Informe de análisis del tamaño, la participación y las tendencias del mercado global de redes neuronales de aprendizaje profundo (DNN): panorama general del sector y pronóstico hasta 2032

Solicitud de índiceSolicitud de índice Hable con el analistaHable con el analista Informe de muestra gratuitoInforme de muestra gratuito Consultar antes de comprarConsultar antes Comprar ahoraComprar ahora

Informe de análisis del tamaño, la participación y las tendencias del mercado global de redes neuronales de aprendizaje profundo (DNN): panorama general del sector y pronóstico hasta 2032

  • ICT
  • Upcoming Report
  • Mar 2021
  • Global
  • 350 Páginas
  • Número de tablas: 220
  • Número de figuras: 60
  • Author : Megha Gupta

Supera los desafíos arancelarios con una consultoría ágil de la cadena de suministro

El análisis del ecosistema de la cadena de suministro ahora forma parte de los informes de DBMR

Global Deep Learning Neural Networks Dnns Market

Tamaño del mercado en miles de millones de dólares

Tasa de crecimiento anual compuesta (CAGR) :  % Diagram

Chart Image USD 52.30 Billion USD 349.40 Billion 2024 2032
Diagram Período de pronóstico
2025 –2032
Diagram Tamaño del mercado (año base)
USD 52.30 Billion
Diagram Tamaño del mercado (año de pronóstico)
USD 349.40 Billion
Diagram Tasa de crecimiento anual compuesta (CAGR)
%
Diagram Jugadoras de los principales mercados
  • Alyuda ResearchLLC.
  • IBM
  • Micron TechnologyInc.
  • Neural Technologies Limited
  • NeuroDimensionInc.

Segmentación del mercado global de redes neuronales de aprendizaje profundo (DNN), por componente (hardware, software y servicios), aplicación (reconocimiento de imágenes, procesamiento del lenguaje natural, reconocimiento de voz y minería de datos), usuario final (banca, servicios financieros y seguros (BFSI), TI y telecomunicaciones, atención médica, comercio minorista, automotriz, fabricación, aeroespacial y defensa, seguridad y otros), - Tendencias de la industria y pronóstico hasta 2032

Mercado de redes neuronales de aprendizaje profundo (DNN)

Tamaño del mercado de redes neuronales de aprendizaje profundo (DNN)

  • El tamaño del mercado global de redes neuronales de aprendizaje profundo (DNN) se valoró en USD 52,3 mil millones en 2024  y se espera que alcance  los USD 349,4 mil millones para 2032 , con una CAGR del 31,2% durante el período de pronóstico.
  • El crecimiento del mercado se debe principalmente a los avances tecnológicos, la mayor disponibilidad de datos y la expansión de las aplicaciones industriales. A medida que la inteligencia artificial (IA) se integra cada vez más en sectores como la salud, la automoción, las finanzas y la manufactura, las DNN destacan por su capacidad para procesar conjuntos de datos masivos y extraer patrones complejos.
  • Además, los avances en la computación en la nube y la IA de borde están haciendo que las DNN sean más accesibles y escalables. Gobiernos y empresas de todo el mundo están incrementando sus inversiones en I+D de IA, lo que impulsa aún más la adopción de soluciones basadas en DNN.

Análisis del mercado de redes neuronales de aprendizaje profundo (DNN)

  • El mercado global de redes neuronales de aprendizaje profundo (DNN) está siendo impulsado por sólidos avances tecnológicos en hardware específico de IA, lo que permite un entrenamiento y una implementación de modelos más rápidos y eficientes.
  • El aumento de los sistemas autónomos, como los automóviles autónomos y los robots de servicio, junto con el papel cada vez mayor del aprendizaje profundo en el procesamiento del lenguaje natural (PLN) y el reconocimiento de imágenes, está impulsando su adopción en todos los sectores.
  • América del Norte domina el mercado de redes neuronales de aprendizaje profundo (DNN) con la mayor participación en los ingresos del 39,01 % en 2024, caracterizada por una creciente adopción de vehículos autónomos y robótica inteligente.
  • Se espera que Asia-Pacífico sea la región de más rápido crecimiento en el mercado de redes neuronales de aprendizaje profundo (DNN) durante el período de pronóstico debido a la expansión de las aplicaciones en el procesamiento del lenguaje natural (NLP) y la visión por computadora.
  • El segmento de software domina el mercado de redes neuronales de aprendizaje profundo (DNN) con una participación de mercado del 45,2% en 2024, impulsado por la proliferación de big data y la creciente complejidad de los datos.

