Global Artificial Intelligence Ai In Drug Discovery Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%
USD
981.64 Million
USD
1,483.82 Million
2024
2032
| 2025 –2032 | |
| USD 981.64 Million | |
| USD 1,483.82 Million | |
|
|
|
Segmentación del mercado global de inteligencia artificial (IA) en el descubrimiento de fármacos, por aplicación (nuevos fármacos candidatos, optimización y reutilización de fármacos, pruebas preclínicas y aprobación, monitorización de fármacos, búsqueda de nuevas dianas y vías de acción asociadas a enfermedades, comprensión de los mecanismos de las enfermedades, agregación y síntesis de información, formulación y calificación de hipótesis, diseño de fármacos de novo, búsqueda de dianas farmacológicas de un fármaco antiguo, etc.), tecnología (aprendizaje automático, aprendizaje profundo, procesamiento del lenguaje natural, etc.), tipo de fármaco (molécula pequeña y molécula grande), oferta (software y servicios), indicación (inmuno-oncología, enfermedades neurodegenerativas, enfermedades cardiovasculares, enfermedades metabólicas, etc.), uso final (organizaciones de investigación por contrato [CRO], empresas farmacéuticas y biotecnológicas, centros de investigación e institutos académicos, etc.): tendencias del sector y pronóstico hasta 2032.
Inteligencia artificial (IA) en el tamaño del mercado de descubrimiento de fármacos
- El mercado global de inteligencia artificial (IA) en el descubrimiento de fármacos se valoró en USD 981,64 millones en 2024 y se espera que alcance los USD 1483,82 millones para 2032.
- Durante el período de pronóstico de 2025 a 2032, es probable que el mercado crezca a una CAGR del 5,30 %, impulsado principalmente por la creciente disponibilidad de datos de atención médica.
- Este crecimiento está impulsado por factores como la creciente prevalencia de enfermedades crónicas y los avances en las tecnologías de IA que mejoran los procesos de descubrimiento de fármacos.
Análisis del mercado de la inteligencia artificial (IA) en el descubrimiento de fármacos
- El mercado está experimentando un rápido crecimiento, impulsado por los avances en tecnologías de IA como el aprendizaje automático y el aprendizaje profundo, que están agilizando los procesos de descubrimiento de fármacos y reduciendo los costos.
- La IA se está adoptando ampliamente para la optimización de fármacos, la reutilización, las pruebas preclínicas y el diseño de ensayos clínicos, lo que acelera significativamente el cronograma de desarrollo de fármacos.
- América del Norte lidera el mercado debido a su fuerte sector farmacéutico, mientras que se espera que la región de Asia y el Pacífico crezca rápidamente, impulsada por mayores inversiones en investigación y desarrollo.
Por ejemplo, se están utilizando tecnologías de IA como el aprendizaje automático y el aprendizaje profundo para predecir las tasas de éxito en ensayos clínicos, optimizar fármacos candidatos e identificar nuevos objetivos terapéuticos, reduciendo significativamente el tiempo y el costo del desarrollo de fármacos.
- La adopción de IA en el descubrimiento de fármacos está revolucionando la industria farmacéutica al abordar desafíos como los altos costos, los plazos prolongados y las bajas tasas de éxito en los procesos tradicionales de desarrollo de fármacos.
Alcance del informe y segmentación del mercado de inteligencia artificial (IA) en el descubrimiento de fármacos
|
Atributos |
Inteligencia artificial (IA) en el descubrimiento de fármacos: Perspectivas clave del mercado |
|
Segmentos cubiertos |
|
|
Países cubiertos |
América del norte
Europa
Asia-Pacífico
Oriente Medio y África
Sudamerica
|
|
Actores clave del mercado |
|
|
Oportunidades de mercado |
|
|
Conjuntos de información de datos de valor añadido |
Además de los conocimientos sobre escenarios de mercado como valor de mercado, tasa de crecimiento, segmentación, cobertura geográfica y actores principales, los informes de mercado seleccionados por Data Bridge Market Research también incluyen análisis de importación y exportación, descripción general de la capacidad de producción, análisis del consumo de producción, análisis de tendencias de precios, escenario de cambio climático, análisis de la cadena de suministro, análisis de la cadena de valor, descripción general de materias primas/consumibles, criterios de selección de proveedores, análisis PESTLE, análisis de Porter y marco regulatorio. |
Tendencias del mercado de la inteligencia artificial (IA) en el descubrimiento de fármacos
Innovaciones impulsadas por IA que revolucionan el descubrimiento de fármacos
- Una tendencia destacada en el mercado de IA en el descubrimiento de fármacos es la creciente adopción de tecnologías de aprendizaje automático y aprendizaje profundo para agilizar los procesos de desarrollo de fármacos .
