrierte Talend neue Innovationen in seine Data Fabric-Plattform, um Datenexperten leistungsstarke Integrationen mit führenden Cloud-Intelligence-Plattformen zu bieten. Zu den Verbesserungen gehören Funktionen für die kollaborative Datenverwaltung, ein Self-Service-API-Portal und private Verbindungen zwischen Microsoft Azure und Amazon AWS zur Gewährleistung der Datensicherheit.
- Im März 2025 kündigte das französische Werbeunternehmen Publicis die Übernahme des Daten- und Identitätstechnologieunternehmens Lotame an. Durch diese Akquisition wird Epsilon, die Tochtergesellschaft von Publicis für zielgerichtetes Marketing, integriert. Dadurch verdoppelt sich die Anzahl der individuellen Verbraucherprofile auf 4 Milliarden, und das Unternehmen kann 91 % aller internetnutzenden Erwachsenen erreichen.
- Im September 2024 kündigten Oracle Corporation und Amazon Web Services (AWS) die Einführung von Oracle Database@AWS an, einem Service, der den nahtlosen Zugriff auf Oracle Autonomous Database und Exadata Database Service innerhalb der AWS-Umgebung ermöglicht. Diese Integration vereinfacht die Datenmigration, erhöht die Flexibilität und unterstützt einheitliches Datenmanagement – Schlüsselkomponenten von Data-Fabric-Lösungen. Ziel der Zusammenarbeit ist es, Unternehmen eine umfassende Datenarchitektur bereitzustellen, die Echtzeitanalysen und optimierte Datenoperationen in hybriden Cloud-Umgebungen ermöglicht.
SKU-
Erhalten Sie Online-Zugriff auf den Bericht zur weltweit ersten Market Intelligence Cloud
- Interaktives Datenanalyse-Dashboard
- Unternehmensanalyse-Dashboard für Chancen mit hohem Wachstumspotenzial
- Zugriff für Research-Analysten für Anpassungen und Abfragen
- Konkurrenzanalyse mit interaktivem Dashboard
- Aktuelle Nachrichten, Updates und Trendanalyse
- Nutzen Sie die Leistungsfähigkeit der Benchmark-Analyse für eine umfassende Konkurrenzverfolgung
Inhaltsverzeichnis
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF NORTH AMERICA DATA FABRIC MARKET
1.4 CURRENCY AND PRICING
1.5 IMPACT OF COVID-19 PANDEMIC ON THE MARKET
1.5.1 PRICE IMPACT
1.5.2 IMPACT ON DEMAND
1.5.3 IMPACT ON SUPPLY CHAIN
1.5.4 CONCLUSION
1.6 LIMITATION
1.7 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE NORTH AMERICA DATA FABRIC MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY POSITIONING GRID
2.2.5 COMAPANY MARKET SHARE ANALYSIS
2.2.6 MULTIVARIATE MODELLING
2.2.7 TOP TO BOTTOM ANALYSIS
2.2.8 STANDARDS OF MEASUREMENT
2.2.9 VENDOR SHARE ANALYSIS
2.2.10 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.11 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 NORTH AMERICA DATA FABRIC MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW AND INDUSTRY TRENDS
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHT
5.1 INTEGRATION OF TECHNOLOGIES SUCH AS MACHINE LEARNING AND AI IN DATA FABRIC SOLUTIONS
