Mercado de aprendizaje automático como servicio en España, por servicio (servicio gestionado, profesional, servicio profesional), función empresarial (recursos humanos, ventas y marketing, finanzas y operaciones), modelo de implementación (nube, local), tamaño de la organización (organización grande, organización pequeña y mediana), aplicación (descubrimiento de fármacos, detección de fraude y gestión de riesgos, procesamiento del lenguaje natural, marketing y publicidad, seguridad y vigilancia, reconocimiento de imágenes , análisis predictivo, minería de datos, realidad aumentada y virtual), usuario final (banca, servicios financieros y seguros, TI y telecomunicaciones, investigación y academia, gobierno y sector público, comercio minorista y comercio electrónico, fabricación, atención médica y productos farmacéuticos, viajes y logística, energía y servicios públicos, medios y entretenimiento): tendencias de la industria y pronóstico hasta 2029
Análisis y tamaño del mercado
Las empresas que participan en el mercado del aprendizaje automático como servicio se están centrando en sectores esenciales como la tecnología sanitaria, la industria BFSI y las telecomunicaciones para determinar flujos de ingresos estables después de la crisis del coronavirus. Sin embargo, los errores tecnológicos y la falta de profesionales expertos con experiencia en aprendizaje automático parecen ser uno de los principales factores limitantes en la adopción del aprendizaje automático por parte de las organizaciones. Esto está creando obstáculos en la implementación de plataformas de aprendizaje automático como servicio. Además, la falta de seguridad de los datos debido a la falta de herramientas afecta negativamente al crecimiento del mercado. Por lo tanto, los participantes en el mercado del aprendizaje automático como servicio deben cooperar con el gobierno y las organizaciones restrictivas para estandarizar el aprendizaje automático como negocio de servicios.
Data Bridge Market Research analiza que se espera que el valor del mercado del aprendizaje automático como servicio, que fue de USD 5.45 mil millones en 2021, alcance el valor de USD 79.34 mil millones para 2029, a una CAGR del 39,76 % durante el período de pronóstico 2022-2029.
Definición de mercado
El aprendizaje automático es una tecnología que proporciona a las computadoras la capacidad de aprender y cambiar funciones fundamentales cuando se las expone a diferentes conjuntos de datos. El aprendizaje automático se ha convertido en la herramienta más importante para las empresas. Gigantes tecnológicos como Amazon y Google están realizando enormes gastos para aumentar y consolidar su base de clientes.
Alcance del informe y segmentación del mercado
Métrica del informe |
Detalles |
Período de pronóstico |
2022 a 2029 |
Año base |
2021 |
Años históricos |
2020 (Personalizable para 2019 - 2014) |
Unidades cuantitativas |
Ingresos en miles de millones de USD, volúmenes en unidades, precios en USD |
Segmentos cubiertos |
Servicio (servicio gestionado, profesional, servicio profesional), función empresarial (recursos humanos, ventas y marketing, finanzas y operaciones), modelo de implementación (nube, en las instalaciones), tamaño de la organización (organización grande, organización pequeña y mediana), aplicación (descubrimiento de fármacos, detección de fraude y gestión de riesgos, procesamiento del lenguaje natural, marketing y publicidad, seguridad y vigilancia, reconocimiento de imágenes, análisis predictivo, minería de datos, realidad aumentada y virtual), usuario final (banca, servicios financieros y seguros, TI y telecomunicaciones, investigación y academia, gobierno y sector público, comercio minorista y electrónico, fabricación, atención médica y productos farmacéuticos, viajes y logística, energía y servicios públicos, medios y entretenimiento) |
Actores del mercado cubiertos |
Google (EE. UU.), Microsoft (EE. UU.), IBM (EE. UU.), SAP (Alemania), Amazon Web Services, Inc. (EE. UU.) |
Oportunidades de mercado |
|
Dinámica del mercado de aprendizaje automático como servicio en España
En esta sección se aborda la comprensión de los factores impulsores del mercado, las ventajas, las oportunidades, las limitaciones y los desafíos. Todo esto se analiza en detalle a continuación:
Conductores:
- Avances en las tecnologías
Se están produciendo rápidos avances e innovaciones en las tecnologías de reconocimiento de gestos, y numerosos proveedores de soluciones realizan un gran trabajo en estas áreas. Por ejemplo, Affectiva lanzó recientemente su tecnología de análisis de emociones, que cuenta con el mayor repositorio de datos de más de dos millones de videos faciales, lo que permite a sus clientes lograr una alta precisión con información inigualable. Además de eso, otros actores como Cognitec Systems, Emotient, Gesturetek, Saffron y Palantir están realizando avances importantes en el campo del reconocimiento de gestos, el reconocimiento facial, la computación de características psicológicas y el análisis de células somáticas. Se espera que estos avances impulsen el crecimiento del mercado en los próximos años.
