Global Modelops Market
Tamaño del mercado en miles de millones de dólares
Tasa de crecimiento anual compuesta (CAGR) :
%
USD
5.31 Billion
USD
4.03 Billion
2024
2032
| 2025 –2032 | |
| USD 5.31 Billion | |
| USD 4.03 Billion | |
|
|
|
|
Segmentación del mercado global de ModelOps por oferta (plataformas, servicios), implementación (en la nube y local), modelo (modelos de aprendizaje automático, modelos basados en gráficos, modelos de reglas y heurísticos, modelos lingüísticos, modelos basados en agentes, entre otros), aplicación (atención al cliente y asistentes virtuales, robótica y automatización, atención médica, servicios financieros, seguridad y vigilancia, videojuegos y entretenimiento, marketing y ventas, recursos humanos, legal y cumplimiento normativo, entre otros), vertical (BFSI, comercio minorista y comercio electrónico , atención médica y ciencias biológicas, TI y telecomunicaciones, energía y servicios públicos, fabricación, transporte y logística, entre otros): tendencias y pronóstico del sector hasta 2032.
¿Cuál es el tamaño y la tasa de crecimiento del mercado global de ModelOps?
- El tamaño del mercado global de ModelOps se valoró en USD 5.31 mil millones en 2024 y se espera que alcance los USD 4.03 mil millones para 2032 , con una CAGR del 37,90% durante el período de pronóstico.
- ModelOps ha sido testigo de una creciente demanda en sectores como BFSI, atención médica y fabricación debido a la creciente necesidad de escalar modelos de IA/ML en tiempo real, al tiempo que se garantiza la gobernanza y el cumplimiento.
- La creciente complejidad de los modelos de IA y la necesidad de monitoreo continuo, reentrenamiento y control de versiones están impulsando la adopción de soluciones ModelOps en empresas de todo el mundo.
¿Cuáles son las principales conclusiones del mercado de ModelOps?
- El mercado se está expandiendo rápidamente debido al aumento en la implementación de IA a gran escala, lo que impulsa a las empresas a invertir en plataformas que garanticen la eficiencia operativa y la responsabilidad del modelo.
- ModelOps ofrece un rendimiento constante, preparación para el cumplimiento y gestión del ciclo de vida para los modelos de ML, lo que lo hace indispensable para aplicaciones de misión crítica en industrias reguladas.
- La integración continua de arquitecturas nativas de la nube y prácticas de MLOps en las estrategias empresariales está elevando a ModelOps como un facilitador central de la toma de decisiones impulsada por IA, lo que contribuye al impulso del mercado.
- Norteamérica dominó el mercado de ModelOps con la mayor cuota de ingresos, un 42,14 % en 2024, impulsada por la adopción generalizada de IA/ML en los sectores de BFSI, salud y comercio minorista. La adopción temprana de plataformas de analítica avanzada en la región y el enfoque en la madurez de MLOps aceleran la implementación de ModelOps.
- Se espera que el mercado ModelOps de Asia-Pacífico crezca a la CAGR más rápida del 12,52 % entre 2025 y 2032, impulsado por la creciente adopción de IA en el servicio al cliente, la detección de fraudes y las ciudades inteligentes.
- El segmento de plataformas dominó el mercado de ModelOps con la mayor participación en ingresos del mercado, un 62,7 %, en 2024, atribuido a la creciente necesidad de herramientas integradas que gestionen el ciclo de vida de extremo a extremo de los modelos de IA/ML.
Alcance del informe y segmentación del mercado de ModelOps
|
Atributos |
Perspectivas clave del mercado de ModelOps |
|
Segmentos cubiertos |
|
|
Países cubiertos |
América del norte
Europa
Asia-Pacífico
Oriente Medio y África
Sudamerica
|
|
Actores clave del mercado |
|
|
Oportunidades de mercado |
|
|
Conjuntos de información de datos de valor añadido |
Además de los conocimientos sobre escenarios de mercado, como valor de mercado, tasa de crecimiento, segmentación, cobertura geográfica y actores principales, los informes de mercado seleccionados por Data Bridge Market Research también incluyen análisis en profundidad de expertos, análisis de precios, análisis de participación de marca, encuesta de consumidores, análisis demográfico, análisis de la cadena de suministro, análisis de la cadena de valor, descripción general de materias primas/consumibles, criterios de selección de proveedores, análisis PESTLE, análisis de Porter y marco regulatorio. |
¿Cuál es la tendencia clave en el mercado de ModelOps?
