Global Artificial Intelligence Ai In Insurance Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%
USD
6.44 Billion
USD
63.27 Billion
2024
2032
| 2025 –2032 | |
| USD 6.44 Billion | |
| USD 63.27 Billion | |
|
|
|
|
Segmentación del mercado global de inteligencia artificial (IA) en seguros, por componente (hardware, software y servicios), tecnología (aprendizaje automático y profundo, procesamiento del lenguaje natural [PLN], visión artificial y automatización robótica), modelo de implementación (local y en la nube), tamaño de las empresas (grandes empresas y pymes), aplicación (gestión de reclamaciones, gestión de riesgos y cumplimiento, chatbots y otros), sector (seguros de vida, seguros médicos, seguros de título, seguros de automóviles y otros): tendencias y pronóstico del sector hasta 2032.
Inteligencia artificial (IA) en el tamaño del mercado de seguros
- El mercado global de inteligencia artificial (IA) en seguros se valoró en USD 6.440 millones en 2024 y se espera que alcance los USD 63.270 millones en 2032.
- Durante el período de pronóstico de 2025 a 2032, es probable que el mercado crezca a una CAGR del 33,06 %, impulsado principalmente por los avances en análisis predictivo.
- Este crecimiento está impulsado por factores como una mejor evaluación de riesgos y precios, la integración de IoT y un procesamiento de reclamaciones más rápido.
Inteligencia Artificial (IA) en el Análisis del Mercado de Seguros
- La inteligencia artificial en seguros se refiere al uso de tecnologías de inteligencia artificial como el aprendizaje automático, el procesamiento del lenguaje natural y el análisis predictivo para mejorar la evaluación de riesgos, el procesamiento de reclamaciones, la detección de fraudes y la interacción con el cliente.
- El crecimiento del mercado se ve impulsado por la creciente adopción de la automatización basada en IA, la creciente demanda de análisis de datos en tiempo real y la necesidad de una mejor detección del fraude. A medida que las aseguradoras adoptan la transformación digital, las soluciones de IA se vuelven esenciales para mejorar la eficiencia y reducir los costes operativos.
- La integración de la IA con el big data, el IoT y la computación en la nube está transformando el panorama asegurador. Las herramientas basadas en IA permiten la tarificación personalizada de pólizas, la suscripción automatizada y el modelado predictivo de riesgos, optimizando así los procesos de toma de decisiones.
- Por ejemplo, Lemonade , una compañía de seguros digital, utiliza chatbots de IA para procesar reclamos en minutos, mientras que Allstate emplea análisis impulsados por IA para optimizar las recomendaciones de pólizas basadas en datos de los clientes.
- La IA en el mercado de seguros está preparada para un crecimiento sostenido, impulsada por los avances en automatización, análisis en tiempo real y la toma de decisiones basada en IA. El aumento de las inversiones en InsurTech y la demanda de experiencias digitales fluidas impulsarán aún más la expansión del mercado, y las aseguradoras priorizarán la adopción de IA para mantener su competitividad.
Alcance del informe y la inteligencia artificial (IA) en la segmentación del mercado de seguros
|
Atributos |
Inteligencia artificial (IA) en seguros: Perspectivas clave del mercado |
|
Segmentos cubiertos |
|
|
Países cubiertos |
América del norte
Europa
Asia-Pacífico
Oriente Medio y África
Sudamerica
|
|
Actores clave del mercado |
|
|
Oportunidades de mercado |
|
|
Conjuntos de información de datos de valor añadido |
Además de los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos del mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado elaborado por el equipo de investigación de mercado de Data Bridge incluye un análisis en profundidad de expertos, análisis de importación/exportación, análisis de precios, análisis de consumo de producción y análisis pestle. |
Tendencias de la inteligencia artificial (IA) en el mercado de seguros
Aumento del uso de chatbots y asistentes virtuales basados en IA
- Una tendencia destacada en el mercado global de inteligencia artificial (IA) en seguros es el uso creciente de chatbots y asistentes virtuales impulsados por IA.
