Global Machine Learning Service Mlaas Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%
USD
9.82 Billion
USD
78.25 Billion
2024
2032
| 2025 –2032 | |
| USD 9.82 Billion | |
| USD 78.25 Billion | |
|
|
|
|
Segmentación del mercado global de aprendizaje automático como servicio (MLaaS) por componente (herramientas y servicios de software), aplicación (marketing y publicidad, detección de fraude y análisis de riesgos, mantenimiento predictivo, realidad aumentada, análisis de redes y gestión automatizada del tráfico, entre otros), tamaño de la organización (pequeñas y medianas empresas y grandes empresas), usuario final (educación, banca y servicios financieros, seguros, automatización y transporte, atención médica, defensa, comercio minorista, comercio electrónico, medios y entretenimiento, telecomunicaciones, gobierno, industria aeroespacial, entre otros): tendencias y pronóstico de la industria hasta 2032.
Tamaño del mercado de aprendizaje automático como servicio (MLaaS)
- El tamaño del mercado global de aprendizaje automático como servicio (MLaaS) se valoró en USD 9.82 mil millones en 2024 y se espera que alcance los USD 78.25 mil millones para 2032 , con una CAGR del 29,6% durante el período de pronóstico.
- Este crecimiento está impulsado por la creciente adopción de soluciones de aprendizaje automático como servicio (MLaaS) por parte de organizaciones de pequeña y mediana escala y el aumento del enfoque hacia los avances en la tecnología de la ciencia de datos.
Análisis del mercado de aprendizaje automático como servicio (MLaaS)
- El aprendizaje automático como servicio (MLaaS) se considera una subcategoría de los servicios de computación en la nube. Es un conjunto de servicios que ofrece una amplia gama de herramientas y componentes de aprendizaje automático para realizar operaciones con mayor eficiencia y eficacia.
- La creciente demanda de tecnología del Internet de las Cosas (IoT) se convertirá en el principal impulsor del crecimiento del mercado. Los crecientes avances en inteligencia artificial impulsarán aún más el crecimiento del mercado.
- América del Norte domina el mercado de aprendizaje automático como servicio (MLaaS) y continuará cultivando su tendencia de dominio durante el período de pronóstico debido a la creciente adopción de soluciones basadas en la nube por parte de empresas pequeñas y medianas.
- Sin embargo, Asia-Pacífico registrará la tasa de crecimiento anual compuesta (TCAC) más alta para este período. Esto se debe a la mayor penetración de la tecnología de aprendizaje automático y al crecimiento sostenible del sector de TI en la región.
- Se prevé que el segmento de herramientas de software domine el mercado con una cuota de mercado significativa en 2025 debido a la creciente demanda de herramientas avanzadas de procesamiento de datos, creación de modelos e implementación. Estas herramientas facilitan flujos de trabajo eficientes de aprendizaje automático, ofreciendo capacidades como almacenamiento de datos, validación de modelos, soporte para árboles de decisión e integración con plataformas en la nube. Su papel en la automatización de procesos complejos en diversas industrias es un factor clave para su creciente adopción.
Alcance del informe y segmentación del mercado de aprendizaje automático como servicio (MLaaS)
|
Atributos |
Aprendizaje automático como servicio (MLaaS): Perspectivas clave del mercado |
|
Segmentos cubiertos |
|
|
Países cubiertos |
América del norte
Europa
Asia-Pacífico
Oriente Medio y África
Sudamerica
|
|
Actores clave del mercado |
|
|
Oportunidades de mercado |
|
|
Conjuntos de información de datos de valor añadido |
Además de los conocimientos sobre escenarios de mercado como valor de mercado, tasa de crecimiento, segmentación, cobertura geográfica y actores principales, los informes de mercado seleccionados por Data Bridge Market Research también incluyen análisis de importación y exportación, descripción general de la capacidad de producción, análisis del consumo de producción, análisis de tendencias de precios, escenario de cambio climático, análisis de la cadena de suministro, análisis de la cadena de valor, descripción general de materias primas/consumibles, criterios de selección de proveedores, análisis PESTLE, análisis de Porter y marco regulatorio. |
Tendencias del mercado del aprendizaje automático como servicio (MLaaS)
Creciente adopción de soluciones basadas en la nube en todos los sectores
- La creciente preferencia por las plataformas de computación en la nube en todas las industrias es un impulsor clave para la adopción de MLaaS, ya que ofrece escalabilidad, flexibilidad y rentabilidad.
- MLaaS basado en la nube elimina la necesidad de grandes inversiones en infraestructura, lo que lo convierte en una opción atractiva para organizaciones de todos los tamaños.
- Permite una implementación más rápida de modelos y análisis en tiempo real, lo que respalda la toma de decisiones ágil y la innovación.
Por ejemplo,
- En 2022, Microsoft Azure Machine Learning informó un aumento del 30 % en los clientes empresariales que utilizan su plataforma para el modelado predictivo en tiempo real, lo que refleja fuertes tendencias de migración a la nube.