- Estas tecnologías avanzadas mejoran la eficiencia y la precisión del descubrimiento de fármacos al analizar grandes conjuntos de datos, predecir las propiedades de unión de moléculas e identificar posibles fármacos candidatos.
- Por ejemplo, se están utilizando plataformas impulsadas por IA para reutilizar medicamentos existentes en nuevas áreas terapéuticas, lo que reduce significativamente el tiempo y el costo asociados con los métodos tradicionales de descubrimiento de fármacos.
- La integración de IA también permite un mejor diseño de ensayos clínicos al predecir las tasas de éxito e identificar las poblaciones de pacientes, mejorando el éxito general del desarrollo de medicamentos.
- Esta tendencia está transformando la industria farmacéutica, acelerando el desarrollo de terapias innovadoras y abordando necesidades médicas no satisfechas, impulsando así la demanda de soluciones impulsadas por IA en el mercado.
Inteligencia artificial (IA) en la dinámica del mercado de descubrimiento de fármacos
Conductor
Aumento de las inversiones en I+D en la industria farmacéutica
- Las compañías farmacéuticas están aumentando sus presupuestos de I+D para desarrollar nuevos medicamentos y terapias, garantizando así su competitividad y satisfaciendo las cambiantes necesidades de los pacientes.
- Las herramientas de IA se integran en los procesos de I+D para mejorar el descubrimiento de fármacos, lo que permite una identificación más rápida de fármacos candidatos, mejora las tasas de éxito y optimiza la investigación en etapa inicial.
- La IA permite un cribado de alto rendimiento, acelerando significativamente el proceso de prueba de compuestos e identificando candidatos prometedores para un mayor desarrollo.
- La IA puede procesar grandes conjuntos de datos de genómica, ensayos clínicos y demografía de pacientes para descubrir patrones ocultos, acelerando la identificación de nuevos objetivos terapéuticos.
- Con algoritmos de IA que optimizan el reclutamiento de pacientes y el diseño de ensayos, las compañías farmacéuticas pueden realizar ensayos clínicos más eficientes, reduciendo tiempos y costos.
Por ejemplo,
- Sanofi se asoció con Exscientia y utilizó IA para diseñar nuevos fármacos candidatos, acelerando así su camino hacia los ensayos clínicos. En una de sus colaboraciones, identificaron un fármaco prometedor para el tratamiento de enfermedades autoinmunes en mucho menos tiempo del que habrían tardado los métodos tradicionales.
- GlaxoSmithKline (GSK) y 24M están trabajando juntos para aplicar IA para optimizar el proceso de I+D, incluida la identificación de nuevos objetivos farmacológicos y la aceleración del desarrollo de nuevas terapias, por ejemplo para enfermedades raras.
- Las crecientes inversiones en I+D, junto con el poder de la IA, están mejorando significativamente la capacidad de la industria farmacéutica para descubrir nuevos medicamentos con mayor rapidez, de forma más rentable y con mayor precisión.
Oportunidad
Modelado predictivo mejorado para ensayos clínicos
- La IA puede optimizar los diseños de ensayos clínicos al identificar los parámetros de ensayo más adecuados, como el tamaño de la muestra, los puntos finales y los regímenes de tratamiento, lo que conduce a estudios más eficientes y efectivos.
- Al analizar los registros médicos electrónicos y otros datos, la IA puede ayudar a identificar a los pacientes adecuados para los ensayos clínicos según criterios de inclusión y exclusión específicos, mejorando la velocidad y la precisión del reclutamiento.
- Los modelos de IA pueden predecir el probable éxito o fracaso de un ensayo clínico basándose en datos históricos e información en tiempo real, lo que permite realizar ajustes tempranos en los protocolos del ensayo y aumentar las posibilidades de éxito.