Alcance del informe y segmentación del mercado de redes neuronales de aprendizaje profundo (DNN)    

Atributos

Perspectivas del mercado de redes neuronales de aprendizaje profundo (DNN)

Segmentos cubiertos

  • Por componente: hardware, software y servicios
  • Por aplicación: reconocimiento de imágenes, procesamiento del lenguaje natural, reconocimiento de voz y minería de datos.
  • Por usuario final: banca, servicios financieros y seguros (BFSI), TI y telecomunicaciones, atención médica, comercio minorista, automoción, fabricación, aeroespacial y defensa, seguridad y otros

Países cubiertos

América del norte

  • A NOSOTROS
  • Canadá
  • México

Europa

  • Alemania
  • Francia
  • Reino Unido
  • Países Bajos
  • Suiza
  • Bélgica
  • Rusia
  • Italia
  • España
  • Pavo
  • Resto de Europa

Asia-Pacífico

  • Porcelana
  • Japón
  • India
  • Corea del Sur
  • Singapur
  • Malasia
  • Australia
  • Tailandia
  • Indonesia
  • Filipinas
  • Resto de Asia-Pacífico

Oriente Medio y África

  • Arabia Saudita
  • Emiratos Árabes Unidos
  • Sudáfrica
  • Egipto
  • Israel
  • Resto de Oriente Medio y África

Sudamerica

  • Brasil
  • Argentina
  • Resto de Sudamérica

Actores clave del mercado

  • ALYUDA RESEARCH, LLC
  • Google
  • IBM
  • Micron Technologies, Inc.
  • Tecnologías neuronales limitadas
  • NEURODIMENSIÓN, INC.
  • Software neuronal
  • CORPORACIÓN NVIDIA
  • SKYMIND INC
  • SAMSUNG
  • Tecnologías Qualcomm, Inc.
  • Corporación Intel
  • Servicios web de Amazon, Inc.
  • Microsoft
  • GMDH LLC.
  • Sensory Inc
  • Grupo de sistemas Ward, Inc.
  • Xilinx Inc.
  • Mente estelar

Oportunidades de mercado

  • El gran crecimiento de los datos aumentará la demanda de soluciones de aprendizaje profundo
  • Integración de DNN con computación de borde y dispositivos IoT.

Conjuntos de información de datos de valor añadido

Además de los conocimientos sobre escenarios de mercado, como valor de mercado, tasa de crecimiento, segmentación, cobertura geográfica y actores principales, los informes de mercado seleccionados por Data Bridge Market Research también incluyen análisis en profundidad de expertos, análisis de precios, análisis de participación de marca, encuesta de consumidores, análisis demográfico, análisis de la cadena de suministro, análisis de la cadena de valor, descripción general de materias primas/consumibles, criterios de selección de proveedores, análisis PESTLE, análisis de Porter y marco regulatorio.

Tendencias del mercado de redes neuronales de aprendizaje profundo (DNN)