- Esta tendencia está impulsada por las aseguradoras que integran IA conversacional para gestionar consultas, procesar reclamos y ofrecer recomendaciones de pólizas personalizadas, lo que reduce los tiempos de respuesta y mejora la eficiencia.
- Por ejemplo, la asistente virtual de GEICO, Kate , brinda a los asegurados asistencia en tiempo real, mientras que el chatbot de inteligencia artificial de Lemonade, Maya, facilita el procesamiento de reclamos sin inconvenientes en minutos.
- La creciente demanda de un servicio al cliente digital las 24 horas del día, los 7 días de la semana, está acelerando la adopción de chatbots impulsados por IA en la industria de seguros.
- A medida que las aseguradoras buscan reducir los costos operativos y mejorar la experiencia del usuario, el papel de la IA conversacional seguirá expandiéndose. Se espera que los futuros avances en IA emocional y reconocimiento de voz perfeccionen aún más las capacidades de los chatbots, haciendo que las interacciones sean más humanas y personalizadas.
Inteligencia Artificial (IA) en la dinámica del mercado de seguros
Conductor
Creciente demanda de procesamiento automatizado de reclamaciones
- La creciente dependencia de la inteligencia artificial (IA) y la automatización es un factor clave del crecimiento de la IA en el mercado de seguros. A medida que las aseguradoras cambian de la gestión tradicional de siniestros a la automatización basada en IA, la necesidad de un procesamiento de siniestros eficiente y preciso se ha vuelto más crucial que nunca.
- Esta transición es particularmente evidente en los seguros de salud, automóviles y propiedades, donde las aseguradoras están aprovechando la automatización de reclamos impulsada por IA para reducir los tiempos de procesamiento, detectar fraudes y mejorar la experiencia del cliente.
- Dado que las aseguradoras gestionan grandes cantidades de datos sobre siniestros, la complejidad de la gestión de estos ha aumentado. Las empresas invierten ahora en soluciones de siniestros basadas en IA para evaluar los daños, verificar documentos y garantizar una interacción fluida con los asegurados, a la vez que reducen las ineficiencias operativas.
- La creciente preferencia de los clientes por liquidaciones de siniestros rápidas y digitales impulsa aún más la demanda de automatización impulsada por IA.
- Al integrar el aprendizaje automático (ML) y el procesamiento del lenguaje natural (NLP), las aseguradoras pueden mejorar la toma de decisiones, minimizar la intervención humana y aumentar la confianza de los asegurados.
Por ejemplo,
- Progressive Insurance emplea herramientas de evaluación de daños impulsadas por IA en seguros de automóviles, utilizando visión artificial para analizar fotos de accidentes y proporcionar estimaciones de reparación en tiempo real.
- El sistema de reclamaciones basado en inteligencia artificial de Allstate detecta actividades fraudulentas y garantiza una liquidación más rápida al automatizar las evaluaciones de reclamaciones de rutina.
- Con el aumento de las inversiones en automatización impulsada por IA y transformación digital, el procesamiento de reclamos impulsado por IA desempeñará un papel crucial en la reducción del tiempo de respuesta, la prevención de reclamos fraudulentos y la mejora de la satisfacción del asegurado, impulsando un crecimiento sostenido del mercado.
Oportunidad
“Expansión de la evaluación de riesgos impulsada por IA”
- La creciente adopción de modelos de evaluación de riesgos basados en IA representa una oportunidad significativa para el mercado de seguros. Las aseguradoras están aprovechando el análisis de big data, el modelado predictivo y el aprendizaje automático (ML) para optimizar la evaluación de riesgos, personalizar las pólizas y mejorar la precisión de la suscripción.