- Al utilizar análisis predictivos, la IA puede identificar a los pacientes en riesgo de abandonar el estudio y sugerir intervenciones para mantenerlos interesados, reduciendo así el número de ensayos incompletos.
- La capacidad de la IA para agilizar el proceso de ensayos clínicos, desde la selección de los participantes hasta la predicción de resultados, puede reducir significativamente los costos asociados con los métodos de ensayo tradicionales.
Por ejemplo,
- Pfizer utilizó IA en colaboración con IBM Watson Health para mejorar el reclutamiento de participantes en ensayos clínicos y optimizar el diseño de los ensayos para el desarrollo de un tratamiento para enfermedades raras. Su enfoque basado en IA ayudó a acelerar el reclutamiento y a mejorar los resultados de los ensayos.
- Novartis empleó IA para predecir las respuestas de los pacientes y optimizar el diseño de ensayos clínicos para sus tratamientos de terapia génica. Este enfoque basado en IA resultó en terapias más específicas y ensayos clínicos más eficientes.
- La capacidad de la IA para mejorar el modelado predictivo en ensayos clínicos ofrece ventajas significativas, incluidos diseños de ensayos más eficientes, reclutamiento más rápido de pacientes, costos reducidos y mejores resultados de los ensayos, lo que en última instancia acelera el desarrollo de nuevos tratamientos.
Restricción/Desafío
“Altos costos de inversión inicial”
- Las herramientas impulsadas por IA requieren una infraestructura tecnológica costosa, que incluye sistemas informáticos potentes, soluciones de almacenamiento de datos y software especializado, lo que hace que la inversión inicial sea elevada.
- Reclutar profesionales calificados, como científicos de datos, expertos en IA e investigadores biofarmacéuticos con conocimientos tanto en IA como en descubrimiento de fármacos, es costoso y aumenta la carga financiera de implementar IA en I+D.
- La integración de herramientas de IA en los flujos de trabajo de descubrimiento de fármacos existentes, especialmente en sistemas heredados, exige importantes recursos financieros para la adaptación, la capacitación y la optimización.
- Las tecnologías de IA requieren mantenimiento continuo, actualizaciones de software y mejoras de hardware para mantenerse al día con los avances en aprendizaje automático y análisis de datos, lo que contribuye a los costos operativos a largo plazo.
- Los sistemas de IA para el descubrimiento de fármacos dependen de grandes conjuntos de datos de alta calidad, y adquirir o licenciar dichos conjuntos de datos puede resultar costoso para empresas pequeñas o nuevas, lo que aumenta aún más el costo de la implementación de la IA.
Por ejemplo,
- BenevolentAI realizó una importante inversión en plataformas de descubrimiento de fármacos basadas en IA y en su experiencia para optimizar el proceso de desarrollo de fármacos, centrándose en la oncología. A pesar de la elevada inversión inicial, su enfoque ha permitido un descubrimiento de fármacos más rápido y con mejores tasas de éxito.
- Insilico Medicine , una startup que aprovecha la IA para el descubrimiento de fármacos, requirió una inversión inicial significativa para construir su plataforma impulsada por IA, lo que les permitió acelerar el desarrollo de fármacos para enfermedades como la fibrosis y el cáncer, pero los costos eran altos y difíciles de igualar para los competidores más pequeños.
- Los elevados costes iniciales de inversión en IA para el descubrimiento de fármacos suponen una barrera para las pequeñas empresas y las startups, lo que limita su capacidad para competir con organizaciones más grandes que pueden permitirse estas tecnologías. Superar este reto puede requerir modelos de financiación innovadores o colaboraciones para que la IA sea más accesible a un mayor número de actores de la industria farmacéutica.
Alcance del mercado de la inteligencia artificial (IA) en el descubrimiento de fármacos
El mercado está segmentado según la aplicación, el tipo de producto, la tecnología, el tipo de aumento, el usuario final y el canal de distribución.
|
Segmentación |
Subsegmentación |
|
Por aplicación |
|
|
Por tecnología |
|
|
Por tipo de fármaco |
|
|
Ofreciendo |
|
|
Por indicación |
|
|
Por uso final
|
|
Análisis regional del mercado de inteligencia artificial (IA) en el descubrimiento de fármacos
Norteamérica es la región dominante en el mercado de la inteligencia artificial (IA) para el descubrimiento de fármacos.