- Almacenamiento y archivado de datos
En los algoritmos de aprendizaje profundo, el almacenamiento y el archivado de información desempeñan un papel importante a la hora de predecir las soluciones para problemas muy complejos. Dado que un programa algorítmico de aprendizaje profundo trabaja con una red neuronal artificial compuesta por muchas capas, necesita una cantidad enorme de conjuntos de datos para proporcionar el resultado. El programa algorítmico de aprendizaje profundo utiliza el almacenamiento y el archivado de información para centrarse en las funciones avanzadas dentro de la red neuronal artificial.
- Modelador y procesamiento
Durante la última década, las tecnologías de aprendizaje automático han evolucionado hasta convertirse en "algoritmos" desarrollados a partir de numerosos campos, incluidos la estadística, la aritmética, la neurobiología y la informática, lo que los hace comercialmente viables y computacionalmente robustos. Varias aplicaciones disponibles en la actualidad, como el reconocimiento de voz, la detección de fraudes y la mejora de la red, utilizan una variedad de técnicas de aprendizaje automático respaldadas por la clasificación, la regresión y la estimación para procesar conjuntos de datos estructurados.
- Interfaz de programación de aplicaciones (APIS) basada en la nube y la Web
En el aprendizaje automático, la demanda de información es un parámetro de entrada vital. Varias empresas verticales, como la banca y los servicios financieros, necesitan una enorme cantidad de información al instante para predecir el comportamiento del mercado. Los algoritmos de aprendizaje automático tienen mucho menos tiempo para predecir las soluciones cuando recopilan información de los paquetes de software de almacenamiento y archivado de datos. Para superar esta característica, los algoritmos de aprendizaje automático crean una interfaz entre la nube y la plataforma de aplicaciones.
Oportunidades:
- Aumentan las inversiones en el sector sanitario
En el campo de la medicina, se utilizan datos masivos para calcular estadísticas complejas en grandes cantidades y, por lo tanto, para generar tendencias y patrones que son cruciales para las aplicaciones en el sector de la atención médica. Los datos masivos ayudan a los médicos a anticipar los problemas antes de que ocurran. El clúster de análisis de salud de Elsevier ha revolucionado la atención al paciente en la República Federal de Alemania mediante la implementación de datos masivos. La empresa trabaja en estrecha coordinación con economistas de la salud, médicos, estadísticos, especialistas en TI y analistas para desarrollar información basada en evidencia sobre tratamientos adecuados. Esto se puede gestionar mediante datos masivos en la atención médica y los profesionales médicos lo utilizan adecuadamente con la ayuda de la IA. La preparación de datos masivos en la atención médica ha impulsado el crecimiento del mercado alemán de aprendizaje automático.
Restricciones/desafíos:
La falta de mano de obra cualificada para incorporar el aprendizaje automático como mercado de servicios podría ser un problema clave que obstaculizará el crecimiento de este mercado en gran medida. Además, las empresas necesitan servicios especializados para personalizar funciones específicas para implementarlas en sus plataformas MLaaS. Los estrictos problemas de cumplimiento normativo son otro problema que se espera que limite el mercado objetivo.
