Informe de análisis del tamaño, la participación y las tendencias del mercado global de inteligencia artificial (IA) en el descubrimiento de fármacos: panorama general del sector y pronóstico hasta 2032

Solicitud de índiceSolicitud de índice Hable con el analistaHable con el analista Informe de muestra gratuitoInforme de muestra gratuito Consultar antes de comprarConsultar antes Comprar ahoraComprar ahora

Informe de análisis del tamaño, la participación y las tendencias del mercado global de inteligencia artificial (IA) en el descubrimiento de fármacos: panorama general del sector y pronóstico hasta 2032

  • Healthcare
  • Upcoming Report
  • Mar 2025
  • Global
  • 350 Páginas
  • Número de tablas: 220
  • Número de figuras: 60
  • Author : Sachin Pawar

Supera los desafíos arancelarios con una consultoría ágil de la cadena de suministro

El análisis del ecosistema de la cadena de suministro ahora forma parte de los informes de DBMR

Global Artificial Intelligence Ai In Drug Discovery Market

Tamaño del mercado en miles de millones de dólares

Tasa de crecimiento anual compuesta (CAGR) :  % Diagram

Chart Image USD 981.64 Million USD 1,483.82 Million 2024 2032
Diagram Período de pronóstico
2025 –2032
Diagram Tamaño del mercado (año base)
USD 981.64 Million
Diagram Tamaño del mercado (año de pronóstico)
USD 1,483.82 Million
Diagram Tasa de crecimiento anual compuesta (CAGR)
%
Diagram Jugadoras de los principales mercados
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

Segmentación del mercado global de inteligencia artificial (IA) en el descubrimiento de fármacos, por aplicación (nuevos fármacos candidatos, optimización y reutilización de fármacos, pruebas preclínicas y aprobación, monitorización de fármacos, búsqueda de nuevas dianas y vías de acción asociadas a enfermedades, comprensión de los mecanismos de las enfermedades, agregación y síntesis de información, formulación y calificación de hipótesis, diseño de fármacos de novo, búsqueda de dianas farmacológicas de un fármaco antiguo, etc.), tecnología (aprendizaje automático, aprendizaje profundo, procesamiento del lenguaje natural, etc.), tipo de fármaco (molécula pequeña y molécula grande), oferta (software y servicios), indicación (inmuno-oncología, enfermedades neurodegenerativas, enfermedades cardiovasculares, enfermedades metabólicas, etc.), uso final (organizaciones de investigación por contrato [CRO], empresas farmacéuticas y biotecnológicas, centros de investigación e institutos académicos, etc.): tendencias del sector y pronóstico hasta 2032.

Inteligencia artificial (IA) en el mercado de descubrimiento de fármacos

Inteligencia artificial (IA) en el tamaño del mercado de descubrimiento de fármacos

  • El mercado global de inteligencia artificial (IA) en el descubrimiento de fármacos se valoró en USD 981,64 millones en 2024 y se espera que alcance los USD 1483,82 millones para 2032.
  • Durante el período de pronóstico de 2025 a 2032, es probable que el mercado crezca a una CAGR del 5,30 %, impulsado principalmente por la creciente disponibilidad de datos de atención médica.
  • Este crecimiento está impulsado por factores como la creciente prevalencia de enfermedades crónicas y los avances en las tecnologías de IA que mejoran los procesos de descubrimiento de fármacos.

Análisis del mercado de la inteligencia artificial (IA) en el descubrimiento de fármacos

  • El mercado está experimentando un rápido crecimiento, impulsado por los avances en tecnologías de IA como el aprendizaje automático y el aprendizaje profundo, que están agilizando los procesos de descubrimiento de fármacos y reduciendo los costos.
  • La IA se está adoptando ampliamente para la optimización de fármacos, la reutilización, las pruebas preclínicas y el diseño de ensayos clínicos, lo que acelera significativamente el cronograma de desarrollo de fármacos.
  • América del Norte lidera el mercado debido a su fuerte sector farmacéutico, mientras que se espera que la región de Asia y el Pacífico crezca rápidamente, impulsada por mayores inversiones en investigación y desarrollo.

Por ejemplo, se están utilizando tecnologías de IA como el aprendizaje automático y el aprendizaje profundo para predecir las tasas de éxito en ensayos clínicos, optimizar fármacos candidatos e identificar nuevos objetivos terapéuticos, reduciendo significativamente el tiempo y el costo del desarrollo de fármacos.

  • La adopción de IA en el descubrimiento de fármacos está revolucionando la industria farmacéutica al abordar desafíos como los altos costos, los plazos prolongados y las bajas tasas de éxito en los procesos tradicionales de desarrollo de fármacos.