Ampliación de aplicaciones en todas las industrias

  • Una tendencia importante en el mercado global de redes neuronales de aprendizaje profundo (DNN) es la rápida expansión de sus aplicaciones en diversos sectores, como la salud, la automoción, las finanzas y la manufactura. Estas redes están propiciando avances en el diagnóstico médico, la detección de fraudes, la conducción autónoma y el mantenimiento predictivo.
    • Por ejemplo, en el ámbito sanitario, las DNN se utilizan cada vez más para el diagnóstico por imágenes, como la detección de tumores en exploraciones radiológicas. Empresas como Aidoc y Zebra Medical Vision utilizan las DNN para ayudar a los radiólogos a realizar diagnósticos más rápidos y precisos.
  • En el sector automotriz, Norteamérica y Europa lideran la implementación de sistemas avanzados de asistencia al conductor (ADAS) basados ​​en DNN y vehículos autónomos. Tesla, NVIDIA y Waymo aprovechan el aprendizaje profundo para mejorar la toma de decisiones y el reconocimiento de imágenes en tiempo real en la carretera.
  • El sector financiero también está adoptando las redes neuronales profundas (DNN) para detectar anomalías y predecir las tendencias del mercado con gran precisión. JP Morgan Chase y Goldman Sachs están invirtiendo fuertemente en equipos de IA dedicados al desarrollo de sistemas de trading y evaluación de riesgos basados ​​en DNN.  
  • En la industria manufacturera, las redes neuronales profundas (DNN) facilitan las fábricas inteligentes mediante la automatización de la inspección visual, la detección de defectos y el mantenimiento predictivo de equipos. Empresas como Siemens y GE son pioneras en el uso de estos sistemas inteligentes para reducir el tiempo de inactividad y mejorar la eficiencia operativa.
  • Asia Pacífico se perfila como la región de mayor crecimiento gracias a las sólidas estrategias de IA de países como China, Corea del Sur e India. Las iniciativas respaldadas por los gobiernos y la importante financiación en I+D de IA están impulsando la adopción de redes neuronales profundas (DNN) a gran escala.

Dinámica del mercado de redes neuronales de aprendizaje profundo (DNN)

Conductor

“Proliferación de Big Data y aumento de la potencia informática”

  • El crecimiento exponencial en la generación de datos a partir de fuentes como dispositivos IoT, redes sociales y sistemas empresariales está impulsando la adopción de redes neuronales de aprendizaje profundo para tareas como el reconocimiento de imágenes, el procesamiento del lenguaje natural y el análisis predictivo.
    • Por ejemplo, en marzo de 2025, NVIDIA presentó su arquitectura de GPU Blackwell, que ofrece una mejora del rendimiento de más de 4 veces para cargas de trabajo de inferencia y entrenamiento de aprendizaje profundo, lo que permite aplicaciones en tiempo real en los sectores de atención médica, automotriz y servicios financieros.
  • Los proveedores de servicios en la nube, incluidos AWS y Google Cloud, ofrecen cada vez más marcos DNN optimizados como servicios administrados, lo que simplifica la implementación y el escalamiento.
  • Según IDC, más del 70% de las empresas a nivel mundial han integrado soluciones basadas en DNN en al menos una función comercial a partir del primer trimestre de 2025, lo que refleja un fuerte impulso del mercado.

Restricción/Desafío

Alto consumo de recursos y complejidad en el entrenamiento de modelos

  • El entrenamiento de redes neuronales de aprendizaje profundo a menudo requiere importantes recursos computacionales, hardware especializado (por ejemplo, GPU, TPU) y consumo de energía, lo que puede resultar prohibitivo en términos de costos.
    • Por ejemplo, el GPT-4 de OpenAI requirió varios miles de petaflop/s-días de cómputo y energía equivalente a la que usan varios cientos de hogares estadounidenses anualmente.
  • Además, la complejidad de ajustar los hiperparámetros, gestionar el sobreajuste y lograr la interpretabilidad del modelo sigue siendo un desafío para los desarrolladores, especialmente en sectores regulados como las finanzas y la atención médica.
  • Estas barreras son particularmente pronunciadas para las empresas pequeñas y medianas que carecen de acceso a infraestructura informática de alto rendimiento y a grandes grupos de talentos en inteligencia artificial.

Alcance del mercado de las redes neuronales de aprendizaje profundo (DNN)

El mercado está segmentado según el componente, la aplicación y el usuario final.

  • Por componente

Según sus componentes, el mercado de redes neuronales de aprendizaje profundo (DNN) se segmenta en hardware, software y servicios. El segmento de software domina la mayor cuota de mercado, con un 48,2 % en 2024, impulsado por los sólidos avances tecnológicos en hardware específico para IA, que permiten un entrenamiento e implementación de modelos más rápidos y eficientes.