Este informe de mercado de aprendizaje automático como servicio proporciona detalles de nuevos desarrollos recientes, regulaciones comerciales, análisis de importación y exportación, análisis de producción, optimización de la cadena de valor, participación de mercado, impacto de los actores del mercado nacional y localizado, analiza oportunidades en términos de bolsillos de ingresos emergentes, cambios en las regulaciones del mercado, análisis de crecimiento estratégico del mercado, tamaño del mercado, crecimientos del mercado de categorías, nichos de aplicación y dominio, aprobaciones de productos, lanzamientos de productos, expansiones geográficas, innovaciones tecnológicas en el mercado. Para obtener más información sobre el mercado de aprendizaje automático como servicio, comuníquese con Data Bridge Market Research para obtener un informe de analista, nuestro equipo lo ayudará a tomar una decisión de mercado informada para lograr el crecimiento del mercado.
Impacto de la COVID-19 en el mercado del aprendizaje automático como servicio
La pandemia de COVID-19 ha acelerado el interés por el aprendizaje automático porque el mundo practica tecnologías de distanciamiento social. La incorporación del aprendizaje automático como mercado de servicios debería ser factible a través de cada sistema de software y servicios dependiendo de la cantidad y la naturaleza de la integración. El uso de cámaras de calor y sistemas de identificación de grupos se ha vuelto común en terminales aéreas, estaciones de tren y diferentes lugares de tráfico público. Esto ha puesto a los mercados de aprendizaje automático como servicio bajo el foco de atención, lo que a su vez se prevé que mejore el mercado objetivo. Además, el uso de IA para reconocer la presencia de personas en zonas confinadas en clínicas asociadas a centros de atención de COVID tiene un impacto positivo en el mercado mundial del aprendizaje automático como servicio. Los cálculos utilizados para la IA y la investigación han mejorado en los últimos tiempos, lo que crea una oportunidad dinámica para los actores/proveedores que operan en el mercado del aprendizaje automático como servicio.
Alcance del mercado del aprendizaje automático como servicio en España
El mercado de aprendizaje automático como servicio está segmentado en función del servicio, el modelo de implementación de funciones comerciales, el tamaño de la organización, la aplicación y el usuario final. El crecimiento entre estos segmentos lo ayudará a analizar segmentos de crecimiento magros en las industrias y brindará a los usuarios una valiosa descripción general del mercado y conocimientos del mercado para ayudarlos a tomar decisiones estratégicas para identificar aplicaciones centrales del mercado.
Servicio
- Servicio gestionado
- Profesional
- Servicio Profesional
Función empresarial
- Recursos humanos
- Ventas y marketing
- Finanzas y operaciones
Modelo de implementación
- Nube
- En las instalaciones
Tamaño de la organización
- Organización grande
- Pequeña y mediana organización
Solicitud
- Descubrimiento de fármacos
- Detección de fraudes y gestión de riesgos
- Procesamiento del lenguaje natural
- Marketing y publicidad
- Seguridad y Vigilancia
- Reconocimiento de imágenes
- Análisis predictivo
- Minería de datos
- Realidad aumentada y virtual
Usuario final
- Servicios bancarios y financieros
- Seguro
- TI y telecomunicaciones
- Investigación y Académica
- Gobierno y sector público
- Comercio minorista y comercio electrónico
- Fabricación
- Atención sanitaria y productos farmacéuticos
- Viajes y Logística
- Energía y servicios públicos
- Medios y entretenimiento
Análisis del panorama competitivo y la cuota de mercado del aprendizaje automático como servicio
El panorama competitivo del mercado de aprendizaje automático como servicio proporciona detalles por competidor. Los detalles incluidos son una descripción general de la empresa, las finanzas de la empresa, los ingresos generados, el potencial de mercado, la inversión en investigación y desarrollo, las nuevas iniciativas de mercado, la presencia global, los sitios e instalaciones de producción, las capacidades de producción, las fortalezas y debilidades de la empresa, el lanzamiento de productos, la amplitud y variedad de productos, y el dominio de las aplicaciones. Los puntos de datos anteriores proporcionados solo están relacionados con el enfoque de las empresas en relación con el mercado de aprendizaje automático como servicio.