Alcance del informe y segmentación del mercado de inteligencia artificial (IA) en el descubrimiento de fármacos

Atributos

Inteligencia artificial (IA) en el descubrimiento de fármacos: Perspectivas clave del mercado

Segmentos cubiertos

  • Por aplicación : Candidatos a nuevos fármacos, optimización y reutilización de fármacos, pruebas preclínicas y aprobación, monitorización de fármacos, búsqueda de nuevas dianas y vías asociadas a enfermedades, comprensión de los mecanismos de las enfermedades, agregación y síntesis de información, formulación y calificación de hipótesis, diseño de fármacos de novo, búsqueda de dianas farmacológicas de un fármaco antiguo, entre otras.
  • Por tecnología:   aprendizaje automático, aprendizaje profundo , procesamiento del lenguaje natural y otros
  • Por tipo de fármaco:  molécula pequeña y molécula grande
  • Ofreciendo:  Software y Servicios
  • Por indicación : Inmuno-oncología, enfermedades neurodegenerativas, enfermedades cardiovasculares, enfermedades metabólicas y otras.
  • Por uso final : Organizaciones de investigación por contrato (CRO), empresas farmacéuticas y de biotecnología, centros de investigación e institutos académicos, y otros

Países cubiertos

América del norte

  • A NOSOTROS
  • Canadá
  • México

Europa

  • Alemania
  • Francia
  • Reino Unido
  • Países Bajos
  • Suiza
  • Bélgica
  • Rusia
  • Italia
  • España
  • Pavo
  • Resto de Europa

Asia-Pacífico

  • Porcelana
  • Japón
  • India
  • Corea del Sur
  • Singapur
  • Malasia
  • Australia
  • Tailandia
  • Indonesia
  • Filipinas
  • Resto de Asia-Pacífico

Oriente Medio y África

  • Arabia Saudita
  • Emiratos Árabes Unidos
  • Sudáfrica
  • Egipto
  • Israel
  • Resto de Oriente Medio y África

Sudamerica

  • Brasil
  • Argentina
  • Resto de Sudamérica

Actores clave del mercado

  • NVIDIA Corporation (EE. UU.)
  • IBM Corp. (EE. UU.)
  • Atomwise Inc. (EE. UU.)
  • Microsoft (EE. UU.)
  • Benevolent AI (Reino Unido)
  • Aria Pharmaceuticals, Inc. (EE. UU.)
  • GENÓMICA PROFUNDA (Canadá)
  • Exscientia (Reino Unido)
  • Medicina Insilico (Hong Kong)
  • Cyclica (Canadá)
  • NuMedii, Inc. (EE. UU.)
  • Envisagenics (EE. UU.)
  • Owkin Inc. (EE. UU.)
  • BERG LLC (EE. UU.)
  • Schrödinger, Inc. (EE. UU.)
  • XtalPi Inc. (China)
  • BIOAGE Inc. (EE. UU.)

Oportunidades de mercado

  • Aumento de las inversiones en I+D en la industria farmacéutica
  • Modelado predictivo mejorado para ensayos clínicos

Conjuntos de información de datos de valor añadido

Además de los conocimientos sobre escenarios de mercado como valor de mercado, tasa de crecimiento, segmentación, cobertura geográfica y actores principales, los informes de mercado seleccionados por Data Bridge Market Research también incluyen análisis de importación y exportación, descripción general de la capacidad de producción, análisis del consumo de producción, análisis de tendencias de precios, escenario de cambio climático, análisis de la cadena de suministro, análisis de la cadena de valor, descripción general de materias primas/consumibles, criterios de selección de proveedores, análisis PESTLE, análisis de Porter y marco regulatorio.

Tendencias del mercado de la inteligencia artificial (IA) en el descubrimiento de fármacos

Innovaciones impulsadas por IA que revolucionan el descubrimiento de fármacos

  • Una tendencia destacada en el mercado de IA en el descubrimiento de fármacos es la creciente adopción de tecnologías de aprendizaje automático y aprendizaje profundo para agilizar los procesos de desarrollo de fármacos .
  • Estas tecnologías avanzadas mejoran la eficiencia y la precisión del descubrimiento de fármacos al analizar grandes conjuntos de datos, predecir las propiedades de unión de moléculas e identificar posibles fármacos candidatos.
  • Por ejemplo, se están utilizando plataformas impulsadas por IA para reutilizar medicamentos existentes en nuevas áreas terapéuticas, lo que reduce significativamente el tiempo y el costo asociados con los métodos tradicionales de descubrimiento de fármacos.
  • La integración de IA también permite un mejor diseño de ensayos clínicos al predecir las tasas de éxito e identificar las poblaciones de pacientes, mejorando el éxito general del desarrollo de medicamentos.
  • Esta tendencia está transformando la industria farmacéutica, acelerando el desarrollo de terapias innovadoras y abordando necesidades médicas no satisfechas, impulsando así la demanda de soluciones impulsadas por IA en el mercado.

Inteligencia artificial (IA) en la dinámica del mercado de descubrimiento de fármacos

Conductor

Aumento de las inversiones en I+D en la industria farmacéutica

  • Las compañías farmacéuticas están aumentando sus presupuestos de I+D para desarrollar nuevos medicamentos y terapias, garantizando así su competitividad y satisfaciendo las cambiantes necesidades de los pacientes.
  • Las herramientas de IA se integran en los procesos de I+D para mejorar el descubrimiento de fármacos, lo que permite una identificación más rápida de fármacos candidatos, mejora las tasas de éxito y optimiza la investigación en etapa inicial.
  • La IA permite un cribado de alto rendimiento, acelerando significativamente el proceso de prueba de compuestos e identificando candidatos prometedores para un mayor desarrollo.
  • La IA puede procesar grandes conjuntos de datos de genómica, ensayos clínicos y demografía de pacientes para descubrir patrones ocultos, acelerando la identificación de nuevos objetivos terapéuticos.
  • Con algoritmos de IA que optimizan el reclutamiento de pacientes y el diseño de ensayos, las compañías farmacéuticas pueden realizar ensayos clínicos más eficientes, reduciendo tiempos y costos.

