Informe de análisis del tamaño, la participación y las tendencias del mercado global de MLOps: descripción general del sector y pronóstico hasta 2032

Solicitud de índiceSolicitud de índice Hable con el analistaHable con el analista Informe de muestra gratuitoInforme de muestra gratuito Consultar antes de comprarConsultar antes Comprar ahoraComprar ahora

Informe de análisis del tamaño, la participación y las tendencias del mercado global de MLOps: descripción general del sector y pronóstico hasta 2032

  • ICT
  • Upcoming Report
  • Apr 2024
  • Global
  • 350 Páginas
  • Número de tablas: 220
  • Número de figuras: 60
  • Author : Megha Gupta

Supera los desafíos arancelarios con una consultoría ágil de la cadena de suministro

El análisis del ecosistema de la cadena de suministro ahora forma parte de los informes de DBMR

Global Mlops Market

Tamaño del mercado en miles de millones de dólares

Tasa de crecimiento anual compuesta (CAGR) :  % Diagram

Chart Image USD 2.19 Billion USD 34.21 Billion 2024 2032
Diagram Período de pronóstico
2025 –2032
Diagram Tamaño del mercado (año base)
USD 2.19 Billion
Diagram Tamaño del mercado (año de pronóstico)
USD 34.21 Billion
Diagram Tasa de crecimiento anual compuesta (CAGR)
%
Diagram Jugadoras de los principales mercados
  • Databricks
  • Domino Data Lab
  • Kubeflow (by Google)
  • Amazon SageMaker
  • Paperspace Gradient

Segmentación del mercado global de MLOps por componente (plataforma y servicio), modo de implementación (local, en la nube e híbrido), tamaño de la organización (grandes empresas, pequeñas y medianas empresas [pymes]), sectores industriales (servicios financieros [BFSI], manufactura, tecnología de la información [TI] y telecomunicaciones, comercio minorista y electrónico, atención médica y otros): tendencias y pronóstico de la industria hasta 2032

Mercado de MLOP z

Tamaño del mercado de MLOps

  • El tamaño del mercado global de MLOps se valoró en USD 2.19 mil millones en 2024  y se espera que alcance  los USD 34.21 mil millones para 2032 , con una CAGR del 41,00% durante el período de pronóstico.
  • El crecimiento del mercado está impulsado en gran medida por la creciente adopción de inteligencia artificial (IA) y aprendizaje automático (ML) en todas las industrias, lo que crea una necesidad de implementación de modelos optimizados y gestión del ciclo de vida.
  • La creciente demanda de automatización en los flujos de trabajo de ML, incluido el entrenamiento, la supervisión y el reentrenamiento de modelos, está acelerando aún más la adopción de plataformas y herramientas MLOps.

Análisis del mercado de MLOps

  • El mercado de MLOps está experimentando un rápido crecimiento a medida que las organizaciones buscan poner en funcionamiento modelos de ML a escala, garantizando confiabilidad, reproducibilidad y gobernanza.
  • Las soluciones MLOps basadas en la nube están ganando terreno debido a su escalabilidad e integración con los canales DevOps existentes, lo que las hace atractivas tanto para grandes empresas como para pymes.
  • América del Norte dominó el mercado de MLOps con la mayor participación en los ingresos del 41 % en 2024, impulsada por la fuerte adopción de inteligencia artificial y aprendizaje automático en las empresas, así como por la presencia de importantes proveedores de tecnología e infraestructura de nube avanzada.
  • Se espera que la región Asia-Pacífico sea testigo de la tasa de crecimiento más alta en el mercado global de MLOps , impulsada por la adopción a gran escala de tecnologías de IA, el aumento de las inversiones en plataformas en la nube, la expansión de los servicios de TI y el papel de la región como centro global para la transformación digital y la innovación.
  • El segmento de plataformas registró la mayor cuota de mercado en 2024, impulsado por la creciente demanda de soluciones integradas que optimizan la preparación de datos, el entrenamiento, la implementación y la monitorización de modelos de aprendizaje automático. Estas plataformas garantizan escalabilidad, reproducibilidad y cumplimiento normativo, lo que las convierte en la opción preferida para la adopción empresarial a gran escala.