6 IMPACT OF COVID-19 PANDEMIC ON THE MARKET
6.1 ANALYSIS ON IMPACT OF COVID-19 ON THE MARKET
6.2 AFTER MATH OF COVID-19 AND GOVERNMENT INITIATIVE TO BOOST THE MARKET
6.3 STRATEGIC DECISIONS FOR MANUFACTURERS AFTER COVID-19 TO GAIN COMPETITIVE MARKET SHARE
6.4 PRICE IMPACT/PRICING ANALYSIS
6.5 IMPACT ON DEMAND
6.6 IMPACT ON SUPPLY CHAIN
6.7 CONCLUSION
7 NORTH AMERICA DATA FABRIC MARKET, BY OFFERING
7.1 OVERVIEW
7.2 SOFTWARE
7.2.1 DATA MANAGEMENT
7.2.2 DATA INTEGRATION
7.2.3 DATA GOVERNANCE
7.2.4 DATA VIRTUALIZATION
7.2.5 OTHERS
7.3 SERVICES
7.3.1 IMPLEMENTATION AND INSTALLATION
7.3.2 CONSULTING
7.3.3 SUPPORT AND MAINTENANCE
8 NORTH AMERICA DATA FABRIC MARKET, BY ORGANIZATION SIZE
8.1 OVERVIEW
8.2 LARGE ENTERPRISES
8.3 SMES
9 NORTH AMERICA DATA FABRIC MARKET, BY TYPE
9.1 OVERVIEW
9.2 DISK-BASED DATA FABRIC
9.3 IN-MEMORY DATA FABRIC
10 NORTH AMERICA DATA FABRIC MARKET, BY DEPLOYMENT MODE
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISES
11 NORTH AMERICA DATA FABRIC MARKET, BY APPLICATION
11.1 OVERVIEW
11.2 FRAUD DETECTION AND SECURITY
11.3 MANAGEMENT
11.4 SALES AND MARKETING MANAGEMENT
11.5 DATA GOVERNANCE AND COMPLIANCE
11.6 MANAGEMENT
11.7 BUSINESS PROCESS AMANGEMENT
11.8 CUSTOMER EXPERIENCE MANAGEMENT
11.9 OTHERS
12 NORTH AMERICA DATA FABRIC MARKET, BY INDUSTRY
12.1 OVERVIEW
12.2 BFSI
12.2.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.2.2 SALES AND MARKETING AMANGEMENT
12.2.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.2.4 BUSINESS PROCESS MANAGEMENT
12.2.5 CUSTOMER EXPERIENCE MANAGEMENT
12.2.6 OTHERS
12.3 HEALTHCARE AND LIDE SCIENCES
12.3.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.3.2 SALES AND MARKETING AMANGEMENT
12.3.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.3.4 BUSINESS PROCESS MANAGEMENT
12.3.5 CUSTOMER EXPERIENCE MANAGEMENT
12.3.6 OTHERS
12.4 IT AND TELECOM
12.4.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.4.2 SALES AND MARKETING AMANGEMENT
12.4.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.4.4 BUSINESS PROCESS MANAGEMENT
12.4.5 CUSTOMER EXPERIENCE MANAGEMENT
12.4.6 OTHERS
12.5 MANUFACTURING
12.5.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.5.2 SALES AND MARKETING AMANGEMENT
12.5.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.5.4 BUSINESS PROCESS MANAGEMENT
12.5.5 CUSTOMER EXPERIENCE MANAGEMENT
12.5.6 OTHERS
12.6 RETAIL AND ECOMMERCE
12.6.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.6.2 SALES AND MARKETING AMANGEMENT
12.6.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.6.4 BUSINESS PROCESS MANAGEMENT
12.6.5 CUSTOMER EXPERIENCE MANAGEMENT
12.6.6 OTHERS
12.7 GOVERNMENT
12.7.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.7.2 SALES AND MARKETING AMANGEMENT
12.7.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.7.4 BUSINESS PROCESS MANAGEMENT