- Los métodos tradicionales de evaluación de riesgos se basan en datos históricos y criterios estandarizados, lo que a menudo genera ineficiencias en la fijación de precios de las pólizas y la aprobación de reclamaciones. Las herramientas basadas en IA analizan datos contextuales y de comportamiento en tiempo real, lo que permite a las aseguradoras realizar evaluaciones de riesgos más precisas y dinámicas.
- La evaluación de riesgos impulsada por IA permite a las aseguradoras personalizar las tarifas de las primas en función del comportamiento de conducción en tiempo real (seguro de automóvil), los hábitos de estilo de vida (seguro de salud) y los patrones de uso de la propiedad (seguro de hogar).
Por ejemplo,
- Swiss Re emplea modelos predictivos impulsados por IA para evaluar los riesgos climáticos, lo que ayuda a las aseguradoras a suscribir seguros de propiedad y catástrofes con mayor precisión.
- Lemonade Inc., una empresa de tecnología de seguros impulsada por IA, utiliza datos de comportamiento y algoritmos de IA para evaluar los riesgos y agilizar la suscripción, lo que permite aprobaciones de pólizas instantáneas.
- A medida que la industria de seguros evoluciona hacia modelos basados en datos y centrados en el cliente, las soluciones de evaluación de riesgos impulsadas por IA seguirán impulsando la eficiencia, reduciendo las pérdidas y mejorando la satisfacción de los asegurados, creando importantes oportunidades de crecimiento para los actores del mercado.
Restricción/Desafío
“Privacidad de datos y cumplimiento normativo”
- La adopción generalizada de soluciones basadas en IA en el sector de seguros plantea importantes preocupaciones en cuanto a la privacidad, la seguridad y el cumplimiento normativo de los datos. Las aseguradoras dependen de grandes cantidades de datos personales, financieros y de comportamiento para optimizar la evaluación de riesgos, la tramitación de reclamaciones y la detección del fraude, lo que convierte la protección de datos en un desafío crítico.
- Regulaciones estrictas como el Reglamento General de Protección de Datos (RGPD) en Europa, la Ley de Privacidad del Consumidor de California (CCPA) en EE. UU. y leyes específicas del sector como la Ley de Portabilidad y Responsabilidad del Seguro Médico (HIPAA) imponen pautas estrictas sobre cómo las aseguradoras recopilan, procesan y almacenan los datos de los clientes.
- Además, la toma de decisiones impulsada por IA en la suscripción y el procesamiento de reclamaciones ha suscitado inquietudes sobre el sesgo algorítmico y la falta de transparencia.
Por ejemplo,
- La Ley de Protección de Información Personal (PIPL) de China ha impuesto regulaciones estrictas a las aseguradoras extranjeras que operan en el país, lo que impacta el análisis de datos impulsado por IA y la personalización de pólizas.
- Estos desafíos regulatorios y de privacidad podrían ralentizar la adopción de la IA en seguros, incrementando los costos de cumplimiento normativo y limitando la innovación. Las aseguradoras deberán equilibrar los avances de la IA con un estricto cumplimiento normativo, lo que podría llevar a una expansión del mercado más lenta y a estrategias de implementación de la IA más cautelosas en los próximos años.
Inteligencia Artificial (IA) en el Mercado de Seguros
El mercado está segmentado según el componente, la tecnología, el modelo de implementación, el tamaño de la empresa, la aplicación y el sector.
|
Segmentación |
Subsegmentación |
|
Por componente |
|
|
Por tecnología |
|
|
Por modelo de implementación |
|
|
Por tamaño de empresa
|
|
|
Por aplicación |
|
|
Por sector |
|
Análisis regional de la inteligencia artificial (IA) en el mercado de seguros
América del Norte es la región dominante en el mercado de inteligencia artificial (IA) en seguros .
- América del Norte domina el mercado de Inteligencia Artificial (IA) en seguros , impulsada por la adopción temprana de tecnologías impulsadas por IA, marcos regulatorios sólidos y la presencia de proveedores líderes de soluciones de IA en la región.