Se prevé que el segmento de software sea testigo de la tasa de crecimiento más rápida del 21,7% entre 2025 y 2032, impulsada por el aumento de los sistemas autónomos, como los coches autónomos y los robots de servicio, junto con el papel cada vez mayor del aprendizaje profundo en el PNL y el reconocimiento de imágenes, que está impulsando la adopción en todos los sectores.

  • Por aplicación

En función de su aplicación, el mercado de redes neuronales de aprendizaje profundo (DNN) se segmenta en reconocimiento de imágenes, procesamiento del lenguaje natural, reconocimiento de voz y minería de datos. El segmento de reconocimiento de imágenes registró la mayor cuota de mercado en 2024, impulsado por el crecimiento exponencial del big data, que proporciona información valiosa para estos modelos, especialmente en el ámbito sanitario, donde las DNN están revolucionando el diagnóstico y la personalización de tratamientos.

Se espera que el segmento de procesamiento del lenguaje natural sea testigo de la CAGR más rápida entre 2025 y 2032, impulsada por la convergencia del aprendizaje profundo con tecnologías de vanguardia como la computación cuántica y los chips neuromórficos que prometen redefinir los techos de rendimiento y abrir nuevas fronteras comerciales y científicas.

  • Por el usuario final

En función del usuario final, el mercado de redes neuronales de aprendizaje profundo (DNN) se segmenta en banca, servicios financieros y seguros (BFSI), TI y telecomunicaciones, salud, comercio minorista, automoción, manufactura, aeroespacial y defensa, seguridad, entre otros. El segmento bancario registró la mayor participación en ingresos del mercado en 2024, impulsado por innovaciones en hardware, como el desarrollo de chips de IA especializados como GPU y TPU, que mejoran la eficiencia de los procesos de aprendizaje profundo.

Se espera que el sector salud sea testigo de la CAGR más rápida entre 2025 y 2032, impulsada por el crecimiento exponencial en la generación de datos de fuentes como dispositivos IoT, redes sociales y sistemas empresariales que están impulsando la adopción de redes neuronales de aprendizaje profundo para tareas como el reconocimiento de imágenes, el procesamiento del lenguaje natural y el análisis predictivo.

Análisis regional del mercado de redes neuronales de aprendizaje profundo (DNN)

  • Norteamérica domina el mercado de redes neuronales de aprendizaje profundo (DNN), con la mayor cuota de ingresos, un 39,01 % en 2024, impulsada por avances tecnológicos, la creciente disponibilidad de datos y la expansión de las aplicaciones industriales. A medida que la inteligencia artificial (IA) se integra cada vez más en sectores como la salud, la automoción, las finanzas y la manufactura, las DNN destacan por su capacidad para procesar grandes conjuntos de datos y extraer patrones complejos.
  • Esto ha abierto numerosos impulsores y oportunidades de crecimiento. Entre ellos, destaca la creciente demanda de servicios personalizados, mayor automatización y análisis predictivo. Además, los avances en la computación en la nube y la IA de borde hacen que las redes neuronales profundas (DNN) sean más accesibles y escalables.
  • Gobiernos y empresas de todo el mundo están incrementando sus inversiones en I+D de IA, lo que impulsa aún más la adopción de soluciones basadas en redes neuronales profundas (DNN). Otro factor clave es la proliferación de dispositivos inteligentes y sensores del IoT, que generan datos en tiempo real que impulsan el entrenamiento de las DNN.

Perspectiva del mercado de redes neuronales de aprendizaje profundo (DNN) en EE. UU.

El mercado estadounidense de redes neuronales de aprendizaje profundo (DNN) capturó la mayor participación en los ingresos, con un 81 %, en 2024 en Norteamérica, impulsado por la financiación gubernamental e institucional para la investigación en IA, especialmente en los sectores de defensa, salud y educación. El aprendizaje profundo se aplica cada vez más en diversas industrias. En el sector salud, se utiliza para el análisis predictivo y la detección temprana de enfermedades. La industria automotriz aprovecha las DNN para los avances en vehículos autónomos, mientras que el sector minorista las utiliza para el reconocimiento de imágenes y el análisis del comportamiento del cliente.  