- América del Norte domina el mercado de inteligencia artificial (IA) en el descubrimiento de fármacos , impulsada por una infraestructura de atención médica avanzada, una alta adopción de tecnologías médicas de vanguardia y una fuerte presencia de actores clave del mercado.
- Estados Unidos alberga algunas de las compañías farmacéuticas más grandes, como Pfizer , Johnson & Johnson , Merck y Eli Lilly , que están a la vanguardia en la adopción de la IA para el descubrimiento de fármacos. Estas empresas están invirtiendo fuertemente en IA para optimizar el proceso de desarrollo de fármacos y mejorar los resultados.
- Norteamérica cuenta con un ecosistema tecnológico consolidado, con importantes actores de IA como IBM Watson Health y Google DeepMind que impulsan la innovación en el descubrimiento de fármacos. Estas empresas son líderes en investigación de IA y proporcionan potentes herramientas de IA para la I+D farmacéutica.
- América del Norte invierte constantemente una parte significativa de su PIB en investigación y desarrollo (I+D). Esta financiación impulsa la adopción de tecnologías avanzadas de IA en el descubrimiento de fármacos, ya que las empresas buscan maneras de acelerar el descubrimiento de nuevos fármacos y tratamientos.
- En Norteamérica se han establecido numerosas alianzas entre compañías farmacéuticas y startups o empresas tecnológicas de IA. Por ejemplo, colaboraciones como la de Novartis con Microsoft para usar la IA en el descubrimiento de fármacos destacan el liderazgo de la región en el uso de la IA para innovar en el desarrollo de fármacos.
Se proyecta que Asia-Pacífico registre la mayor tasa de crecimiento.
- Se espera que la región de Asia y el Pacífico sea testigo de la mayor tasa de crecimiento en Inteligencia Artificial (IA) en el descubrimiento de fármacos , impulsada por la rápida expansión en la infraestructura de atención médica, la creciente conciencia sobre la salud ocular y el aumento de los volúmenes quirúrgicos.
- Países como China , India y Japón están invirtiendo fuertemente en IA y biotecnología con el objetivo de fortalecer sus sectores farmacéuticos y abordar las crecientes necesidades de atención médica. Estas inversiones están acelerando la adopción de la IA en el descubrimiento de fármacos.
- Los gobiernos de la región APAC promueven activamente la atención médica digital y la integración de la IA mediante diversas iniciativas. Por ejemplo, China ha implementado estrategias nacionales para incorporar la IA en la atención médica, impulsando así su crecimiento en el descubrimiento de fármacos.
- Los países de Asia-Pacífico (APAC) cuentan con grandes poblaciones y una vasta cantidad de datos sanitarios que pueden aprovecharse para el descubrimiento de fármacos mediante IA. La robusta infraestructura digital de la región facilita la integración de tecnologías de IA para el desarrollo de fármacos.
- La región Asia-Pacífico (APAC) es la de más rápido crecimiento en el mercado de IA en el descubrimiento de fármacos, impulsada por el aumento de las inversiones, políticas gubernamentales de apoyo, un gran conjunto de datos y la expansión de empresas de biotecnología que aprovechan la tecnología de IA.
Cuota de mercado de la inteligencia artificial (IA) en el descubrimiento de fármacos
El panorama competitivo del mercado ofrece detalles por competidor. Se incluye información general de la empresa, sus estados financieros, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, plantas de producción, capacidad de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, alcance y variedad de productos, y dominio de las aplicaciones. Los datos anteriores se refieren únicamente al enfoque de mercado de las empresas.
Los principales líderes del mercado que operan en el mercado son:
- NVIDIA Corporation (EE. UU.)
- IBM Corp. (EE. UU.)
- Atomwise Inc. (EE. UU.)
- Microsoft (EE. UU.)
- Benevolent AI (Reino Unido)
- Aria Pharmaceuticals, Inc. (EE. UU.)
- GENÓMICA PROFUNDA (Canadá)
- Exscientia (Reino Unido)
- Medicina Insilico (Hong Kong)
- Cyclica (Canadá)
- NuMedii, Inc. (EE. UU.)
- Envisagenics (EE. UU.)
- Owkin Inc. (EE. UU.)
- BERG LLC (EE. UU.)
- Schrödinger, Inc. (EE. UU.)
- XtalPi Inc. (China)
- BIOAGE Inc. (EE. UU.)