Ciclo de vida del modelo de IA optimizado mediante la automatización y la gobernanza continua
- Una tendencia importante que está transformando el mercado global de ModelOps es el cambio hacia la automatización de la implementación, el monitoreo y el reentrenamiento de modelos de IA/ML, lo que garantiza la eficiencia operativa y el valor continuo de las inversiones en IA.
- Las organizaciones están adoptando cada vez más plataformas ModelOps integradas con MLOps, AIOps y DevOps, lo que permite una coordinación fluida entre científicos de datos, TI y equipos de operaciones.
- Por ejemplo, en marzo de 2024, IBM lanzó nuevas capacidades de gobernanza de IA en su plataforma Watsonx para garantizar operaciones de IA responsables y el cumplimiento normativo en empresas globales.
- Las empresas también están invirtiendo en el seguimiento del rendimiento de los modelos en tiempo real utilizando datos de telemetría para detectar desviaciones y activar flujos de trabajo de reentrenamiento automatizados.
- Esta evolución respalda sistemas de IA escalables, confiables y de aprendizaje continuo en industrias como la atención médica, las finanzas, el comercio minorista y la fabricación.
- La tendencia destaca una creciente demanda de automatización inteligente, monitoreo del ciclo de vida y gestión de modelos basada en el cumplimiento, clave para escalar la IA en toda la empresa.
¿Cuáles son los impulsores clave del mercado ModelOps?
- El auge de la toma de decisiones impulsada por IA y la necesidad de poner en funcionamiento modelos de IA más allá de las fases piloto están impulsando el mercado de ModelOps.
- Por ejemplo, en mayo de 2024, Google Cloud mejoró su suite Model Garden para ayudar a las empresas a implementar, monitorear y administrar modelos de IA a escala con funciones integradas de explicabilidad y trazabilidad.
- Las plataformas ModelOps ayudan a las empresas a garantizar la precisión del modelo, reducir el sesgo y cumplir con las regulaciones de IA en constante evolución, lo cual es fundamental en sectores como BFSI, atención médica y servicios públicos.
- Los crecientes volúmenes de datos empresariales y la creciente complejidad de los modelos están alentando a las organizaciones a adoptar plataformas que respalden la implementación, el escalamiento y la gobernanza automatizados.
- Además, la aparición de entornos híbridos y multicloud requiere herramientas ModelOps flexibles que puedan gestionar modelos en infraestructura distribuida.
- El impulso a las prácticas éticas de IA, el control de costos y el seguimiento del ROI de las implementaciones de IA impulsa aún más la adopción de soluciones ModelOps sólidas.
¿Qué factor está desafiando el crecimiento del mercado de ModelOps?
- Un desafío clave en el mercado de ModelOps es la falta de estandarización en herramientas y flujos de trabajo en las etapas del ciclo de vida de IA/ML, lo que genera complejidades de integración.
- Por ejemplo, en febrero de 2023, una encuesta de Forrester reveló que más del 60 % de las empresas tienen dificultades para unificar los equipos de ciencia de datos, TI y negocios debido a entornos de operaciones de modelos fragmentados.
- Además, la pronunciada curva de aprendizaje y la escasez de profesionales capacitados con conocimientos operativos y de IA dificultan la implementación efectiva de ModelOps.
- Muchas organizaciones también enfrentan dificultades para medir el rendimiento del modelo en entornos de producción, lo que limita la confianza en la automatización a gran escala.
- Las limitaciones presupuestarias, especialmente en empresas pequeñas y medianas, dificultan la inversión en plataformas ModelOps integrales y herramientas de gobernanza de IA.