Por ejemplo,

  • Sanofi se asoció con Exscientia y utilizó IA para diseñar nuevos fármacos candidatos, acelerando así su camino hacia los ensayos clínicos. En una de sus colaboraciones, identificaron un fármaco prometedor para el tratamiento de enfermedades autoinmunes en mucho menos tiempo del que habrían tardado los métodos tradicionales.
  • GlaxoSmithKline (GSK) y 24M están trabajando juntos para aplicar IA para optimizar el proceso de I+D, incluida la identificación de nuevos objetivos farmacológicos y la aceleración del desarrollo de nuevas terapias, por ejemplo para enfermedades raras.
  • Las crecientes inversiones en I+D, junto con el poder de la IA, están mejorando significativamente la capacidad de la industria farmacéutica para descubrir nuevos medicamentos con mayor rapidez, de forma más rentable y con mayor precisión.

Oportunidad

Modelado predictivo mejorado para ensayos clínicos

  • La IA puede optimizar los diseños de ensayos clínicos al identificar los parámetros de ensayo más adecuados, como el tamaño de la muestra, los puntos finales y los regímenes de tratamiento, lo que conduce a estudios más eficientes y efectivos.
  • Al analizar los registros médicos electrónicos y otros datos, la IA puede ayudar a identificar a los pacientes adecuados para los ensayos clínicos según criterios de inclusión y exclusión específicos, mejorando la velocidad y la precisión del reclutamiento.
  • Los modelos de IA pueden predecir el probable éxito o fracaso de un ensayo clínico basándose en datos históricos e información en tiempo real, lo que permite realizar ajustes tempranos en los protocolos del ensayo y aumentar las posibilidades de éxito.
  • Al utilizar análisis predictivos, la IA puede identificar a los pacientes en riesgo de abandonar el estudio y sugerir intervenciones para mantenerlos interesados, reduciendo así el número de ensayos incompletos.
  • La capacidad de la IA para agilizar el proceso de ensayos clínicos, desde la selección de los participantes hasta la predicción de resultados, puede reducir significativamente los costos asociados con los métodos de ensayo tradicionales.

Por ejemplo,

  • Pfizer utilizó IA en colaboración con IBM Watson Health para mejorar el reclutamiento de participantes en ensayos clínicos y optimizar el diseño de los ensayos para el desarrollo de un tratamiento para enfermedades raras. Su enfoque basado en IA ayudó a acelerar el reclutamiento y a mejorar los resultados de los ensayos.
  • Novartis empleó IA para predecir las respuestas de los pacientes y optimizar el diseño de ensayos clínicos para sus tratamientos de terapia génica. Este enfoque basado en IA resultó en terapias más específicas y ensayos clínicos más eficientes.
  • La capacidad de la IA para mejorar el modelado predictivo en ensayos clínicos ofrece ventajas significativas, incluidos diseños de ensayos más eficientes, reclutamiento más rápido de pacientes, costos reducidos y mejores resultados de los ensayos, lo que en última instancia acelera el desarrollo de nuevos tratamientos.

Restricción/Desafío

“Altos costos de inversión inicial”

  • Las herramientas impulsadas por IA requieren una infraestructura tecnológica costosa, que incluye sistemas informáticos potentes, soluciones de almacenamiento de datos y software especializado, lo que hace que la inversión inicial sea elevada.
  • Reclutar profesionales calificados, como científicos de datos, expertos en IA e investigadores biofarmacéuticos con conocimientos tanto en IA como en descubrimiento de fármacos, es costoso y aumenta la carga financiera de implementar IA en I+D.
  • La integración de herramientas de IA en los flujos de trabajo de descubrimiento de fármacos existentes, especialmente en sistemas heredados, exige importantes recursos financieros para la adaptación, la capacitación y la optimización.
  • Las tecnologías de IA requieren mantenimiento continuo, actualizaciones de software y mejoras de hardware para mantenerse al día con los avances en aprendizaje automático y análisis de datos, lo que contribuye a los costos operativos a largo plazo.
  • Los sistemas de IA para el descubrimiento de fármacos dependen de grandes conjuntos de datos de alta calidad, y adquirir o licenciar dichos conjuntos de datos puede resultar costoso para empresas pequeñas o nuevas, lo que aumenta aún más el costo de la implementación de la IA.

Por ejemplo,

  • BenevolentAI realizó una importante inversión en plataformas de descubrimiento de fármacos basadas en IA y en su experiencia para optimizar el proceso de desarrollo de fármacos, centrándose en la oncología. A pesar de la elevada inversión inicial, su enfoque ha permitido un descubrimiento de fármacos más rápido y con mejores tasas de éxito.
  • Insilico Medicine , una startup que aprovecha la IA para el descubrimiento de fármacos, requirió una inversión inicial significativa para construir su plataforma impulsada por IA, lo que les permitió acelerar el desarrollo de fármacos para enfermedades como la fibrosis y el cáncer, pero los costos eran altos y difíciles de igualar para los competidores más pequeños.
  • Los elevados costes iniciales de inversión en IA para el descubrimiento de fármacos suponen una barrera para las pequeñas empresas y las startups, lo que limita su capacidad para competir con organizaciones más grandes que pueden permitirse estas tecnologías. Superar este reto puede requerir modelos de financiación innovadores o colaboraciones para que la IA sea más accesible a un mayor número de actores de la industria farmacéutica.

Alcance del mercado de la inteligencia artificial (IA) en el descubrimiento de fármacos

El mercado está segmentado según la aplicación, el tipo de producto, la tecnología, el tipo de aumento, el usuario final y el canal de distribución.