Alcance del informe y segmentación del mercado de MLOps      

Atributos

Perspectivas clave del mercado de MLOps

Segmentos cubiertos

  • Por componente: Plataforma y Servicio
  • Por modo de implementación: local, en la nube e híbrido
  • Por tamaño de organización: Grandes empresas, pequeñas y medianas empresas (PYME)
  • Por sectores industriales: Servicios financieros (BFSI), Manufactura, Tecnologías de la información (TI) y telecomunicaciones, Comercio minorista y electrónico, Salud y otros.

Países cubiertos

América del norte

  • A NOSOTROS
  • Canadá
  • México

Europa

  • Alemania
  • Francia
  • Reino Unido
  • Países Bajos
  • Suiza
  • Bélgica
  • Rusia
  • Italia
  • España
  • Pavo
  • Resto de Europa

Asia-Pacífico

  • Porcelana
  • Japón
  • India
  • Corea del Sur
  • Singapur
  • Malasia
  • Australia
  • Tailandia
  • Indonesia
  • Filipinas
  • Resto de Asia-Pacífico

Oriente Medio y África

  • Arabia Saudita
  • Emiratos Árabes Unidos
  • Sudáfrica
  • Egipto
  • Israel
  • Resto de Oriente Medio y África

Sudamerica

  • Brasil
  • Argentina
  • Resto de Sudamérica

Actores clave del mercado

Oportunidades de mercado

• Integración de MLOps con plataformas nativas de la nube
• Creciente adopción de soluciones de aprendizaje automático automatizado (AutoML)

Conjuntos de información de datos de valor añadido

Además de los conocimientos del mercado, como el valor de mercado, la tasa de crecimiento, los segmentos del mercado, la cobertura geográfica, los actores del mercado y el escenario del mercado, el informe de mercado elaborado por el equipo de investigación de mercado de Data Bridge incluye un análisis experto en profundidad, análisis de importación/exportación, análisis de precios, análisis de consumo de producción y análisis pestle.

Tendencias del mercado de MLOps

El auge de las operaciones de aprendizaje automático automatizadas y escalables

La creciente transición hacia flujos de trabajo automatizados en aprendizaje automático (ML) está transformando el panorama de las operaciones de aprendizaje automático (MLOps) al permitir la implementación, la monitorización y la gobernanza de modelos en tiempo real. La escalabilidad y la velocidad de estas plataformas permiten a las empresas implementar la IA a gran escala, lo que agiliza la innovación y mejora la toma de decisiones.

La alta demanda de eficiencia en la gestión de grandes volúmenes de modelos de aprendizaje automático (ML) está acelerando la adopción de soluciones MLOps nativas de la nube y pipelines DevOps integrados. Estas plataformas son especialmente eficaces para empresas donde la capacitación y la implementación continuas son cruciales, garantizando así la precisión y la relevancia de los modelos.

La asequibilidad y accesibilidad de las herramientas MLOps de código abierto las hacen atractivas para las pequeñas y medianas empresas (pymes), lo que permite una mayor participación en la transformación impulsada por la IA. Esto mejora la agilidad organizacional y reduce las barreras técnicas y financieras para la implementación de la IA.

• Por ejemplo, en 2023, varias instituciones financieras en América del Norte implementaron canales automatizados de MLOps para monitorear los modelos de detección de fraude, reduciendo los falsos positivos y mejorando la seguridad de las transacciones al tiempo que se reducen los costos operativos.

Si bien la automatización y la escalabilidad están acelerando la adopción de MLOps, su impacto depende de la innovación continua, una sólida gobernanza de datos y la integración con los sistemas de TI empresariales existentes. Los proveedores deben centrarse en la interoperabilidad, la seguridad y las soluciones intuitivas para aprovechar esta demanda.

Dinámica del mercado de MLOps

Conductor

Aumento de la adopción empresarial de IA y demanda de gestión del ciclo de vida de los modelos

La rápida adopción de la inteligencia artificial y el aprendizaje automático en todos los sectores impulsa a las empresas a invertir en MLOps para una gestión eficiente del ciclo de vida de los modelos. Desde la capacitación hasta la implementación, MLOps garantiza la fiabilidad, la reproducibilidad y el cumplimiento normativo, lo que permite a las organizaciones escalar la IA de forma responsable e impulsar la innovación rápidamente.