- Abordar estas cuestiones mediante estándares abiertos, plataformas unificadas y soluciones ModelOps de código bajo o sin código será esencial para liberar un amplio potencial de mercado.
¿Cómo está segmentado el mercado de ModelOps?
El mercado está segmentado en función de la oferta, la implementación, el modelo, la aplicación y la vertical.
- Ofreciendo
En función de su oferta, el mercado de ModelOps se segmenta en plataformas y servicios. El segmento de plataformas dominó el mercado de ModelOps con la mayor cuota de mercado, un 62,7 % en 2024, debido a la creciente necesidad de herramientas integradas que gestionen el ciclo de vida completo de los modelos de IA/ML. Estas plataformas permiten una implementación, una monitorización y una gobernanza más rápidas de los modelos en diversas operaciones comerciales, especialmente en empresas centradas en datos. Su capacidad para centralizar las operaciones y garantizar el cumplimiento normativo las ha convertido en una inversión crucial en las industrias impulsadas por la IA.
Se proyecta que el segmento de servicios experimentará una CAGR notable entre 2025 y 2032, debido a la creciente demanda de consultoría, integración y servicios administrados para apoyar a las empresas con experiencia interna limitada en IA.
- Por implementación
En función de la implementación, el mercado de ModelOps se segmenta en la nube y en instalaciones locales. El segmento de la nube registró la mayor participación en los ingresos, con un 69,3 %, en 2024, gracias a la creciente adopción de soluciones de infraestructura escalables y flexibles en las empresas. ModelOps basado en la nube ofrece una integración fluida, rentabilidad y accesibilidad remota, lo que lo convierte en una opción preferida, especialmente entre pymes y startups tecnológicas.
La implementación local sigue siendo relevante en sectores como BFSI y gobierno, donde la soberanía de los datos, la seguridad y el cumplimiento siguen siendo prioridades principales.
- Por modelo
Según el modelo, el mercado de ModelOps se segmenta en modelos de aprendizaje automático (ML), modelos basados en grafos, modelos de reglas y heurísticos, modelos lingüísticos, modelos basados en agentes, entre otros. El segmento de modelos de ML dominó el mercado con la mayor participación, un 47,8 %, en 2024, gracias a su amplio uso en automatización, análisis predictivo y toma de decisiones en tiempo real en diversas industrias. Los modelos de ML son fundamentales para la mayoría de los flujos de trabajo de IA, y requieren una gestión eficiente y una optimización continua, características que las plataformas ModelOps están diseñadas para ofrecer.
Se espera que el segmento de modelos basados en gráficos experimente el crecimiento más rápido, respaldado por una creciente adopción en detección de fraude, sistemas de recomendación y gráficos de conocimiento.
- Por aplicación
Según la aplicación, el mercado se segmenta en atención al cliente y asistentes virtuales, robótica y automatización, salud, servicios financieros, seguridad y vigilancia, videojuegos y entretenimiento, marketing y ventas, recursos humanos, legal y cumplimiento normativo, entre otros. El segmento de atención al cliente y asistentes virtuales representó la mayor cuota de mercado, con un 24,6 %, en 2024, impulsado por el creciente uso de chatbots de IA y herramientas de soporte automatizadas en banca, comercio minorista y telecomunicaciones. Estas aplicaciones requieren actualizaciones continuas de modelos, seguimiento del rendimiento en tiempo real y control de versiones, capacidades clave que ofrece ModelOps.
Se espera que la atención médica sea el segmento de más rápido crecimiento, impulsado por la demanda de herramientas de diagnóstico basadas en inteligencia artificial, sistemas de monitoreo de pacientes y soluciones de tratamiento personalizadas.
- Por Vertical
Por sector, el mercado de ModelOps se segmenta en BFSI, comercio minorista y electrónico, salud y ciencias de la vida, TI y telecomunicaciones, energía y servicios públicos, manufactura, transporte y logística, entre otros. El segmento BFSI dominó con la mayor participación en los ingresos, con un 21,9 % en 2024, a medida que los bancos e instituciones financieras implementan cada vez más ModelOps para gestionar la detección de fraude, los modelos de calificación crediticia y las herramientas de evaluación de riesgos. El estricto cumplimiento normativo en el sector refuerza la necesidad de una sólida gobernanza de modelos.