Segmentación

Subsegmentación

Por aplicación

  • Nuevos candidatos a fármacos
  • Optimización y reutilización de fármacos
  • Pruebas preclínicas y aprobación
  • Monitoreo de medicamentos
  • Encontrar nuevos objetivos y vías asociados a enfermedades
  • Comprensión de los mecanismos de la enfermedad
  • Agregación y síntesis de información
  • Formación y calificación de hipótesis
  • Diseño de fármacos de novo
  • Encontrar objetivos farmacológicos de un fármaco antiguo
  • Otros

Por tecnología

  • Aprendizaje automático
  • Aprendizaje profundo
  • Procesamiento del lenguaje natural
  • Otros

Por tipo de fármaco

  • Molécula pequeña
  • Molécula grande

Ofreciendo

  • Software
  • Servicios

Por indicación

  • Inmuno-oncología
  • Enfermedades neurodegenerativas
  • Enfermedades cardiovasculares
  • Enfermedades metabólicas
  • Otros

Por uso final

 

  • Organizaciones de investigación por contrato (CRO)
  • Empresas farmacéuticas y biotecnológicas
  • Centros de investigación e institutos académicos
  • Otros

Análisis regional del mercado de inteligencia artificial (IA) en el descubrimiento de fármacos

Norteamérica es la región dominante en el mercado de la inteligencia artificial (IA) para el descubrimiento de fármacos.

  • América del Norte domina el mercado de inteligencia artificial (IA) en el descubrimiento de fármacos , impulsada por una infraestructura de atención médica avanzada, una alta adopción de tecnologías médicas de vanguardia y una fuerte presencia de actores clave del mercado.
  • Estados Unidos alberga algunas de las compañías farmacéuticas más grandes, como Pfizer , Johnson & Johnson , Merck y Eli Lilly , que están a la vanguardia en la adopción de la IA para el descubrimiento de fármacos. Estas empresas están invirtiendo fuertemente en IA para optimizar el proceso de desarrollo de fármacos y mejorar los resultados.
  • Norteamérica cuenta con un ecosistema tecnológico consolidado, con importantes actores de IA como IBM Watson Health y Google DeepMind que impulsan la innovación en el descubrimiento de fármacos. Estas empresas son líderes en investigación de IA y proporcionan potentes herramientas de IA para la I+D farmacéutica.
  • América del Norte invierte constantemente una parte significativa de su PIB en investigación y desarrollo (I+D). Esta financiación impulsa la adopción de tecnologías avanzadas de IA en el descubrimiento de fármacos, ya que las empresas buscan maneras de acelerar el descubrimiento de nuevos fármacos y tratamientos.
  • En Norteamérica se han establecido numerosas alianzas entre compañías farmacéuticas y startups o empresas tecnológicas de IA. Por ejemplo, colaboraciones como la de Novartis con Microsoft para usar la IA en el descubrimiento de fármacos destacan el liderazgo de la región en el uso de la IA para innovar en el desarrollo de fármacos.

Se proyecta que Asia-Pacífico registre la mayor tasa de crecimiento.

  • Se espera que la región de Asia y el Pacífico sea testigo de la mayor tasa de crecimiento en Inteligencia Artificial (IA) en el descubrimiento de fármacos , impulsada por la rápida expansión en la infraestructura de atención médica, la creciente conciencia sobre la salud ocular y el aumento de los volúmenes quirúrgicos.
  • Países como China , India y Japón están invirtiendo fuertemente en IA y biotecnología con el objetivo de fortalecer sus sectores farmacéuticos y abordar las crecientes necesidades de atención médica. Estas inversiones están acelerando la adopción de la IA en el descubrimiento de fármacos.
  • Los gobiernos de la región APAC promueven activamente la atención médica digital y la integración de la IA mediante diversas iniciativas. Por ejemplo, China ha implementado estrategias nacionales para incorporar la IA en la atención médica, impulsando así su crecimiento en el descubrimiento de fármacos.
  • Los países de Asia-Pacífico (APAC) cuentan con grandes poblaciones y una vasta cantidad de datos sanitarios que pueden aprovecharse para el descubrimiento de fármacos mediante IA. La robusta infraestructura digital de la región facilita la integración de tecnologías de IA para el desarrollo de fármacos.
  • La región Asia-Pacífico (APAC) es la de más rápido crecimiento en el mercado de IA en el descubrimiento de fármacos, impulsada por el aumento de las inversiones, políticas gubernamentales de apoyo, un gran conjunto de datos y la expansión de empresas de biotecnología que aprovechan la tecnología de IA.

Cuota de mercado de la inteligencia artificial (IA) en el descubrimiento de fármacos

El panorama competitivo del mercado ofrece detalles por competidor. Se incluye información general de la empresa, sus estados financieros, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, plantas de producción, capacidad de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, alcance y variedad de productos, y dominio de las aplicaciones. Los datos anteriores se refieren únicamente al enfoque de mercado de las empresas.