12.7.5 CUSTOMER EXPERIENCE MANAGEMENT
12.7.6 OTHERS
12.8 OTHERS
13 NORTH AMERICA DATA FABRIC MARKET, BY GEOGRAPHY
NORTH AMERICA DATA FABRIC MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
13.1.1 NORTH AMERICA
13.1.1.1. U.S.
13.1.1.2. CANADA
13.1.1.3. MEXICO
14 NORTH AMERICA DATA FABRIC MARKET,COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: NORTH AMERICA
14.2 COMPANY SHARE ANALYSIS: U.S.
14.3 MERGERS & ACQUISITIONS
14.4 NEW PRODUCT DEVELOPMENT AND APPROVALS
14.5 EXPANSIONS
14.6 REGULATORY CHANGES
14.7 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 NORTH AMERICA DATA FABRIC MARKET , SWOT & DBMR ANALYSIS
16 NORTH AMERICA DATA FABRIC MARKET, COMPANY PROFILE
16.1 ORACLE
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 VMWARE INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 REVENUE ANALYSIS
16.2.3 GEOGRAPHIC PRESENCE
16.2.4 PRODUCT PORTFOLIO
16.2.5 RECENT DEVELOPMENTS
16.3 NETAPP
16.3.1 COMPANY SNAPSHOT
16.3.2 REVENUE ANALYSIS
16.3.3 GEOGRAPHIC PRESENCE
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 TERADATA CORPORATION
16.4.1 COMPANY SNAPSHOT
16.4.2 REVENUE ANALYSIS
16.4.3 GEOGRAPHIC PRESENCE
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 IBM CORPORATION
16.5.1 COMPANY SNAPSHOT
16.5.2 REVENUE ANALYSIS
16.5.3 GEOGRAPHIC PRESENCE
16.5.4 PRODUCT PORTFOLIO
16.5.5 RECENT DEVELOPMENTS
16.6 DENODO TECHNOLOGIES
16.6.1 COMPANY SNAPSHOT
16.6.2 REVENUE ANALYSIS
16.6.3 GEOGRAPHIC PRESENCE
16.6.4 PRODUCT PORTFOLIO
16.6.5 RECENT DEVELOPMENTS
16.7 INFORMATICA
16.7.1 COMPANY SNAPSHOT
16.7.2 REVENUE ANALYSIS
16.7.3 GEOGRAPHIC PRESENCE
16.7.4 PRODUCT PORTFOLIO
16.7.5 RECENT DEVELOPMENTS
16.8 GLOBAL IDS
16.8.1 COMPANY SNAPSHOT
16.8.2 REVENUE ANALYSIS
16.8.3 GEOGRAPHIC PRESENCE
16.8.4 PRODUCT PORTFOLIO
16.8.5 RECENT DEVELOPMENTS
16.9 TALEND
16.9.1 COMPANY SNAPSHOT
16.9.2 REVENUE ANALYSIS
16.9.3 GEOGRAPHIC PRESENCE
16.9.4 PRODUCT PORTFOLIO
16.9.5 RECENT DEVELOPMENTS
16.1 TRIFACTA
16.10.1 COMPANY SNAPSHOT
16.10.2 REVENUE ANALYSIS
16.10.3 GEOGRAPHIC PRESENCE
16.10.4 PRODUCT PORTFOLIO
16.10.5 RECENT DEVELOPMENTS
16.11 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.11.1 COMPANY SNAPSHOT