Las organizaciones son cada vez más conscientes de los riesgos de los modelos de aprendizaje automático no gestionados, como el sesgo, la desviación y el incumplimiento normativo, lo que pone de relieve la necesidad de marcos de MLOps robustos. Al abordar estos desafíos, MLOps permite a las empresas mantener el rendimiento de los modelos, protegerse contra riesgos reputacionales y garantizar la confianza en las decisiones basadas en IA.

Las iniciativas de los sectores público y privado, como las inversiones centradas en IA, la expansión de la infraestructura en la nube y las directrices regulatorias para una IA responsable, están fortaleciendo el ecosistema MLOps. Estos esfuerzos no solo incentivan a las empresas a adoptar las mejores prácticas, sino que también definen estándares globales para una implementación ética, transparente y segura de la IA.

Por ejemplo, en 2022, el gobierno estadounidense anunció un aumento en la financiación para la infraestructura y la gobernanza de la IA, lo que impulsó la demanda de plataformas MLOps de nivel empresarial en sectores como la salud, la defensa y las finanzas. Esta iniciativa refleja una tendencia global más amplia de alinear la innovación en IA con la rendición de cuentas y la competitividad a largo plazo.

Si bien la adopción está en aumento, el crecimiento sostenido depende de abordar cuestiones como la estandarización, la seguridad de los datos y la capacitación del personal para garantizar un uso responsable y generalizado de las soluciones MLOps. Las empresas deben lograr un equilibrio entre la implementación rápida y la gobernanza responsable para liberar todo el potencial transformador de la IA.

Restricción/Desafío

Altos costos de implementación y escasez de talento en MLOps

El alto costo de implementar plataformas MLOps de nivel empresarial, en particular aquellas que requieren infraestructura en la nube avanzada y herramientas de monitoreo, sigue siendo un obstáculo para las pequeñas empresas y los mercados emergentes. Estos costos a menudo cubren no solo el software, sino también la integración, el cumplimiento normativo y el mantenimiento continuo, lo que limita una mayor accesibilidad.

En muchas regiones, también existe una escasez de profesionales cualificados capaces de gestionar procesos complejos de MLOps, incluyendo la implementación de modelos, la monitorización y los procesos de cumplimiento. Esta escasez de talento crea cuellos de botella para las empresas que buscan escalar la IA, obligándolas a recurrir a consultores externos o personal poco cualificado.

La penetración en el mercado se ve aún más limitada por los desafíos de integración, ya que muchas empresas aún operan con sistemas de TI heredados que no son compatibles con las plataformas MLOps modernas. Esta brecha se traduce en plazos de implementación más largos, mayores gastos y un retraso en el retorno de la inversión (ROI), lo que disuade a las pequeñas empresas de adoptar la IA a gran escala.

Por ejemplo, en 2023, varias empresas manufactureras de Asia-Pacífico informaron dificultades para adoptar MLOps debido a la escasez de personal cualificado y los elevados gastos asociados a la migración a la nube y la integración de plataformas. Estas dificultades ponen de relieve el ritmo desigual de adopción de MLOps entre los mercados desarrollados y los mercados en desarrollo.

Si bien las tecnologías MLOps siguen avanzando, resolver los desafíos de costos, integración y talento sigue siendo esencial. Los proveedores y las empresas deben priorizar las soluciones low-code, los programas de capacitación y los modelos de implementación híbridos para cubrir las brechas, reducir la complejidad y aprovechar al máximo el potencial del mercado global de MLOps.

Alcance del mercado de MLOps

El mercado está segmentado en función del componente, el modo de implementación, el tamaño de la organización y los sectores industriales.

  • Por componente

Según sus componentes, el mercado de MLOps se segmenta en plataformas y servicios. El segmento de plataformas obtuvo la mayor cuota de mercado en 2024, impulsado por la creciente demanda de soluciones integradas que optimizan la preparación de datos, el entrenamiento, la implementación y la monitorización de modelos de aprendizaje automático. Estas plataformas garantizan escalabilidad, reproducibilidad y cumplimiento normativo, lo que las convierte en la opción preferida para la adopción empresarial a gran escala.