Perspectiva del mercado europeo de redes neuronales de aprendizaje profundo (DNN)

Se proyecta que el mercado europeo de redes neuronales de aprendizaje profundo (DNN) se expanda a una tasa de crecimiento anual compuesta (TCAC) sustancial durante el período de pronóstico, impulsado principalmente por innovaciones en hardware, como el desarrollo de chips de IA especializados como GPU y TPU, que están mejorando la eficiencia de los procesos de aprendizaje profundo. Además, la aparición de plataformas de aprendizaje profundo como servicio (DLaaS) facilita el acceso de estas tecnologías a las empresas, al reducir la necesidad de importantes inversiones iniciales en infraestructura.

Perspectiva del mercado de redes neuronales de aprendizaje profundo (DNN) en el Reino Unido

Se prevé que el mercado británico de redes neuronales de aprendizaje profundo (DNN) crezca a una tasa de crecimiento anual compuesta (TCAC) notable durante el período de pronóstico, impulsado por los sólidos avances tecnológicos en hardware específico para IA, lo que permite un entrenamiento e implementación de modelos más rápidos y eficientes. El auge de los sistemas autónomos, como los coches autónomos y los robots de servicio, sumado al creciente papel del aprendizaje profundo en el procesamiento del lenguaje natural (PLN) y el reconocimiento de imágenes, está impulsando su adopción en todos los sectores. El crecimiento exponencial del big data proporciona información valiosa para estos modelos, especialmente en el sector sanitario, donde las DNN están revolucionando el diagnóstico y la personalización de tratamientos.  

Perspectivas del mercado de redes neuronales de aprendizaje profundo (DNN) en Alemania

Se espera que el mercado alemán de redes neuronales de aprendizaje profundo (DNN) se expanda a una tasa de crecimiento anual compuesta (TCAC) considerable durante el período de pronóstico, impulsado por las abundantes oportunidades en aplicaciones de IA de borde, donde la integración de DNN en dispositivos inteligentes puede generar información en tiempo real con baja latencia. Además, la convergencia del aprendizaje profundo con tecnologías de vanguardia como la computación cuántica y los chips neuromórficos promete redefinir los límites de rendimiento, abriendo nuevas fronteras comerciales y científicas.  

Perspectiva del mercado de redes neuronales de aprendizaje profundo (DNN) en Asia-Pacífico

Se prevé que el mercado de redes neuronales de aprendizaje profundo (DNN) de Asia-Pacífico crezca a la CAGR más rápida del 24 % durante el período de pronóstico de 2025 a 2032, impulsado por los rápidos avances en hardware de GPU/TPU y computación cuántica que permiten un procesamiento de DNN más eficiente y rápido.  

Perspectiva del mercado de redes neuronales de aprendizaje profundo (DNN) en Japón

El mercado japonés de redes neuronales de aprendizaje profundo (DNN) está cobrando impulso gracias a la cultura de alta tecnología, la rápida urbanización y la demanda de comodidad del país. El mercado japonés prioriza la seguridad, y la adopción de cerraduras inteligentes se ve impulsada por la expansión de sistemas autónomos (p. ej., vehículos autónomos, drones y robótica) que dependen en gran medida de algoritmos de aprendizaje profundo.  

Análisis del mercado de redes neuronales de aprendizaje profundo (DNN) en China

El mercado de redes neuronales de aprendizaje profundo (DNN) de China representó la mayor participación en los ingresos del mercado en Asia Pacífico en 2024, impulsado por la IA ética y explicable que se convierte en una preocupación, la oportunidad para desarrollar modelos de redes neuronales interpretables también está creando nuevos canales de crecimiento.