Últimos avances en inteligencia artificial (IA) global en el mercado de descubrimiento de fármacos
- En mayo de 2024, Google DeepMind presentó la tercera versión de su modelo de IA AlphaFold, diseñado para optimizar el desarrollo de fármacos y la focalización de enfermedades. Esta versión avanzada permite a los investigadores de DeepMind e Isomorphic Labs analizar el comportamiento de todas las moléculas, incluido el ADN humano.
- En abril de 2024, Xaira Therapeutics, una empresa innovadora especializada en el descubrimiento y desarrollo de fármacos con inteligencia artificial, obtuvo más de un millón de dólares durante una ronda de financiación colaborativa con ARCH Venture Partners y Foresite Labs. Mediante el aprendizaje automático, modelos de generación de datos y el desarrollo de productos terapéuticos, la empresa se centra en abordar dianas farmacológicas que tradicionalmente han sido difíciles de abordar.
- En diciembre de 2023, MilliporeSigma, la división de ciencias de la vida de Merck, lanzó AIDDISON, un software de vanguardia para el descubrimiento de fármacos. Esta plataforma conecta el diseño de moléculas virtuales con la fabricación en el mundo real mediante la integración de la API del software de retrosíntesis Synthia. Combina inteligencia artificial generativa, aprendizaje automático y diseño de fármacos asistido por computadora para optimizar los procesos de desarrollo de fármacos.
- En mayo de 2023, Google lanzó dos innovadoras herramientas basadas en IA para ayudar a las empresas biotecnológicas y farmacéuticas a acelerar el descubrimiento de fármacos y perfeccionar la medicina de precisión. Estas soluciones están diseñadas para reducir el tiempo y los gastos que supone la introducción de nuevos tratamientos en el mercado estadounidense. Entre las primeras empresas en adoptar estas herramientas se encuentran Cerevel Therapeutics, Pfizer y Colossal Biosciences .
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Tabla de contenido
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 MARKETS COVERED
2.5 GEOGRAPHIC SCOPE
2.6 YEARS CONSIDERED FOR THE STUDY
2.7 RESEARCH METHODOLOGY
2.8 TECHNOLOGY LIFE LINE CURVE
2.9 MULTIVARIATE MODELLING
2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.11 DBMR MARKET POSITION GRID
2.12 MARKET APPLICATION COVERAGE GRID
2.13 DBMR MARKET CHALLENGE MATRIX
2.14 SECONDARY SOURCES
2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT
2.16 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 PESTEL ANALYSIS
5.2 PORTER’S FIVE FORCES MODEL
6 INDUSTRY INSIGHTS
6.1 MICRO AND MACRO ECONOMIC FACTORS
6.2 PENETRATION AND GROWTH PROSPECT MAPPING
6.3 KEY PRICING STRATEGIES
6.4 INTERVIEWS WITH SPECIALIST
6.5 ANALYIS AND RECOMMENDATION
7 INTELLECTUAL PROPERTY (IP) PORTFOLIO
7.1 PATENT QUALITY AND STRENGTH
7.2 PATENT FAMILIES
7.3 LICENSING AND COLLABORATIONS
7.4 COMPETITIVE LANDSCAPE