Se prevé que el segmento de servicios experimente el mayor crecimiento entre 2025 y 2032, impulsado por la creciente dependencia de la consultoría, la integración y los servicios gestionados. Las empresas recurren cada vez más a proveedores de servicios para superar la escasez de personal cualificado y abordar los complejos desafíos de implementación, lo que les permite acelerar la adopción de la IA y, al mismo tiempo, optimizar los costes y la eficiencia operativa.

  • Por modo de implementación

Según el modo de implementación, el mercado de MLOps se segmenta en local, en la nube e híbrido. El segmento de la nube tuvo la mayor cuota de mercado en 2024, impulsado por la creciente adopción de infraestructura en la nube escalable, que permite a las organizaciones entrenar e implementar modelos de aprendizaje automático con mayor rapidez y minimizando los costos iniciales. Las soluciones de MLOps basadas en la nube también se integran a la perfección con los flujos de datos modernos, ofreciendo flexibilidad y accesibilidad.

Se prevé que el segmento híbrido experimente el mayor crecimiento entre 2025 y 2032, impulsado por las empresas que buscan un equilibrio entre la escalabilidad de la nube y la seguridad de la infraestructura local. Los modelos híbridos de MLOps son cada vez más adoptados por sectores altamente regulados como la banca, la defensa y la sanidad, donde el manejo de datos sensibles es fundamental, a la vez que se benefician de la innovación en la nube.

  • Por tamaño de la organización

Según el tamaño de la organización, el mercado de MLOps se segmenta en grandes empresas y pequeñas y medianas empresas (PYME). Las grandes empresas representaron la mayor participación en los ingresos en 2024, ya que son pioneras en la adopción de soluciones de IA de nivel empresarial y cuentan con los recursos para invertir en plataformas MLOps avanzadas. Estas organizaciones se benefician de la capacidad de escalar iniciativas de IA en múltiples departamentos, lo que mejora la productividad y la innovación.

Se prevé que el segmento de las pymes experimente el mayor crecimiento entre 2025 y 2032, impulsado por la creciente asequibilidad de las soluciones MLOps basadas en la nube y las plataformas low-code. Las pymes están adoptando MLOps para mejorar la toma de decisiones, optimizar las operaciones y obtener una ventaja competitiva sin incurrir en altos costos de infraestructura, lo que impulsa aún más la adopción de la IA a nivel mundial.

  • Por sectores industriales

Según los sectores industriales, el mercado de MLOps se segmenta en servicios financieros (BFSI), manufactura, tecnologías de la información (TI) y telecomunicaciones, comercio minorista y electrónico, salud, entre otros. El segmento BFSI dominó el mercado en 2024, impulsado por el creciente uso de IA para la detección de fraudes, la evaluación de riesgos y la supervisión del cumplimiento normativo. La necesidad de una gobernanza robusta de modelos y la supervisión en tiempo real refuerza aún más la demanda de MLOps en este sector.

Se prevé que el sector sanitario experimente el mayor crecimiento entre 2025 y 2032, impulsado por la creciente adopción de la IA en imágenes médicas, diagnósticos y tratamientos personalizados. Las soluciones MLOps ayudan a garantizar la precisión de los modelos, el cumplimiento normativo y la seguridad de los datos de los pacientes, lo que las hace vitales para escalar las aplicaciones de IA en el sector sanitario. Otros sectores, como la fabricación y el comercio minorista, también están integrando rápidamente MLOps para mejorar la eficiencia operativa, la gestión de la cadena de suministro y la experiencia del cliente.

Análisis regional del mercado de MLOps

• América del Norte dominó el mercado de MLOps con la mayor participación en los ingresos del 41 % en 2024, impulsada por la fuerte adopción de inteligencia artificial y aprendizaje automático en las empresas, así como por la presencia de importantes proveedores de tecnología e infraestructura de nube avanzada.

• Las empresas de la región valoran la confiabilidad, escalabilidad y las características de cumplimiento de las plataformas MLOps, lo que garantiza una gestión segura y eficiente del ciclo de vida del modelo de IA.

• Este liderazgo está respaldado además por altas inversiones en innovación en IA, políticas gubernamentales favorables y una fuerte demanda de industrias como finanzas, atención médica y TI, lo que consolida a América del Norte como un centro líder para la adopción de MLOps.

Perspectiva del mercado de MLOps de EE. UU.