- Estados Unidos tiene una participación significativa debido a importantes inversiones en suscripción impulsada por IA, automatización de reclamos y detección de fraude por parte de las principales compañías de seguros.
- La avanzada infraestructura de TI de la región y las altas tasas de adopción de IA entre las aseguradoras contribuyen aún más a su liderazgo en el mercado. Empresas de EE. UU. y Canadá están aprovechando el aprendizaje automático, el procesamiento del lenguaje natural y el análisis predictivo para mejorar la experiencia del cliente y la eficiencia operativa.
- Además, las iniciativas regulatorias que promueven la transparencia de la IA y el uso ético de la IA han alentado a las aseguradoras a integrar la toma de decisiones impulsada por la IA mientras mantienen el cumplimiento, lo que refuerza la posición de América del Norte como un actor dominante en el mercado.
Se proyecta que Asia-Pacífico registre la mayor tasa de crecimiento.
- Se espera que la región de Asia y el Pacífico sea testigo de la mayor tasa de crecimiento en el mercado de Inteligencia Artificial (IA) en seguros , impulsada por iniciativas de transformación digital lideradas por el gobierno y el aumento de las inversiones en tecnologías de seguros impulsadas por IA.
- Países como China, India y Japón están experimentando una rápida digitalización, lo que lleva a la adopción de chatbots impulsados por IA, procesamiento automatizado de reclamos y modelos de precios de pólizas personalizados para mejorar la participación del cliente y la eficiencia operativa.
- La expansión de las empresas emergentes de tecnología de seguros, la creciente penetración de soluciones de evaluación de riesgos basadas en IoT y la creciente demanda de detección de fraude impulsada por IA están impulsando aún más el crecimiento del mercado en la región.
- A medida que las aseguradoras en Asia-Pacífico continúan integrando análisis impulsados por IA, telemática y modelos predictivos, la región presenta oportunidades significativas para los proveedores de soluciones de IA que buscan expandirse en los mercados de seguros emergentes.
Inteligencia Artificial (IA) en el Mercado de Seguros
El panorama competitivo del mercado ofrece detalles por competidor. Se incluye información general de la empresa, sus estados financieros, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, plantas de producción, capacidad de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, alcance y variedad de productos, y dominio de las aplicaciones. Los datos anteriores se refieren únicamente al enfoque de mercado de las empresas.
Los principales líderes del mercado que operan en el mercado son:
- Microsoft (EE. UU.)
- Infosys Limited (India)
- Tractable (Reino Unido)
- Insurify, Inc. (EE. UU.)
- Slice Insurance Technologies Inc (EE. UU.)
- Google (EE. UU.)
- Oracle (EE. UU.)
- Amazon Web Services Inc. (EE. UU.)
- IBM (EE.UU.)
- Avaamo (EE. UU.)
- CAPE Analytics (EE. UU.)
- Wipro (India)
- Seguros generales Acko (India)
- Shift Technology (Francia)
- Quantemplate (Reino Unido)
- Zúrich (Suiza)
- Lemonade Inc. (EE. UU.)
Últimos avances en inteligencia artificial (IA) global en el mercado de seguros
- En junio de 2023, Simplifai , empresa especializada en soluciones de automatización con IA, presentó Simplifai InsuranceGPT , la primera herramienta GPT propietaria diseñada específicamente para el sector asegurador. Esta innovación revolucionaria se basa en la plataforma sin código de Simplifai, impulsada por IA, lo que mejora aún más las sólidas capacidades de automatización de procesos de negocio de la empresa.