Se proyecta que el sector vertical de comercio minorista y electrónico registre un fuerte crecimiento, impulsado por la necesidad de personalización en tiempo real, precios dinámicos y previsión de la demanda impulsada por modelos de IA.
¿Qué región posee la mayor participación en el mercado de ModelOps?
- Norteamérica dominó el mercado de ModelOps con la mayor cuota de ingresos, un 42,14 % en 2024, impulsada por la adopción generalizada de IA/ML en los sectores de BFSI, salud y comercio minorista. La adopción temprana de plataformas de analítica avanzada en la región y el enfoque en la madurez de MLOps aceleran la implementación de ModelOps.
- Una fuerte presencia de innovadores en IA, junto con una mayor inversión en IA responsable y cumplimiento normativo, contribuye al liderazgo del mercado en gobernanza de modelos y gestión del ciclo de vida.
- Además, la existencia de importantes proveedores de soluciones ModelOps y la creciente demanda de infraestructura de IA nativa de la nube fortalecen la posición de América del Norte como líder mundial en la adopción de ModelOps.
Perspectiva del mercado de ModelOps en EE. UU.
El mercado estadounidense de ModelOps representó la mayor cuota de ingresos en Norteamérica en 2024, impulsado por la digitalización empresarial a gran escala, los mandatos regulatorios para la IA explicable y la rápida proliferación de modelos en los sectores de la banca, los seguros y la sanidad. Las alianzas estratégicas entre gigantes tecnológicos y startups, así como las inversiones en la implementación segura y escalable de modelos de IA, están acelerando la demanda de marcos robustos de ModelOps.
Perspectivas del mercado de ModelOps en Europa
Se prevé que el mercado europeo de ModelOps crezca de forma constante durante el período de pronóstico, impulsado por la creciente demanda de IA ética y una gobernanza de modelos que cumpla con el RGPD. Las instituciones financieras y las organizaciones del sector público de la región están adoptando cada vez más ModelOps para implementar la IA de forma responsable. Además, el énfasis en la auditabilidad de los modelos y la privacidad de los datos fomenta su adopción en los sectores manufacturero, legal y gubernamental.
Perspectivas del mercado de ModelOps en el Reino Unido
Se espera que el mercado británico de ModelOps crezca a una tasa de crecimiento anual compuesta (TCAC) prometedora, impulsado por el aumento de las inversiones en IA en tecnología financiera, salud y tecnología legal. El creciente enfoque en la transparencia, la equidad y la monitorización de modelos, junto con los marcos de IA respaldados por los gobiernos, impulsa a las organizaciones hacia plataformas de ModelOps escalables y automatizadas. La sólida comunidad de investigación en IA del Reino Unido contribuye aún más a la innovación en la gestión del ciclo de vida de los modelos.
Análisis del mercado de ModelOps en Alemania
El mercado alemán de ModelOps se encuentra en rápida expansión, impulsado por la creciente integración de la IA en la fabricación, la automoción y la automatización industrial. El énfasis de Alemania en la precisión, la excelencia en la ingeniería y la calidad de los datos respalda la implementación de modelos de IA altamente gobernados. Las iniciativas de la Industria 4.0 y la evolución de las fábricas inteligentes impulsan aún más la demanda de soluciones integrales de ModelOps.
¿Cuál es la región con mayor crecimiento en el mercado de ModelOps?
Se prevé que el mercado de ModelOps en Asia-Pacífico crezca a la tasa de crecimiento anual compuesta (TCAC) más rápida, del 12,52 %, entre 2025 y 2032, impulsado por la creciente adopción de la IA en la atención al cliente, la detección de fraudes y las ciudades inteligentes. Los programas de transformación digital impulsados por los gobiernos en China, India y los países de la ASEAN, junto con la necesidad de una implementación escalable de la IA, están impulsando el crecimiento del mercado. La expansión de los servicios en la nube y el talento local en IA también están haciendo que las soluciones de ModelOps sean más accesibles en la región.