Los principales líderes del mercado que operan en el mercado son:

  • NVIDIA Corporation (EE. UU.)
  • IBM Corp. (EE. UU.)
  • Atomwise Inc. (EE. UU.)
  • Microsoft (EE. UU.)
  • Benevolent AI (Reino Unido)
  • Aria Pharmaceuticals, Inc. (EE. UU.)
  • GENÓMICA PROFUNDA (Canadá)
  • Exscientia (Reino Unido)
  • Medicina Insilico (Hong Kong)
  • Cyclica (Canadá)
  • NuMedii, Inc. (EE. UU.)
  • Envisagenics (EE. UU.)
  • Owkin Inc. (EE. UU.)
  • BERG LLC (EE. UU.)
  • Schrödinger, Inc. (EE. UU.)
  • XtalPi Inc. (China)
  • BIOAGE Inc. (EE. UU.)

Últimos avances en inteligencia artificial (IA) global en el mercado de descubrimiento de fármacos

  • En mayo de 2024, Google DeepMind presentó la tercera versión de su modelo de IA AlphaFold, diseñado para optimizar el desarrollo de fármacos y la focalización de enfermedades. Esta versión avanzada permite a los investigadores de DeepMind e Isomorphic Labs analizar el comportamiento de todas las moléculas, incluido el ADN humano.
  • En abril de 2024, Xaira Therapeutics, una empresa innovadora especializada en el descubrimiento y desarrollo de fármacos con inteligencia artificial, obtuvo más de un millón de dólares durante una ronda de financiación colaborativa con ARCH Venture Partners y Foresite Labs. Mediante el aprendizaje automático, modelos de generación de datos y el desarrollo de productos terapéuticos, la empresa se centra en abordar dianas farmacológicas que tradicionalmente han sido difíciles de abordar.
  • En diciembre de 2023, MilliporeSigma, la división de ciencias de la vida de Merck, lanzó AIDDISON, un software de vanguardia para el descubrimiento de fármacos. Esta plataforma conecta el diseño de moléculas virtuales con la fabricación en el mundo real mediante la integración de la API del software de retrosíntesis Synthia. Combina inteligencia artificial generativa, aprendizaje automático y diseño de fármacos asistido por computadora para optimizar los procesos de desarrollo de fármacos.
  • En mayo de 2023, Google lanzó dos innovadoras herramientas basadas en IA para ayudar a las empresas biotecnológicas y farmacéuticas a acelerar el descubrimiento de fármacos y perfeccionar la medicina de precisión. Estas soluciones están diseñadas para reducir el tiempo y los gastos que supone la introducción de nuevos tratamientos en el mercado estadounidense. Entre las primeras empresas en adoptar estas herramientas se encuentran Cerevel Therapeutics, Pfizer y Colossal Biosciences .


SKU-

Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo

  • Panel de análisis de datos interactivo
  • Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
  • Acceso de analista de investigación para personalización y consultas
  • Análisis de la competencia con panel interactivo
  • Últimas noticias, actualizaciones y análisis de tendencias
  • Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Solicitud de demostración

Tabla de contenido

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 MARKETS COVERED

2.5 GEOGRAPHIC SCOPE

2.6 YEARS CONSIDERED FOR THE STUDY

2.7 RESEARCH METHODOLOGY

2.8 TECHNOLOGY LIFE LINE CURVE

2.9 MULTIVARIATE MODELLING

2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.11 DBMR MARKET POSITION GRID