- En enero de 2023, AI Inside Inc. , empresa dedicada a democratizar la IA mediante infraestructura y servicios de consultoría, lanzó una nueva solución DX . Esta solución facilita el desarrollo de nuevos productos de seguros mediante certificados de salud semiestructurados digitalizados con OCR, diseñados específicamente para el sector de seguros de vida.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Tabla de contenido
1. INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2. MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMAPANY MARKET SHARE ANALYSIS
2.2.5 MULTIVARIATE MODELLING
2.2.6 TOP TO BOTTOM ANALYSIS
2.2.7 STANDARDS OF MEASUREMENT
2.2.8 VENDOR SHARE ANALYSIS
2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3. MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4. EXECUTIVE SUMMARY
5. PREMIUM INSIGHT
5.1 PORTERS FIVE FORCES
5.2 REGULATORY STANDARDS
5.3 TECHNOLOGICAL TRENDS
5.4 PATENT ANALYSIS
5.5 CASE STUDY
5.6 VALUE CHAIN ANALYSIS
5.7 COMPANY COMPARITIVE ANALYSIS
5.8 THE IMPACT OF AI ON THE FUTURE OF INSURANCE
5.9 AI DRIVEN INNOVATION IN THE INSURANCE SECTOR
6. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.2.1 PROCESSORS
6.2.1.1. MICROPROCESSING UNIT
6.2.1.2. GRAPHICS PROCESSING UNIT
6.2.1.3. FIELD PROGRAMMABLE GATE ARRAYS
6.2.1.4. OTHERS
6.2.2 MEMORY
6.2.3 NETWORK
6.3 SOFTWARE
6.3.1 SOFTWARE TOOL
6.3.1.1. DATA DISCOVERY
6.3.1.2. DATA QUALITY AND DATA GOVERNANCE
6.3.1.3. DATA VISUALIZATION
6.3.2 PLATFORM
6.4 SERVICES
6.4.1 MANAGED SERVICES
6.4.2 PROFESSIONAL SERVICES
7. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING
7.2.1 DEEP LEARNING
7.2.1.1. CONVOLUTIONAL NEURAL NETWORK (CNN)
7.2.1.2. RECURRENT NEURAL NETWORK (RNN)
7.2.1.3. GENERATIVE ADVERSARIAL NETWORKS (GAN)
7.2.2 SUPERVISED LEARNING
7.2.3 UNSUPERVISED LEARNING
7.2.4 REINFORCEMENT LEARNING
7.3 NATURAL LANGUAGE PROCESSING (NLP)
7.4 COMPUTER VISION
7.5 CONTEXT AWARENESS
7.6 ROBOTIC AUTOMATION
7.7 OTHERS
8. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY DEPLOYMENT MODE
8.1 OVERVIEW
8.2 CLOUD
8.3 ON-PREMISE
9. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY ENTERPRISE SIZE
9.1 OVERVIEW
9.2 SMALL & MEDIUM SIZE ENTERPRISE
9.2.1 BY DEPLOYMENT MODE
9.2.1.1. CLOUD
9.2.1.2. ON-PREMISE
9.3 LARGE SIZE ENTERPRISE