Perspectivas del mercado de ModelOps en Japón
El mercado japonés de ModelOps está experimentando un fuerte impulso en robótica, fabricación inteligente y servicios financieros. La priorización de Japón de la automatización y la ética de la IA está generando una demanda de modelos explicables, fiables y con monitorización continua. ModelOps se está convirtiendo en una herramienta crucial en la transición de Japón hacia sistemas autónomos y aplicaciones de IA de precisión.
Perspectivas del mercado de ModelOps en China
El mercado chino de ModelOps registró la mayor participación en ingresos en Asia-Pacífico en 2024, impulsado por la rápida digitalización, el sólido apoyo a las políticas de IA y su amplia implementación en los sectores del comercio electrónico, las finanzas y la administración pública. Los líderes tecnológicos nacionales están invirtiendo activamente en herramientas de IA para el ciclo de vida con el fin de escalar los modelos de producción. El enfoque de China en la soberanía de la IA y los marcos regulatorios está impulsando aún más la adopción de ModelOps en todos los sectores.
¿Cuáles son las principales empresas en el mercado ModelOps?
La industria de ModelOps está liderada principalmente por empresas bien establecidas, entre las que se incluyen:
- IBM (EE.UU.)
- Google (EE. UU.)
- Oracle (EE. UU.)
- SAS Institute (EE. UU.)
- AWS (EE. UU.)
- Teradata (EE. UU.)
- Palantir (EE. UU.)
- Veritone (EE. UU.)
- Altair (EE. UU.)
- c3.ai (EE. UU.)
- TIBCO (EE. UU.)
- Databricks (EE. UU.)
- Giggso (EE. UU.)
- Verta (EE. UU.)
- ModelOp (EE. UU.)
- Cometa ML (EE. UU.)
- Súper sabio (Israel)
- Evidentemente IA (EE.UU.)
- Minitab (EE. UU.)
- Seldon (Reino Unido)
- Innominds (EE. UU.)
- Datatron (EE. UU.)
- Domino Data Lab (EE. UU.)
- Arthur (Estados Unidos)
- Pesos y sesgos (EE. UU.)
- Xenonstack (EE. UU.)
- Cnvrg.io (Israel)
- DataKitchen (EE. UU.)
- Haisten AI (EE. UU.)
- Sparkling Logic (EE. UU.)
- LeewayHertz (EE. UU.)
¿Cuáles son los desarrollos recientes en el mercado global ModelOps?
- En julio de 2024, Teradata, proveedor líder de plataformas de análisis en la nube, colaboró con DataRobot, Inc., un destacado proveedor de plataformas de IA abiertas, para integrar la plataforma de IA de DataRobot con ClearScape Analytics y VantageCloud de Teradata. Esta integración está diseñada para dotar a las empresas de mayor flexibilidad y capacidades mejoradas para desarrollar y escalar modelos de IA seguros y eficientes. Se espera que esta colaboración acelere la toma de decisiones basada en IA y la eficiencia operativa en todos los sectores.
- En mayo de 2024, Microsoft presentó GPT-4o, el modelo multimodal más reciente de OpenAI, en Azure AI. Este modelo incorpora capacidades de texto, imagen y audio para una IA generativa y conversacional avanzada. Este nuevo modelo se lanzó en versión preliminar a través del servicio Azure OpenAI y ofrece compatibilidad con entradas de texto e imagen. Este lanzamiento mejora la oferta de IA de Microsoft y facilita el acceso a la IA generativa de vanguardia para desarrolladores y empresas.
- En mayo de 2024, Google Cloud presentó su servicio Generative AI Ops, diseñado para ayudar a las organizaciones a convertir sus prototipos de IA generativa en soluciones de producción. Disponible a través de Google Cloud Consulting y su ecosistema de socios, este servicio respalda aspectos críticos como la seguridad, el ajuste de modelos, la integración de retroalimentación y la optimización del rendimiento. Esta iniciativa subraya el compromiso de Google Cloud de apoyar a las empresas en la escalabilidad de las innovaciones de IA de forma responsable y eficaz.
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.