7.5 IP STRATEGY AND MANAGEMENT
7.6 OTHER
8 COST ANALYSIS BREAKDOWN
9 TECHNONLOGY ROADMAP
10 INNOVATION TRACKER AND STRATEGIC ANALYSIS
10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS
10.1.1 JOINT VENTURES
10.1.2 MERGERS AND ACQUISITIONS
10.1.3 LICENSING AND PARTNERSHIP
10.1.4 TECHNOLOGY COLLABORATIONS
10.1.5 STRATEGIC DIVESTMENTS
10.2 NUMBER OF PRODUCTS IN DEVELOPMENT
10.3 STAGE OF DEVELOPMENT
10.4 TIMELINES AND MILESTONES
10.5 INNOVATION STRATEGIES AND METHODOLOGIES
10.6 RISK ASSESSMENT AND MITIGATION
10.7 FUTURE OUTLOOK
11 REGULATORY COMPLIANCE
11.1 REGULATORY AUTHORITIES
11.2 REGULATORY CLASSIFICATIONS
11.2.1 CLASS I
11.2.2 CLASS II
11.2.3 CLASS III
11.3 REGULATORY SUBMISSIONS
11.4 INTERNATIONAL HARMONIZATION
11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS
11.6 REGULATORY CHALLENGES AND STRATEGIES
12 REIMBURSEMENT FRAMEWORK
13 OPPUTUNITY MAP ANALYSIS
14 VALUE CHAIN ANALYSIS
15 HEALTHCARE ECONOMY
15.1 HEALTHCARE EXPENDITURE
15.2 CAPITAL EXPENDITURE
15.3 CAPEX TRENDS
15.4 CAPEX ALLOCATION
15.5 FUNDING SOURCES
15.6 INDUSTRY BENCHMARKS
15.7 GDP RATION IN OVERALL GDP
15.8 HEALTHCARE SYSTEM STRUCTURE
15.9 GOVERNMENT POLICIES
15.1 ECONOMIC DEVELOPMENT
16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
16.1 OVERVIEW
16.2 SOFTWARE
16.2.1 INTEGRATED
16.2.2 STANDALONE
16.3 SERVICES
17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
17.1 OVERVIEW
17.2 MACHINE LEARNING (ML)
17.2.1 SUPERVISED LEARNING
17.2.2 UNSUPERVISED LEARNING
17.2.3 REINFORCEMENT LEARNING
17.3 DEEP LEARNING
17.4 NATURAL LANGUAGE PROCESSING (NLP)
17.5 OTHERS
18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE
18.1 OVERVIEW
18.2 SMALL MOLECULE
18.3 LARGE MOLECULE
19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
19.1 OVERVIEW
19.2 NOVEL DRUG CANDIDATES
19.2.1 IDENTIFY BIOLOGICS TARGET
19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE
19.2.3 OTHERS
19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL
19.4 DRUG MONITORING
19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS
19.6 UNDERSTANDING DISEASE MECHANISMS
19.7 AGGREGATING AND SYNTHESIZING INFORMATION
19.8 FORM ATION & QUALIFICATION OF HYPOTHESES
19.9 DE NOVO DRUG DESIGN
19.1 FINDING DRUG TARGETS OF AN OLD DRUG
19.11 OTHERS
20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
20.1 OVERVIEW
20.2 IMMUNO-ONCOLOGY
20.2.1 PROSTATE CANCER
20.2.2 BREAST CANCER
20.2.3 BRAIN CANCER
20.2.4 LUNG CANCER
20.2.5 PANCREATIC CANCER
20.2.6 COLORECTAL CANCER
20.2.7 LEUKEMIA
20.2.8 OTHERS
20.3 NEURODEGENERATIVE DISEASES
20.4 CARDIOVASCULAR DISEASES
20.5 METABOLIC DISEASES
20.6 OTHERS
21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER
21.1 OVERVIEW
21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
21.3 CONTRACT RESEARCH ORGANIZATIONS
21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES
21.5 OTHERS
22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)
GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
22.1 OVERVIEW
22.2 NORTH AMERICA
22.2.1 U.S.
22.2.2 CANADA
22.2.3 MEXICO
22.3 EUROPE
22.3.1 GERMANY
22.3.2 U.K.
22.3.3 ITALY
22.3.4 FRANCE
22.3.5 SPAIN
22.3.6 SWITZERLAND
22.3.7 RUSSIA
22.3.8 TURKEY
22.3.9 BELGIUM
22.3.10 NETHERLANDS
22.3.11 REST OF EUROPE
22.4 ASIA-PACIFIC
22.4.1 JAPAN
22.4.2 CHINA
22.4.3 SOUTH KOREA
22.4.4 INDIA
22.4.5 AUSTRALIA & NEW ZEALAND
22.4.6 SINGAPORE
22.4.7 THAILAND
22.4.8 INDONESIA
22.4.9 MALAYSIA
22.4.10 PHILIPPINES
22.4.11 REST OF ASIA-PACIFIC
22.5 SOUTH AMERICA
22.5.1 BRAZIL
22.5.2 ARGENTINA
22.5.3 REST OF SOUTH AMERICA
22.6 MIDDLE EAST AND AFRICA
22.6.1 SOUTH AFRICA
22.6.2 EGYPT
22.6.3 SAUDI ARABIA
22.6.4 UNITED ARAB EMIRATES
22.6.5 ISRAEL
22.6.6 REST OF MIDDLE EAST AND AFRICA
23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE
23.1 COMPANY SHARE ANALYSIS: GLOBAL
23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
23.3 COMPANY SHARE ANALYSIS: EUROPE
23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
23.5 MERGERS & ACQUISITIONS
23.6 NEW PRODUCT DEVELOPMENT & APPROVALS
23.7 EXPANSIONS
23.8 REGULATORY CHANGES
23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES
24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS
25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE
25.1 MICROSOFT
25.1.1 COMPANY OVERVIEW
25.1.2 REVENUE ANALYSIS
25.1.3 PRODUCT PORTFOLIO
25.1.4 RECENT DEVELOPMENTS
25.2 SHANGHAI MEDICILON INC.
25.2.1 COMPANY OVERVIEW
25.2.2 REVENUE ANALYSIS
25.2.3 PRODUCT PORTFOLIO
25.2.4 RECENT DEVELOPMENTS
25.3 NVIDIA CORPORATION + ASTRAZENECA
25.3.1 COMPANY OVERVIEW
25.3.2 REVENUE ANALYSIS
25.3.3 PRODUCT PORTFOLIO
25.3.4 RECENT DEVELOPMENTS
25.4 ATOMWISE INC.
25.4.1 COMPANY OVERVIEW
25.4.2 REVENUE ANALYSIS
25.4.3 PRODUCT PORTFOLIO
25.4.4 RECENT DEVELOPMENTS
25.5 DEEP GENOMICS
25.5.1 COMPANY OVERVIEW
25.5.2 REVENUE ANALYSIS
25.5.3 PRODUCT PORTFOLIO
25.5.4 RECENT DEVELOPMENTS
25.6 CLOUD PHARMACEUTICALS INC.
25.6.1 COMPANY OVERVIEW
25.6.2 REVENUE ANALYSIS
25.6.3 PRODUCT PORTFOLIO
25.6.4 RECENT DEVELOPMENTS
25.7 INSILICO MEDICINE
25.7.1 COMPANY OVERVIEW
25.7.2 REVENUE ANALYSIS
25.7.3 PRODUCT PORTFOLIO
25.7.4 RECENT DEVELOPMENTS
25.8 BENEVOLENTAI
25.8.1 COMPANY OVERVIEW
25.8.2 REVENUE ANALYSIS
25.8.3 PRODUCT PORTFOLIO
25.8.4 RECENT DEVELOPMENTS
25.9 EXSCIENTIA
25.9.1 COMPANY OVERVIEW
25.9.2 REVENUE ANALYSIS
25.9.3 PRODUCT PORTFOLIO
25.9.4 RECENT DEVELOPMENTS
25.1 CYCLICA
25.10.1 COMPANY OVERVIEW
25.10.2 REVENUE ANALYSIS
25.10.3 PRODUCT PORTFOLIO
25.10.4 RECENT DEVELOPMENTS
25.11 OWKIN, INC
25.11.1 COMPANY OVERVIEW
25.11.2 REVENUE ANALYSIS
25.11.3 PRODUCT PORTFOLIO
25.11.4 RECENT DEVELOPMENTS
25.12 ENVISAGENICS
25.12.1 COMPANY OVERVIEW
25.12.2 REVENUE ANALYSIS
25.12.3 PRODUCT PORTFOLIO
25.12.4 RECENT DEVELOPMENTS
25.13 NUMEDII, INC.