2.12 MARKET APPLICATION COVERAGE GRID

2.13 DBMR MARKET CHALLENGE MATRIX

2.14 SECONDARY SOURCES

2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT

2.16 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

5.1 PESTEL ANALYSIS

5.2 PORTER’S FIVE FORCES MODEL

6 INDUSTRY INSIGHTS

6.1 MICRO AND MACRO ECONOMIC FACTORS

6.2 PENETRATION AND GROWTH PROSPECT MAPPING

6.3 KEY PRICING STRATEGIES

6.4 INTERVIEWS WITH SPECIALIST

6.5 ANALYIS AND RECOMMENDATION

7 INTELLECTUAL PROPERTY (IP) PORTFOLIO

7.1 PATENT QUALITY AND STRENGTH

7.2 PATENT FAMILIES

7.3 LICENSING AND COLLABORATIONS

7.4 COMPETITIVE LANDSCAPE

7.5 IP STRATEGY AND MANAGEMENT

7.6 OTHER

8 COST ANALYSIS BREAKDOWN

9 TECHNONLOGY ROADMAP

10 INNOVATION TRACKER AND STRATEGIC ANALYSIS

10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS

10.1.1 JOINT VENTURES

10.1.2 MERGERS AND ACQUISITIONS

10.1.3 LICENSING AND PARTNERSHIP

10.1.4 TECHNOLOGY COLLABORATIONS

10.1.5 STRATEGIC DIVESTMENTS

10.2 NUMBER OF PRODUCTS IN DEVELOPMENT

10.3 STAGE OF DEVELOPMENT

10.4 TIMELINES AND MILESTONES

10.5 INNOVATION STRATEGIES AND METHODOLOGIES

10.6 RISK ASSESSMENT AND MITIGATION

10.7 FUTURE OUTLOOK

11 REGULATORY COMPLIANCE

11.1 REGULATORY AUTHORITIES

11.2 REGULATORY CLASSIFICATIONS

11.2.1 CLASS I

11.2.2 CLASS II

11.2.3 CLASS III

11.3 REGULATORY SUBMISSIONS

11.4 INTERNATIONAL HARMONIZATION

11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS

11.6 REGULATORY CHALLENGES AND STRATEGIES

12 REIMBURSEMENT FRAMEWORK

13 OPPUTUNITY MAP ANALYSIS

14 VALUE CHAIN ANALYSIS

15 HEALTHCARE ECONOMY

15.1 HEALTHCARE EXPENDITURE

15.2 CAPITAL EXPENDITURE

15.3 CAPEX TRENDS

15.4 CAPEX ALLOCATION

15.5 FUNDING SOURCES

15.6 INDUSTRY BENCHMARKS

15.7 GDP RATION IN OVERALL GDP

15.8 HEALTHCARE SYSTEM STRUCTURE

15.9 GOVERNMENT POLICIES

15.1 ECONOMIC DEVELOPMENT

16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING

16.1 OVERVIEW

16.2 SOFTWARE

16.2.1 INTEGRATED

16.2.2 STANDALONE

16.3 SERVICES

17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY

17.1 OVERVIEW

17.2 MACHINE LEARNING (ML)

17.2.1 SUPERVISED LEARNING

17.2.2 UNSUPERVISED LEARNING

17.2.3 REINFORCEMENT LEARNING

17.3 DEEP LEARNING

17.4 NATURAL LANGUAGE PROCESSING (NLP)

17.5 OTHERS

18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE

18.1 OVERVIEW

18.2 SMALL MOLECULE

18.3 LARGE MOLECULE

19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION

19.1 OVERVIEW

19.2 NOVEL DRUG CANDIDATES

19.2.1 IDENTIFY BIOLOGICS TARGET

19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE

19.2.3 OTHERS

19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL

19.4 DRUG MONITORING

19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS

19.6 UNDERSTANDING DISEASE MECHANISMS

19.7 AGGREGATING AND SYNTHESIZING INFORMATION

19.8 FORM ATION & QUALIFICATION OF HYPOTHESES

19.9 DE NOVO DRUG DESIGN

19.1 FINDING DRUG TARGETS OF AN OLD DRUG

19.11 OTHERS

20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION

20.1 OVERVIEW

20.2 IMMUNO-ONCOLOGY

20.2.1 PROSTATE CANCER

20.2.2 BREAST CANCER

20.2.3 BRAIN CANCER

20.2.4 LUNG CANCER

20.2.5 PANCREATIC CANCER

20.2.6 COLORECTAL CANCER

20.2.7 LEUKEMIA

20.2.8 OTHERS

20.3 NEURODEGENERATIVE DISEASES

20.4 CARDIOVASCULAR DISEASES

20.5 METABOLIC DISEASES

20.6 OTHERS

21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER

21.1 OVERVIEW

21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES

21.3 CONTRACT RESEARCH ORGANIZATIONS

21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES

21.5 OTHERS

22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)

GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

22.1 OVERVIEW

22.2 NORTH AMERICA

22.2.1 U.S.

22.2.2 CANADA

22.2.3 MEXICO

22.3 EUROPE

22.3.1 GERMANY

22.3.2 U.K.

22.3.3 ITALY

22.3.4 FRANCE

22.3.5 SPAIN

22.3.6 SWITZERLAND

22.3.7 RUSSIA

22.3.8 TURKEY

22.3.9 BELGIUM

22.3.10 NETHERLANDS

22.3.11 REST OF EUROPE

22.4 ASIA-PACIFIC

22.4.1 JAPAN

22.4.2 CHINA

22.4.3 SOUTH KOREA

22.4.4 INDIA

22.4.5 AUSTRALIA & NEW ZEALAND

22.4.6 SINGAPORE

22.4.7 THAILAND

22.4.8 INDONESIA

22.4.9 MALAYSIA

22.4.10 PHILIPPINES

22.4.11 REST OF ASIA-PACIFIC

22.5 SOUTH AMERICA

22.5.1 BRAZIL

22.5.2 ARGENTINA

22.5.3 REST OF SOUTH AMERICA

22.6 MIDDLE EAST AND AFRICA

22.6.1 SOUTH AFRICA

22.6.2 EGYPT

22.6.3 SAUDI ARABIA

22.6.4 UNITED ARAB EMIRATES

22.6.5 ISRAEL

22.6.6 REST OF MIDDLE EAST AND AFRICA

23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE

23.1 COMPANY SHARE ANALYSIS: GLOBAL

23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

23.3 COMPANY SHARE ANALYSIS: EUROPE

23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

23.5 MERGERS & ACQUISITIONS

23.6 NEW PRODUCT DEVELOPMENT & APPROVALS

23.7 EXPANSIONS

23.8 REGULATORY CHANGES

23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES

24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS

25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE

25.1 MICROSOFT

25.1.1 COMPANY OVERVIEW

25.1.2 REVENUE ANALYSIS

25.1.3 PRODUCT PORTFOLIO

25.1.4 RECENT DEVELOPMENTS

25.2 SHANGHAI MEDICILON INC.

25.2.1 COMPANY OVERVIEW

25.2.2 REVENUE ANALYSIS

25.2.3 PRODUCT PORTFOLIO

25.2.4 RECENT DEVELOPMENTS

25.3 NVIDIA CORPORATION + ASTRAZENECA

25.3.1 COMPANY OVERVIEW

25.3.2 REVENUE ANALYSIS

25.3.3 PRODUCT PORTFOLIO

25.3.4 RECENT DEVELOPMENTS

25.4 ATOMWISE INC.

25.4.1 COMPANY OVERVIEW

25.4.2 REVENUE ANALYSIS

25.4.3 PRODUCT PORTFOLIO

25.4.4 RECENT DEVELOPMENTS

25.5 DEEP GENOMICS

25.5.1 COMPANY OVERVIEW

25.5.2 REVENUE ANALYSIS

25.5.3 PRODUCT PORTFOLIO

25.5.4 RECENT DEVELOPMENTS

25.6 CLOUD PHARMACEUTICALS INC.

25.6.1 COMPANY OVERVIEW

25.6.2 REVENUE ANALYSIS

25.6.3 PRODUCT PORTFOLIO

25.6.4 RECENT DEVELOPMENTS

25.7 INSILICO MEDICINE

25.7.1 COMPANY OVERVIEW

25.7.2 REVENUE ANALYSIS

25.7.3 PRODUCT PORTFOLIO

25.7.4 RECENT DEVELOPMENTS

25.8 BENEVOLENTAI

25.8.1 COMPANY OVERVIEW

25.8.2 REVENUE ANALYSIS

25.8.3 PRODUCT PORTFOLIO

25.8.4 RECENT DEVELOPMENTS

25.9 EXSCIENTIA

25.9.1 COMPANY OVERVIEW

25.9.2 REVENUE ANALYSIS

25.9.3 PRODUCT PORTFOLIO

25.9.4 RECENT DEVELOPMENTS

25.1 CYCLICA

25.10.1 COMPANY OVERVIEW

25.10.2 REVENUE ANALYSIS

25.10.3 PRODUCT PORTFOLIO

25.10.4 RECENT DEVELOPMENTS

25.11 OWKIN, INC

25.11.1 COMPANY OVERVIEW

25.11.2 REVENUE ANALYSIS

25.11.3 PRODUCT PORTFOLIO

25.11.4 RECENT DEVELOPMENTS

25.12 ENVISAGENICS

25.12.1 COMPANY OVERVIEW

25.12.2 REVENUE ANALYSIS

25.12.3 PRODUCT PORTFOLIO

25.12.4 RECENT DEVELOPMENTS

25.13 NUMEDII, INC.

25.13.1 COMPANY OVERVIEW

25.13.2 REVENUE ANALYSIS

25.13.3 PRODUCT PORTFOLIO

25.13.4 RECENT DEVELOPMENTS

25.14 BIOSYNTAGMA

25.14.1 COMPANY OVERVIEW

25.14.2 REVENUE ANALYSIS

25.14.3 PRODUCT PORTFOLIO

25.14.4 RECENT DEVELOPMENTS

25.15 COLLABORATIONS PHARMACEUTICALS, INC.

25.15.1 COMPANY OVERVIEW

25.15.2 REVENUE ANALYSIS

25.15.3 PRODUCT PORTFOLIO

25.15.4 RECENT DEVELOPMENTS

25.16 INVENIAI LLC

25.16.1 COMPANY OVERVIEW

25.16.2 REVENUE ANALYSIS

25.16.3 PRODUCT PORTFOLIO

25.16.4 RECENT DEVELOPMENTS

25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION

25.17.1 COMPANY OVERVIEW

25.17.2 REVENUE ANALYSIS

25.17.3 PRODUCT PORTFOLIO

25.17.4 RECENT DEVELOPMENTS

25.18 VALO HEALTH

25.18.1 COMPANY OVERVIEW

25.18.2 REVENUE ANALYSIS

25.18.3 PRODUCT PORTFOLIO

25.18.4 RECENT DEVELOPMENTS

25.19 AIFORIA

25.19.1 COMPANY OVERVIEW

25.19.2 REVENUE ANALYSIS

25.19.3 PRODUCT PORTFOLIO

25.19.4 RECENT DEVELOPMENTS

25.2 CHEMALIVE

25.20.1 COMPANY OVERVIEW

25.20.2 REVENUE ANALYSIS

25.20.3 PRODUCT PORTFOLIO

25.20.4 RECENT DEVELOPMENTS

25.21 DEEPMATTER GROUP LIMITED

25.21.1 COMPANY OVERVIEW

25.21.2 REVENUE ANALYSIS

25.21.3 PRODUCT PORTFOLIO

25.21.4 RECENT DEVELOPMENTS

25.22 MABSILICO.

25.22.1 COMPANY OVERVIEW

25.22.2 REVENUE ANALYSIS

25.22.3 PRODUCT PORTFOLIO

25.22.4 RECENT DEVELOPMENTS

25.23 OPTIBRIUM, LTD.

25.23.1 COMPANY OVERVIEW

25.23.2 REVENUE ANALYSIS

25.23.3 PRODUCT PORTFOLIO

25.23.4 RECENT DEVELOPMENTS

25.24 ABBVIE AND BIGHAT BIOSCIENCES

25.24.1 COMPANY OVERVIEW

25.24.2 REVENUE ANALYSIS

25.24.3 PRODUCT PORTFOLIO

25.24.4 RECENT DEVELOPMENTS

25.25 ADAGENE

25.25.1 COMPANY OVERVIEW

25.25.2 REVENUE ANALYSIS

25.25.3 PRODUCT PORTFOLIO

25.25.4 RECENT DEVELOPMENTS

25.26 PEPTICOM LTD.

25.26.1 COMPANY OVERVIEW

25.26.2 REVENUE ANALYSIS

25.26.3 PRODUCT PORTFOLIO

25.26.4 RECENT DEVELOPMENTS

25.27 DEARGEN INC.

25.27.1 COMPANY OVERVIEW

25.27.2 REVENUE ANALYSIS

25.27.3 PRODUCT PORTFOLIO

25.27.4 RECENT DEVELOPMENTS

25.28 GERO.AI

25.28.1 COMPANY OVERVIEW

25.28.2 REVENUE ANALYSIS

25.28.3 PRODUCT PORTFOLIO

25.28.4 RECENT DEVELOPMENTS

25.29 3BIGS CO. LTD.