El mercado estadounidense de MLOps capturó la mayor participación en ingresos en 2024 en Norteamérica, impulsado por la rápida transformación digital, el aumento en la implementación de soluciones de IA basadas en la nube y la alta demanda empresarial de automatización. Las empresas aprovechan cada vez más MLOps para optimizar los flujos de trabajo de IA, reducir los riesgos operativos y garantizar el cumplimiento de las cambiantes regulaciones de datos. Además, la integración de MLOps con ecosistemas de nube avanzados, como AWS, Microsoft Azure y Google Cloud, sigue impulsando el crecimiento en sectores como BFSI, comercio minorista y atención médica.

Perspectivas del mercado de MLOps en Europa

Se prevé que el mercado europeo de MLOps experimente el mayor crecimiento entre 2025 y 2032, impulsado principalmente por las estrictas normativas de protección de datos, como el RGPD, y la creciente necesidad de modelos de IA seguros y explicables. La creciente adopción de la IA en los sectores de servicios financieros, manufactura y gobierno está impulsando la demanda de plataformas MLOps escalables. Las empresas europeas también priorizan la implementación responsable de la IA, la sostenibilidad y las prácticas éticas de IA, lo que fomenta la integración generalizada de MLOps en los sectores público y privado.

Perspectivas del mercado de MLOps del Reino Unido

Se prevé que el mercado británico de MLOps experimente el mayor crecimiento entre 2025 y 2032, impulsado por sólidas inversiones en investigación de IA, innovación en tecnología financiera y estrategias empresariales que priorizan lo digital. El creciente enfoque en el cumplimiento normativo, la transparencia de los modelos y la gestión segura de datos está impulsando la demanda de soluciones MLOps de nivel empresarial. Además, el floreciente sector de servicios de TI del Reino Unido y la adopción generalizada de infraestructuras de nube híbrida están acelerando aún más el crecimiento del mercado.

Perspectivas del mercado de MLOps en Alemania

Se prevé que el mercado alemán de MLOps experimente el mayor crecimiento entre 2025 y 2032, impulsado por el énfasis del país en la Industria 4.0, la fabricación inteligente y la automatización. Las empresas alemanas integran cada vez más MLOps en sus procesos de IA para mejorar la eficiencia operativa, el análisis predictivo y la optimización de la cadena de suministro. El enfoque en la sostenibilidad, el cumplimiento normativo y la seguridad de los datos también está influyendo en la demanda de soluciones MLOps, especialmente en aplicaciones industriales, automotrices y sanitarias.

Perspectiva del mercado de MLOps de Asia-Pacífico

Se prevé que el mercado de MLOps en Asia-Pacífico experimente el mayor crecimiento entre 2025 y 2032, impulsado por la rápida digitalización, el auge de la adopción de la nube y la creciente inversión en IA en países como China, Japón e India. Las empresas de la región están adoptando cada vez más MLOps para gestionar aplicaciones basadas en datos a gran escala, optimizar las implementaciones de IA y mejorar la escalabilidad. Con el surgimiento de APAC como consumidor y productor de tecnologías de IA, se espera que la asequibilidad y la accesibilidad de las plataformas MLOps aceleren su adopción tanto en pymes como en grandes empresas.

Perspectiva del mercado de MLOps en Japón

Se prevé que el mercado japonés de MLOps experimente el mayor crecimiento entre 2025 y 2032 debido al enfoque nacional en la automatización, la robótica y la innovación de alta tecnología. Las empresas japonesas están aprovechando MLOps para aplicaciones en manufactura, comercio minorista y atención médica, con un fuerte énfasis en la eficiencia, la precisión y la seguridad. La integración de MLOps con el IoT y los proyectos de infraestructura inteligente también está impulsando su adopción. Además, el envejecimiento de la fuerza laboral japonesa está impulsando a las empresas a adoptar la automatización basada en IA, lo que impulsa una mayor demanda de plataformas MLOps.

Perspectiva del mercado de MLOps de China

El mercado chino de MLOps representó la mayor cuota de mercado en ingresos en Asia-Pacífico en 2024, gracias a las enormes inversiones gubernamentales en IA, la expansión de la infraestructura en la nube y la rápida adopción en sectores como el comercio electrónico, las finanzas y la manufactura. China se está consolidando como líder mundial en innovación en IA, donde MLOps es un pilar fundamental para el escalado y la implementación de aplicaciones de aprendizaje automático. El auge de las ciudades inteligentes, junto con la solidez de los proveedores nacionales de tecnología, está impulsando aún más la adopción de MLOps, convirtiendo a China en un actor clave en el mercado global.