25.13.1 COMPANY OVERVIEW
25.13.2 REVENUE ANALYSIS
25.13.3 PRODUCT PORTFOLIO
25.13.4 RECENT DEVELOPMENTS
25.14 BIOSYNTAGMA
25.14.1 COMPANY OVERVIEW
25.14.2 REVENUE ANALYSIS
25.14.3 PRODUCT PORTFOLIO
25.14.4 RECENT DEVELOPMENTS
25.15 COLLABORATIONS PHARMACEUTICALS, INC.
25.15.1 COMPANY OVERVIEW
25.15.2 REVENUE ANALYSIS
25.15.3 PRODUCT PORTFOLIO
25.15.4 RECENT DEVELOPMENTS
25.16 INVENIAI LLC
25.16.1 COMPANY OVERVIEW
25.16.2 REVENUE ANALYSIS
25.16.3 PRODUCT PORTFOLIO
25.16.4 RECENT DEVELOPMENTS
25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION
25.17.1 COMPANY OVERVIEW
25.17.2 REVENUE ANALYSIS
25.17.3 PRODUCT PORTFOLIO
25.17.4 RECENT DEVELOPMENTS
25.18 VALO HEALTH
25.18.1 COMPANY OVERVIEW
25.18.2 REVENUE ANALYSIS
25.18.3 PRODUCT PORTFOLIO
25.18.4 RECENT DEVELOPMENTS
25.19 AIFORIA
25.19.1 COMPANY OVERVIEW
25.19.2 REVENUE ANALYSIS
25.19.3 PRODUCT PORTFOLIO
25.19.4 RECENT DEVELOPMENTS
25.2 CHEMALIVE
25.20.1 COMPANY OVERVIEW
25.20.2 REVENUE ANALYSIS
25.20.3 PRODUCT PORTFOLIO
25.20.4 RECENT DEVELOPMENTS
25.21 DEEPMATTER GROUP LIMITED
25.21.1 COMPANY OVERVIEW
25.21.2 REVENUE ANALYSIS
25.21.3 PRODUCT PORTFOLIO
25.21.4 RECENT DEVELOPMENTS
25.22 MABSILICO.
25.22.1 COMPANY OVERVIEW
25.22.2 REVENUE ANALYSIS
25.22.3 PRODUCT PORTFOLIO
25.22.4 RECENT DEVELOPMENTS
25.23 OPTIBRIUM, LTD.
25.23.1 COMPANY OVERVIEW
25.23.2 REVENUE ANALYSIS
25.23.3 PRODUCT PORTFOLIO
25.23.4 RECENT DEVELOPMENTS
25.24 ABBVIE AND BIGHAT BIOSCIENCES
25.24.1 COMPANY OVERVIEW
25.24.2 REVENUE ANALYSIS
25.24.3 PRODUCT PORTFOLIO
25.24.4 RECENT DEVELOPMENTS
25.25 ADAGENE
25.25.1 COMPANY OVERVIEW
25.25.2 REVENUE ANALYSIS
25.25.3 PRODUCT PORTFOLIO
25.25.4 RECENT DEVELOPMENTS
25.26 PEPTICOM LTD.
25.26.1 COMPANY OVERVIEW
25.26.2 REVENUE ANALYSIS
25.26.3 PRODUCT PORTFOLIO
25.26.4 RECENT DEVELOPMENTS
25.27 DEARGEN INC.
25.27.1 COMPANY OVERVIEW
25.27.2 REVENUE ANALYSIS
25.27.3 PRODUCT PORTFOLIO
25.27.4 RECENT DEVELOPMENTS
25.28 GERO.AI
25.28.1 COMPANY OVERVIEW
25.28.2 REVENUE ANALYSIS
25.28.3 PRODUCT PORTFOLIO
25.28.4 RECENT DEVELOPMENTS
25.29 3BIGS CO. LTD.
25.29.1 COMPANY OVERVIEW
25.29.2 REVENUE ANALYSIS
25.29.3 PRODUCT PORTFOLIO
25.29.4 RECENT DEVELOPMENTS
25.3 BPGBIO INC.
25.30.1 COMPANY OVERVIEW
25.30.2 REVENUE ANALYSIS
25.30.3 PRODUCT PORTFOLIO
25.30.4 RECENT DEVELOPMENTS
25.31 SCHRÖDINGER, INC.
25.31.1 COMPANY OVERVIEW
25.31.2 REVENUE ANALYSIS
25.31.3 PRODUCT PORTFOLIO
25.31.4 RECENT DEVELOPMENTS
25.32 XTALPI INC.
25.32.1 COMPANY OVERVIEW
25.32.2 REVENUE ANALYSIS
25.32.3 PRODUCT PORTFOLIO
25.32.4 RECENT DEVELOPMENTS
25.33 BIOAGE INC.
25.33.1 COMPANY OVERVIEW
25.33.2 REVENUE ANALYSIS
25.33.3 PRODUCT PORTFOLIO
25.33.4 RECENT DEVELOPMENTS
26 RELATED REPORTS
27 QUESTIONNAIRE
28 CONCLUSION
29 ABOUT DATA BRIDGE MARKET RESEARCH
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