Cuota de mercado de las redes neuronales de aprendizaje profundo (DNN)

El mercado de redes neuronales de aprendizaje profundo (DNN) está liderado principalmente por empresas bien establecidas, entre las que se incluyen:

  • ALYUDA RESEARCH, LLC
  • Google
  • IBM
  • Micron Technologies, Inc.
  • Tecnologías neuronales limitadas
  • NEURODIMENSIÓN, INC.
  • Software neuronal
  • CORPORACIÓN NVIDIA
  • SKYMIND INC
  • SAMSUNG
  • Tecnologías Qualcomm, Inc.
  • Corporación Intel
  • Servicios web de Amazon, Inc.
  • Microsoft
  • GMDH LLC.
  • Sensory Inc
  • Grupo de sistemas Ward, Inc.
  • Xilinx Inc.
  • Mente estelar

Últimos avances en el mercado global de redes neuronales de aprendizaje profundo (DNN)

  • En abril de 2025, Google DeepMind, líder en investigación de IA, desarrolló modelos avanzados como Gemma y PaliGemma 2, centrados en tareas de lenguaje y visión. Sus innovaciones, como Ithaca, facilitan la restauración de textos antiguos, demostrando la versatilidad de las aplicaciones de aprendizaje profundo.
  • En marzo de 2024, IBM. Con un legado en IA, la plataforma Watson de IBM integra el aprendizaje automático en los procesos de negocio, ofreciendo soluciones como chatbots de atención al cliente. Su compromiso con la investigación en IA sigue influyendo en diversas industrias.
  • En marzo de 2025, Intel amplió sus capacidades de IA mediante adquisiciones como Nervana y Movidius, optimizando el software de aprendizaje profundo y llevando aplicaciones de IA a dispositivos de bajo consumo. Colaboraciones como la de Microsoft para la aceleración de la IA de Bing destacan su impacto en el mercado.
  • En febrero de 2025, Microsoft integrará la IA en todos sus productos, desde el asistente Cortana hasta los servicios de aprendizaje automático de Azure. Sus inversiones en startups y herramientas de IA demuestran un enfoque sólido para impulsar las tecnologías de aprendizaje profundo.
  • En enero de 2025, OpenAI, conocida por desarrollar modelos avanzados de IA, se centra en crear IA que beneficie a la humanidad. Su enfoque de código abierto y sus colaboraciones con empresas como Microsoft y Amazon refuerzan su influencia en la comunidad de la IA.


SKU-

Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo

  • Panel de análisis de datos interactivo
  • Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
  • Acceso de analista de investigación para personalización y consultas
  • Análisis de la competencia con panel interactivo
  • Últimas noticias, actualizaciones y análisis de tendencias
  • Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Solicitud de demostración

Metodología de investigación

La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.

La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.

Personalización disponible

Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados ​​en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

Preguntas frecuentes

El mercado se segmenta según Segmentación del mercado global de redes neuronales de aprendizaje profundo (DNN), por componente (hardware, software y servicios), aplicación (reconocimiento de imágenes, procesamiento del lenguaje natural, reconocimiento de voz y minería de datos), usuario final (banca, servicios financieros y seguros (BFSI), TI y telecomunicaciones, atención médica, comercio minorista, automotriz, fabricación, aeroespacial y defensa, seguridad y otros), - Tendencias de la industria y pronóstico hasta 2032 .
El tamaño del Informe de análisis del tamaño, la participación y las tendencias del mercado se valoró en 52.30 USD Billion USD en 2024.
Se prevé que el Informe de análisis del tamaño, la participación y las tendencias del mercado crezca a una CAGR de 31.2% durante el período de pronóstico de 2025 a 2032.
Los principales actores del mercado incluyen Alyuda ResearchLLC., IBM, Micron TechnologyInc., Neural Technologies Limited, NeuroDimensionInc., NeuralWare, NVIDIA Corporation, SAMSUNG, Skymind, Qualcomm TechnologiesInc., Intel Corporation, Amazon Web ServicesInc., Microsoft, GMDH Inc., Sensory Inc., Ward Systems GroupInc., Xilinx, Starmind and Google LLC .
Testimonial