Cuota de mercado de MLOps

La industria de MLOps está liderada principalmente por empresas bien establecidas, entre las que se incluyen:

  • Databricks (EE. UU.)
  • Domino Data Lab (EE. UU.)
  • Kubeflow (de Google) (EE. UU.)
  • Amazon SageMaker (EE. UU.)
  • Gradiente de espacio de papel (EE. UU.)
  • Fiddler AI (EE. UU.)
  • MLflow (de Databricks) (EE. UU.)
  • Valohai (Finlandia)
  • Paquidermo (EE. UU.)
  • ZenML (Alemania)

Últimos avances en el mercado global de MLOps

  • En marzo de 2025, Hewlett Packard Enterprise (HPE), en colaboración con NVIDIA, lanzó nuevas soluciones de IA empresarial dentro del portafolio NVIDIA AI Computing by HPE, incluyendo HPE Private Cloud AI integrado con NVIDIA AI Data Platform. Impulsadas por la arquitectura Blackwell de NVIDIA, estas soluciones ofrecen herramientas mejoradas de rendimiento, seguridad y observabilidad, a la vez que permiten un rápido desarrollo e implementación de IA. Esta iniciativa busca acelerar la adopción empresarial de IA generativa y agente, reduciendo el tiempo de generación de valor y fomentando la innovación, impulsando así la competitividad de ambas empresas en el panorama de IA y MLOps.
  • En julio de 2024, Microsoft presentó el marco arquitectónico MLOps v2 para Azure, una solución integral diseñada para optimizar las operaciones de aprendizaje automático en cargas de trabajo de aprendizaje automático clásico, visión artificial y procesamiento del lenguaje natural. Este marco integra las mejores prácticas del sector y ofrece componentes modulares para la gestión de datos, el desarrollo de modelos, la implementación y la monitorización. Al garantizar flujos de trabajo de IA repetibles, seguros y listos para producción, este lanzamiento permite a las empresas acelerar sus iniciativas de IA con mayor escalabilidad y eficiencia, lo que consolida la posición de Azure en el mercado global de MLOps.
  • En mayo de 2021, Google Cloud presentó Vertex AI, una plataforma de aprendizaje automático gestionado que unifica múltiples servicios para crear, entrenar e implementar modelos de aprendizaje automático. La plataforma se diseñó para simplificar el ciclo de vida de la IA, reducir la complejidad operativa y acelerar el desarrollo de modelos. Al facilitar a las organizaciones una adopción de IA más sencilla, rápida y escalable, Vertex AI ha desempeñado un papel fundamental en el fortalecimiento de la presencia de Google en el mercado de la IA empresarial y las operaciones de aprendizaje automático.


SKU-

Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo

  • Panel de análisis de datos interactivo
  • Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
  • Acceso de analista de investigación para personalización y consultas
  • Análisis de la competencia con panel interactivo
  • Últimas noticias, actualizaciones y análisis de tendencias
  • Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Solicitud de demostración

Metodología de investigación

La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.

La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.

Personalización disponible

Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados ​​en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

Preguntas frecuentes

El mercado se segmenta según Segmentación del mercado global de MLOps por componente (plataforma y servicio), modo de implementación (local, en la nube e híbrido), tamaño de la organización (grandes empresas, pequeñas y medianas empresas [pymes]), sectores industriales (servicios financieros [BFSI], manufactura, tecnología de la información [TI] y telecomunicaciones, comercio minorista y electrónico, atención médica y otros): tendencias y pronóstico de la industria hasta 2032 .
El tamaño del Informe de análisis del tamaño, la participación y las tendencias del mercado se valoró en 2.19 USD Billion USD en 2024.
Se prevé que el Informe de análisis del tamaño, la participación y las tendencias del mercado crezca a una CAGR de 41% durante el período de pronóstico de 2025 a 2032.
Los principales actores del mercado incluyen Databricks, Domino Data Lab, Kubeflow (by Google), Amazon SageMaker, Paperspace Gradient .
Testimonial