9.3.1 BY DEPLOYMENT MODE
9.3.1.1. CLOUD
9.3.1.2. ON-PREMISE
10. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY APPLICATION
10.1 OVERVIEW
10.2 CLAIMS MANAGEMENT
10.3 RISK MANAGEMENT AND COMPLIANCE
10.4 CHATBOTS
10.5 FRAUD DETECTION
10.6 CUSTOMER RELATIONSHIP MANAGEMENT
10.7 CYBERSECURITY
10.8 OTHERS
11. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY END USER
11.1 OVERVIEW
11.2 INSURANCE COMPANIES
11.3 BROKERS
11.4 AGENTS
12. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY SECTOR
12.1 OVERVIEW
12.2 LIFE INSURANCE
12.2.1 BY COMPONENT
12.2.1.1. HARDWARE
12.2.1.2. SOFTWARE
12.2.1.3. SERVICES
12.3 HEALTH INSURANCE
12.3.1 BY COMPONENT
12.3.1.1. HARDWARE
12.3.1.2. SOFTWARE
12.3.1.3. SERVICES
12.4 TITLE INSURANCE
12.4.1 BY COMPONENT
12.4.1.1. HARDWARE
12.4.1.2. SOFTWARE
12.4.1.3. SERVICES
12.5 AUTO INSURANCE
12.5.1 BY COMPONENT
12.5.1.1. HARDWARE
12.5.1.2. SOFTWARE
12.5.1.3. SERVICES
12.6 OTHERS
13. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY GEOGRAPHY
13.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
13.1.1 NORTH AMERICA
13.1.1.1. U.S.
13.1.1.2. CANADA
13.1.1.3. MEXICO
13.1.2 EUROPE
13.1.2.1. GERMANY
13.1.2.2. FRANCE
13.1.2.3. U.K.
13.1.2.4. ITALY
13.1.2.5. SPAIN
13.1.2.6. RUSSIA
13.1.2.7. TURKEY
13.1.2.8. BELGIUM
13.1.2.9. NETHERLANDS
13.1.2.10. NORWAY
13.1.2.11. FINLAND
13.1.2.12. SWITZERLAND
13.1.2.13. DENMARK
13.1.2.14. SWEDEN
13.1.2.15. POLAND
13.1.2.16. REST OF EUROPE
13.1.3 ASIA PACIFIC
13.1.3.1. JAPAN
13.1.3.2. CHINA
13.1.3.3. SOUTH KOREA
13.1.3.4. INDIA
13.1.3.5. AUSTRALIA
13.1.3.6. NEW ZEALAND
13.1.3.7. SINGAPORE
13.1.3.8. THAILAND
13.1.3.9. MALAYSIA
13.1.3.10. INDONESIA
13.1.3.11. PHILIPPINES
13.1.3.12. TAIWAN
13.1.3.13. VIETNAM
13.1.3.14. REST OF ASIA PACIFIC
13.1.4 SOUTH AMERICA
13.1.4.1. BRAZIL
13.1.4.2. ARGENTINA
13.1.4.3. REST OF SOUTH AMERICA
13.1.5 MIDDLE EAST AND AFRICA
13.1.5.1. SOUTH AFRICA
13.1.5.2. EGYPT
13.1.5.3. SAUDI ARABIA
13.1.5.4. U.A.E
13.1.5.5. OMAN
13.1.5.6. BAHRAIN
13.1.5.7. ISRAEL
13.1.5.8. KUWAIT
13.1.5.9. QATAR
13.1.5.10. REST OF MIDDLE EAST AND AFRICA
13.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
14. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET,COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: GLOBAL