25.29.1 COMPANY OVERVIEW

25.29.2 REVENUE ANALYSIS

25.29.3 PRODUCT PORTFOLIO

25.29.4 RECENT DEVELOPMENTS

25.3 BPGBIO INC.

25.30.1 COMPANY OVERVIEW

25.30.2 REVENUE ANALYSIS

25.30.3 PRODUCT PORTFOLIO

25.30.4 RECENT DEVELOPMENTS

25.31 SCHRÖDINGER, INC.

25.31.1 COMPANY OVERVIEW

25.31.2 REVENUE ANALYSIS

25.31.3 PRODUCT PORTFOLIO

25.31.4 RECENT DEVELOPMENTS

25.32 XTALPI INC.

25.32.1 COMPANY OVERVIEW

25.32.2 REVENUE ANALYSIS

25.32.3 PRODUCT PORTFOLIO

25.32.4 RECENT DEVELOPMENTS

25.33 BIOAGE INC.

25.33.1 COMPANY OVERVIEW

25.33.2 REVENUE ANALYSIS

25.33.3 PRODUCT PORTFOLIO

25.33.4 RECENT DEVELOPMENTS

26 RELATED REPORTS

27 QUESTIONNAIRE

28 CONCLUSION

29 ABOUT DATA BRIDGE MARKET RESEARCH

Ver información detallada Right Arrow

Metodología de investigación

La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.

La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.

Personalización disponible

Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados ​​en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

Preguntas frecuentes

The global artificial intelligence (ai) in drug discovery market size was valued at USD 981.64 million in 2024.
The global artificial intelligence (ai) in drug discovery market is to grow at a CAGR of 5.30 % during the forecast period of 2025 to 2032.
The artificial intelligence (ai) in drug discovery market is segmented on the basis of application, technology, drug type, offering, indication, and end use. On the basis of application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation and qualification of hypotheses, de novo drug design, finding drug targets of an old drug and others. On the basis of technology, the market is segmented into machine learning, deep learning, natural language processing, and others. On the basis of drug type, the market is segmented into small molecule and large molecule. On the basis of offering, the market is segmented into software and services. On the basis of indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others. On the basis of end use, the market is segmented into direct contract research organizations (CROS), pharmaceutical and biotechnology companies, research centers and academic institutes, and others.
Companies such as NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.) are the major companies in the artificial intelligence (ai) in drug discovery market.
In January 2025, Bausch + Lomb Corporation, a global leader in eye health, has announced the commercial launch of its enVista Aspire monofocal and toric intraocular lenses (IOLs) in the European Union, following the receipt of a CE Mark. In September 2024, Haag-Streit announced the launch of METIS, its cutting-edge ophthalmic microscope system, which brings superior optical performance into the operating room with exceptional clarity, a brilliant coaxial red reflex, and optimized optics for precise color reproduction, high light transmission, and an expansive depth of field, making it ideal for delicate ophthalmic procedures. It will be officially launched in Q1 2025
The countries covered in the artificial intelligence (ai) in drug discovery market are U.S., Canada, Mexico, Germany, France, U.K., Italy, Spain, Russia, Turkey, Netherlands, Switzerland, Austria, Poland, Norway, Ireland, Hungary, Lithuania, rest of Europe, China, Japan, India, South Korea, Australia, Taiwan, Philippines, Thailand, Malaysia, Vietnam, Indonesia, Singapore, rest of Asia-Pacific, Brazil, Argentina, Chili, Colombia, Peru, Venezuela, Ecuador, Uruguay, Paraguay ,Bolivia, Trinidad And Tobago, Curaçao, rest Of South America, South Africa, Saudi Arabia, U.A.E, Egypt, Israel, Kuwait, rest of Middle East and Africa, Guatemala, Costa Rica, Honduras, EL Salvador, Nicaragua, and rest of Central America.
The Asia-Pacific (APAC) region is projected to be the fastest-growing market for artificial intelligence (AI) in drug discovery, with a notable compound annual growth rate (CAGR) expected in the coming years. This growth is driven by increasing investments in healthcare infrastructure, rising adoption of AI technologies, and a growing focus on drug discovery and development in the region.
U.S. is expected to dominate the artificial intelligence (AI) in drug discovery market. This is due to its well-established pharmaceutical and biotechnology sectors, significant investments in AI research, and strong collaborations between tech companies and healthcare organizations.
North America holds the largest share in the global artificial intelligence (AI) in drug discovery market. This dominance is attributed to its well-established pharmaceutical industry, significant investments in AI research, and the presence of leading pharmaceutical and biotechnology companies.
China, is expected to witness the highest compound annual growth rate (CAGR) in the artificial intelligence (AI) in drug discovery market. This growth is driven by increasing investments in AI technologies, expanding pharmaceutical industries, and government initiatives supporting innovation in healthcare.
AI-Driven innovations revolutionizing drug discovery, is emerging as a pivotal trend driving the global artificial intelligence (AI) in drug discovery market.
The major factors driving the growth of the artificial intelligence (ai) in drug discovery market is rising R&D investments in pharmaceutical industry.
The primary challenges include high initial investment costs.
The oncology segment is currently dominating the artificial intelligence (AI) in drug discovery market.
Testimonial