- Esto indica un cambio continuo hacia MLaaS a medida que la infraestructura en la nube se convierte en la nueva norma en la transformación digital.
Dinámica del mercado del aprendizaje automático como servicio (MLaaS)
Conductor
Creciente necesidad de comprender el comportamiento del cliente
- Las empresas están aprovechando las herramientas MLaaS para analizar cantidades masivas de datos de clientes para mejorar la personalización y la participación.
- Los conocimientos conductuales precisos obtenidos a través del aprendizaje automático ayudan a las empresas a optimizar las estrategias de marketing y mejorar la retención de clientes.
- Las plataformas MLaaS proporcionan modelos prediseñados para segmentación, análisis de sentimientos y predicción de abandono, lo que permite obtener información más rápidamente.
Por ejemplo,
- En 2023, Salesforce integró análisis basados en MLaaS en su plataforma de gestión de relaciones con los clientes (CRM), lo que ayudó a las empresas a aumentar la eficiencia de las campañas hasta en un 40%.
- Esta creciente demanda de estrategias basadas en el comportamiento está contribuyendo significativamente al crecimiento del mercado de MLaaS.
Oportunidad
Mayor uso en la detección de fraudes y el análisis de riesgos
- Las instituciones financieras y las plataformas de comercio electrónico utilizan cada vez más MLaaS para la detección de fraudes en tiempo real y el análisis del riesgo crediticio.
- Los modelos de aprendizaje automático ayudan a identificar anomalías y detectar patrones sospechosos a escala, reduciendo así los riesgos financieros.
Por ejemplo,
- FICO, líder en calificación crediticia, ahora ofrece MLaaS basado en la nube para bancos, mejorando las tasas de detección de fraude en más del 25 % mediante análisis predictivos.
- Este caso de uso continúa creciendo, especialmente a medida que las amenazas cibernéticas se vuelven más sofisticadas.
Restricción/Desafío
Preocupaciones sobre la seguridad y la privacidad de los datos
- Las cuestiones de seguridad y privacidad de los datos siguen siendo un desafío importante, en particular cuando se procesa información confidencial en plataformas en la nube de terceros.
- Las organizaciones en sectores como finanzas y atención médica dudan en adoptar completamente MLaaS debido a riesgos de incumplimiento y posibles violaciones de datos.
Por ejemplo,
- En septiembre de 2024, una violación de datos que afectó a un proveedor de análisis basado en la nube provocó un escrutinio regulatorio, lo que generó inquietudes sobre la confiabilidad de MLaaS en industrias reguladas.
- Este desafío puede obstaculizar el crecimiento del mercado a menos que se implementen marcos sólidos de protección de datos y garantías de cumplimiento.
Alcance del mercado del aprendizaje automático como servicio (MLaaS)
El mercado de aprendizaje automático como servicio (MLaaS) está segmentado según el componente, la aplicación, el tamaño de la organización y el usuario final.
|
Segmentación |
Subsegmentación |
|
Por componente |
|
|
Por aplicación |
|
|
Por tamaño de la organización |
|
|
Por el usuario final |
|
Se proyecta que en 2025, las herramientas de software dominarán el mercado con la mayor participación en el segmento de componentes.
Se prevé que el segmento de herramientas de software domine el mercado con una cuota de mercado significativa en 2025 debido a la creciente demanda de herramientas avanzadas de procesamiento de datos, creación de modelos e implementación. Estas herramientas facilitan flujos de trabajo eficientes de aprendizaje automático, ofreciendo capacidades como almacenamiento de datos, validación de modelos, soporte para árboles de decisión e integración con plataformas en la nube. Su papel en la automatización de procesos complejos en diversas industrias es un factor clave para su creciente adopción.
Se espera que el segmento de grandes empresas lidere el mercado en términos de tamaño de la organización.
Se prevé que el segmento de Grandes Empresas lidere el mercado en cuanto a tamaño de organización para 2025 gracias a su mayor capacidad de inversión, la generación de datos a gran escala y la adopción temprana de tecnologías basadas en IA. Estas empresas están implementando cada vez más soluciones MLaaS para optimizar sus operaciones, optimizar la toma de decisiones y mejorar la interacción con el cliente, lo que impulsa la demanda de plataformas escalables de aprendizaje automático.
Análisis regional del mercado de aprendizaje automático como servicio (MLaaS)
Norteamérica posee la mayor participación en el mercado de aprendizaje automático como servicio (MLaaS)
- América del Norte domina el mercado de aprendizaje automático como servicio (MLaaS), impulsado por la adopción generalizada de tecnologías en la nube, una sólida infraestructura de TI y una fuerte presencia de importantes empresas tecnológicas como Google, Microsoft, IBM y Amazon Web Services.
- Estados Unidos representa la mayor participación de mercado debido a su adopción temprana de tecnologías de inteligencia artificial y aprendizaje automático en diversos sectores, incluidos BFSI, atención médica, comercio minorista y telecomunicaciones.