14.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
14.3 COMPANY SHARE ANALYSIS: EUROPE
14.4 COMPANY SHARE ANALYSIS: ASIA PACIFIC
14.5 MERGERS & ACQUISITIONS
14.6 NEW PRODUCT DEVELOPMENT AND APPROVALS
14.7 EXPANSIONS
14.8 REGULATORY CHANGES
14.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, SWOT & DBMR ANALYSIS
16. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, COMPANY PROFILE
16.1 IBM
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 PRODUCT PORTFOLIO
16.1.4 RECENT DEVELOPMENT
16.2 DAMCO GROUP
16.2.1 COMPANY SNAPSHOT
16.2.2 REVENUE ANALYSIS
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENT
16.3 MICROSOFT
16.3.1 COMPANY SNAPSHOT
16.3.2 REVENUE ANALYSIS
16.3.3 PRODUCT PORTFOLIO
16.3.4 RECENT DEVELOPMENT
16.4 AMAZON WEB SERVICES, INC.
16.4.1 COMPANY SNAPSHOT
16.4.2 REVENUE ANALYSIS
16.4.3 PRODUCT PORTFOLIO
16.4.4 RECENT DEVELOPMENT
16.5 ORACLE
16.5.1 COMPANY SNAPSHOT
16.5.2 REVENUE ANALYSIS
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENT
16.6 AVAAMO
16.6.1 COMPANY SNAPSHOT
16.6.2 REVENUE ANALYSIS
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENT
16.7 SAP
16.7.1 COMPANY SNAPSHOT
16.7.2 REVENUE ANALYSIS
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENT
16.8 CAPE ANALYTICS
16.8.1 COMPANY SNAPSHOT
16.8.2 REVENUE ANALYSIS
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENT
16.9 WIPRO
16.9.1 COMPANY SNAPSHOT
16.9.2 REVENUE ANALYSIS
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENT
16.10 SHIFT TECHNOLOGY
16.10.1 COMPANY SNAPSHOT
16.10.2 REVENUE ANALYSIS
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENT
16.11 QUANTEMPLATE
16.11.1 COMPANY SNAPSHOT
16.11.2 REVENUE ANALYSIS
16.11.3 PRODUCT PORTFOLIO
16.11.4 RECENT DEVELOPMENT
16.12 ZURICH
16.12.1 COMPANY SNAPSHOT
16.12.2 REVENUE ANALYSIS
16.12.3 PRODUCT PORTFOLIO
16.12.4 RECENT DEVELOPMENT
16.13 LEMONADE, INC.
16.13.1 COMPANY SNAPSHOT
16.13.2 REVENUE ANALYSIS
16.13.3 PRODUCT PORTFOLIO
16.13.4 RECENT DEVELOPMENT
16.14 SLICE INSURANCE TECHNOLOGIES INC
16.14.1 COMPANY SNAPSHOT
16.14.2 REVENUE ANALYSIS
16.14.3 PRODUCT PORTFOLIO
16.14.4 RECENT DEVELOPMENT
16.15 INSURIFY, INC.
16.15.1 COMPANY SNAPSHOT
16.15.2 REVENUE ANALYSIS
16.15.3 PRODUCT PORTFOLIO
16.15.4 RECENT DEVELOPMENT
16.16 INSURMI
16.16.1 COMPANY SNAPSHOT
16.16.2 REVENUE ANALYSIS
16.16.3 PRODUCT PORTFOLIO
16.16.4 RECENT DEVELOPMENT
16.17 PLANCK RESOLUTION LTD.
16.17.1 COMPANY SNAPSHOT
16.17.2 REVENUE ANALYSIS
16.17.3 PRODUCT PORTFOLIO
16.17.4 RECENT DEVELOPMENT
16.18 TRACTABLE LTD.
16.18.1 COMPANY SNAPSHOT
16.18.2 REVENUE ANALYSIS
16.18.3 PRODUCT PORTFOLIO
16.18.4 RECENT DEVELOPMENT
16.19 GOOGLE
16.19.1 COMPANY SNAPSHOT
16.19.2 REVENUE ANALYSIS
16.19.3 PRODUCT PORTFOLIO
16.19.4 RECENT DEVELOPMENT
16.20 INFOSYS LIMITED
16.20.1 COMPANY SNAPSHOT
16.20.2 REVENUE ANALYSIS
16.20.3 PRODUCT PORTFOLIO
16.20.4 RECENT DEVELOPMENT
16.21 FLYREEL, INC. ( A PART OF LEXISNEXIS® RISK SOLUTIONS)
16.21.1 COMPANY SNAPSHOT
16.21.2 REVENUE ANALYSIS
16.21.3 PRODUCT PORTFOLIO
16.21.4 RECENT DEVELOPMENT
16.22 ANADEA, INC
16.22.1 COMPANY SNAPSHOT
16.22.2 REVENUE ANALYSIS
16.22.3 PRODUCT PORTFOLIO
16.22.4 RECENT DEVELOPMENT
16.23 WORKFUSION, INC.
16.23.1 COMPANY SNAPSHOT
16.23.2 REVENUE ANALYSIS
16.23.3 PRODUCT PORTFOLIO
16.23.4 RECENT DEVELOPMENT
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
17. CONCLUSION
18. QUESTIONNAIRE
19. RELATED REPORTS
20. ABOUT DATA BRIDGE MARKET RESEARCH
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