16.11.2 REVENUE ANALYSIS
16.11.3 GEOGRAPHIC PRESENCE
16.11.4 PRODUCT PORTFOLIO
16.11.5 RECENT DEVELOPMENTS
16.12 PANZURA
16.12.1 COMPANY SNAPSHOT
16.12.2 REVENUE ANALYSIS
16.12.3 GEOGRAPHIC PRESENCE
16.12.4 PRODUCT PORTFOLIO
16.12.5 RECENT DEVELOPMENTS
16.13 INFOR
16.13.1 COMPANY SNAPSHOT
16.13.2 REVENUE ANALYSIS
16.13.3 GEOGRAPHIC PRESENCE
16.13.4 PRODUCT PORTFOLIO
16.13.5 RECENT DEVELOPMENTS
16.14 BY ONIS SOLUTIONS
16.14.1 COMPANY SNAPSHOT
16.14.2 REVENUE ANALYSIS
16.14.3 GEOGRAPHIC PRESENCE
16.14.4 PRODUCT PORTFOLIO
16.14.5 RECENT DEVELOPMENTS
16.15 NEXLA
16.15.1 COMPANY SNAPSHOT
16.15.2 REVENUE ANALYSIS
16.15.3 GEOGRAPHIC PRESENCE
16.15.4 PRODUCT PORTFOLIO
16.15.5 RECENT DEVELOPMENTS
16.16 SPLUNK INC.
16.16.1 COMPANY SNAPSHOT
16.16.2 REVENUE ANALYSIS
16.16.3 GEOGRAPHIC PRESENCE
16.16.4 PRODUCT PORTFOLIO
16.16.5 RECENT DEVELOPMENTS
16.17 ATACCAMA
16.17.1 COMPANY SNAPSHOT
16.17.2 REVENUE ANALYSIS
16.17.3 GEOGRAPHIC PRESENCE
16.17.4 PRODUCT PORTFOLIO
16.17.5 RECENT DEVELOPMENTS
16.18 KALOOM INC.
16.18.1 COMPANY SNAPSHOT
16.18.2 REVENUE ANALYSIS
16.18.3 GEOGRAPHIC PRESENCE
16.18.4 PRODUCT PORTFOLIO
16.18.5 RECENT DEVELOPMENTS
16.19 ORION GOVERNANCE
16.19.1 COMPANY SNAPSHOT
16.19.2 REVENUE ANALYSIS
16.19.3 GEOGRAPHIC PRESENCE
16.19.4 PRODUCT PORTFOLIO
16.19.5 RECENT DEVELOPMENTS
16.2 SAS INSTITUTE INC.
16.20.1 COMPANY SNAPSHOT
16.20.2 REVENUE ANALYSIS
16.20.3 GEOGRAPHIC PRESENCE
16.20.4 PRODUCT PORTFOLIO
16.20.5 RECENT DEVELOPMENTS
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
17 CONCLUSION
18 RELATED REPORTS
19 ABOUT DATA BRIDGE MARKET RESEARCH
Forschungsmethodik
Die Datenerfassung und Basisjahresanalyse werden mithilfe von Datenerfassungsmodulen mit großen Stichprobengrößen durchgeführt. Die Phase umfasst das Erhalten von Marktinformationen oder verwandten Daten aus verschiedenen Quellen und Strategien. Sie umfasst die Prüfung und Planung aller aus der Vergangenheit im Voraus erfassten Daten. Sie umfasst auch die Prüfung von Informationsinkonsistenzen, die in verschiedenen Informationsquellen auftreten. Die Marktdaten werden mithilfe von marktstatistischen und kohärenten Modellen analysiert und geschätzt. Darüber hinaus sind Marktanteilsanalyse und Schlüsseltrendanalyse die wichtigsten Erfolgsfaktoren im Marktbericht. Um mehr zu erfahren, fordern Sie bitte einen Analystenanruf an oder geben Sie Ihre Anfrage ein.
Die wichtigste Forschungsmethodik, die vom DBMR-Forschungsteam verwendet wird, ist die Datentriangulation, die Data Mining, die Analyse der Auswirkungen von Datenvariablen auf den Markt und die primäre (Branchenexperten-)Validierung umfasst. Zu den Datenmodellen gehören ein Lieferantenpositionierungsraster, eine Marktzeitlinienanalyse, ein Marktüberblick und -leitfaden, ein Firmenpositionierungsraster, eine Patentanalyse, eine Preisanalyse, eine Firmenmarktanteilsanalyse, Messstandards, eine globale versus eine regionale und Lieferantenanteilsanalyse. Um mehr über die Forschungsmethodik zu erfahren, senden Sie eine Anfrage an unsere Branchenexperten.
Anpassung möglich
Data Bridge Market Research ist ein führendes Unternehmen in der fortgeschrittenen formativen Forschung. Wir sind stolz darauf, unseren bestehenden und neuen Kunden Daten und Analysen zu bieten, die zu ihren Zielen passen. Der Bericht kann angepasst werden, um Preistrendanalysen von Zielmarken, Marktverständnis für zusätzliche Länder (fordern Sie die Länderliste an), Daten zu klinischen Studienergebnissen, Literaturübersicht, Analysen des Marktes für aufgearbeitete Produkte und Produktbasis einzuschließen. Marktanalysen von Zielkonkurrenten können von technologiebasierten Analysen bis hin zu Marktportfoliostrategien analysiert werden. Wir können so viele Wettbewerber hinzufügen, wie Sie Daten in dem von Ihnen gewünschten Format und Datenstil benötigen. Unser Analystenteam kann Ihnen auch Daten in groben Excel-Rohdateien und Pivot-Tabellen (Fact Book) bereitstellen oder Sie bei der Erstellung von Präsentationen aus den im Bericht verfügbaren Datensätzen unterstützen.