- Las altas inversiones en investigación y desarrollo, la disponibilidad de profesionales calificados y los marcos regulatorios favorables respaldan aún más el liderazgo del mercado en esta región.
- Además, las empresas de América del Norte utilizan cada vez más MLaaS para mejorar el análisis de clientes, mejorar los sistemas de detección de fraude e impulsar la innovación en sistemas autónomos y modelos predictivos, acelerando aún más el crecimiento del mercado.
Se proyecta que Asia-Pacífico registre la CAGR más alta en el mercado de aprendizaje automático como servicio (MLaaS)
- Se espera que la región Asia-Pacífico sea testigo de la tasa de crecimiento más alta en el mercado MLaaS durante el período de pronóstico, impulsada por la rápida digitalización, la expansión del sector de TI y el creciente apoyo del gobierno a las iniciativas de inteligencia artificial y aprendizaje automático.
- Países como China, India, Japón y Corea del Sur están surgiendo como contribuyentes importantes debido a las crecientes inversiones en infraestructura en la nube y al aumento de la demanda de análisis de negocios inteligentes.
- China lidera el mercado regional en términos de desarrollo de IA impulsado por el gobierno, mientras que India muestra un crecimiento exponencial en la adopción de MLaaS entre empresas emergentes y pymes que lo aprovechan para lograr eficiencia operativa y focalización de clientes.
- El uso creciente del aprendizaje automático en la atención médica, la manufactura, el comercio electrónico y la tecnología financiera, junto con los crecientes volúmenes de datos y la necesidad de tomar decisiones en tiempo real, está impulsando la expansión del mercado en toda Asia-Pacífico.
Cuota de mercado del aprendizaje automático como servicio (MLaaS)
El panorama competitivo del mercado ofrece detalles por competidor. Se incluye información general de la empresa, sus estados financieros, ingresos generados, potencial de mercado, inversión en investigación y desarrollo, nuevas iniciativas de mercado, presencia global, plantas de producción, capacidad de producción, fortalezas y debilidades de la empresa, lanzamiento de productos, alcance y variedad de productos, y dominio de las aplicaciones. Los datos anteriores se refieren únicamente al enfoque de mercado de las empresas.
Los principales líderes del mercado que operan en el mercado son:
- Google LLC (Estados Unidos)
- IBM (Estados Unidos)
- Microsoft (Estados Unidos)
- SAS Institute Inc. (Estados Unidos)
- Amazon Web Services, Inc. (Estados Unidos)
- BigML, Inc. (Estados Unidos)
- FICO (Estados Unidos)
- Hewlett Packard Enterprise Development LP (Estados Unidos)
- Propiedad intelectual de AT&T (Estados Unidos)
- Yottamine Analytics Inc. (Estados Unidos)
- PurePredictive, Inc (Estados Unidos)
- H2O.ai (Estados Unidos)
- Tamr (Estados Unidos)
- PREDICTRON LABS (Estados Unidos)
- LogDNA (Estados Unidos)
- DeepMind Technologies Limited (Reino Unido)
- Figura Ocho Federal Inc. (Estados Unidos)
- Amprero, Inc. (Estados Unidos)
- Darktrace (Reino Unido)
Últimos avances en el mercado global de aprendizaje automático como servicio (MLaaS)
- En marzo de 2025, Amazon Web Services (AWS) lanzó Amazon SageMaker HyperPod, una nueva solución MLaaS diseñada para entrenar modelos base hasta un 40 % más rápido. Este servicio proporciona una infraestructura optimizada con soporte integrado para escalado y automatización, lo que ayuda a las empresas a acelerar el desarrollo de modelos de IA y a reducir la complejidad y los costes operativos.
- En febrero de 2025, Google Cloud anunció una expansión de su plataforma de IA Vertex, que incorpora capacidades avanzadas para el entrenamiento de modelos multimodales y la inferencia en tiempo real. Esta actualización facilita una mayor interoperabilidad entre API y simplifica la implementación en entornos híbridos y multicloud, con el objetivo de impulsar la adopción empresarial de servicios de aprendizaje automático.
- En enero de 2025, Microsoft Azure se asoció con OpenAI para lanzar una API Copilot centrada en la empresa a través de Azure ML. Esta solución permite a las empresas integrar IA conversacional y ML generativo en sus aplicaciones con un mínimo de programación, lo que mejora significativamente la productividad y la experiencia del usuario en sectores como finanzas, comercio minorista y atención al cliente.
- En noviembre de 2024, IBM presentó Watsonx, una suite renovada y mejorada de herramientas de IA y aprendizaje automático, diseñada para un entrenamiento de modelos más seguro y escalable. Watsonx ofrece funciones mejoradas de gobernanza y transparencia, como la auditabilidad y la detección de sesgos, lo que aborda problemas críticos de cumplimiento normativo y la implementación ética de la IA en sectores regulados como la salud y las finanzas.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