Algunos de los principales actores que operan en el mercado del aprendizaje automático como servicio son:
- Google (EE.UU.),
- Microsoft (Estados Unidos),
- IBM (EE.UU.),
- SAP (Alemania),
- Amazon Web Services, Inc. (Estados Unidos)
SKU-
Obtenga acceso en línea al informe sobre la primera nube de inteligencia de mercado del mundo
- Panel de análisis de datos interactivo
- Panel de análisis de empresas para oportunidades con alto potencial de crecimiento
- Acceso de analista de investigación para personalización y consultas
- Análisis de la competencia con panel interactivo
- Últimas noticias, actualizaciones y análisis de tendencias
- Aproveche el poder del análisis de referencia para un seguimiento integral de la competencia
Tabla de contenido
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 TECHNOLOGY LIFE LINE CURVE
2.5 MULTIVARIATE MODELLING
2.6 TOP TO BOTTOM ANALYSIS
2.7 STANDARDS OF MEASUREMENT
2.8 VENDOR SHARE ANALYSIS
2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.1 DATA POINTS FROM KEY SECONDARY DATABASES
2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT
2.12 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
6 PORTER’S FIVE FORCE MODEL
6.1 OVERVIEW
6.2 BARGAINING POWER OF BUYERS
6.3 BARGAINING POWER OF SUPPLIERS
6.4 THREAT OF NEW ENTRANTS
6.5 THREAT OF SUBSTITUTES
6.6 THREAT OF RIVALRY
7 INDUSTRY INSIGHTS
8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT
8.1 OVERVIEW
8.2 SOFTWARE
8.3 SERVICE
8.3.1 BY TYPE
8.3.2 PROFESSIONAL SERVICE
8.3.2.1. CONSULTING & TRAINING SERVICES
8.3.2.2. SUPPORT & MAINTENANCE SERVICES
8.3.2.3. IMPLEMENTATION SERVICES
8.3.3 MANAGED SERVICE
9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION
9.1 OVERVIEW
9.2 HUMAN RESOURCES
9.3 SALES AND MARKETING
9.4 FINANCE
9.5 OPERATION
10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISE
11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE
11.1 OVERVIEW
11.2 LARGE ORGANIZATION
11.2.1 BY DEPLOYMENT MODEL
11.2.1.1. CLOUD
11.2.1.2. ON-PREMISE
11.3 SMALL & MEDIUM ORGANIZATION
11.3.1 BY DEPLOYMENT MODEL
11.3.1.1. CLOUD
11.3.1.2. ON-PREMISE
12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 DATA MINING
12.3 NATURAL LANGUAGE PROCESSING
12.4 IMAGE RECOGNITION
12.5 DRUG DISCOVERY
12.6 PREDICTIVE ANALYTICS
12.7 FRAUD DETECTION AND RISK MANAGEMENT
12.8 MARKETING AND ADVERTISING
12.9 AUGMENTED & VIRTUAL REALITY
12.1 SECURITY AND SURVEILLANCE
12.11 OTHERS
13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER
13.1 OVERVIEW
13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE
13.2.1 BY OFFERING
13.2.1.1. SOFTWARE
13.2.1.2. SERVICES
13.3 IT AND TELECOMMUNICATION
13.3.1 BY OFFERING
13.3.1.1. SOFTWARE
13.3.1.2. SERVICES
13.4 RESEARCH AND ACADEMIC
13.4.1 BY OFFERING
13.4.1.1. SOFTWARE
13.4.1.2. SERVICES
13.5 GOVERNMENT AND PUBLIC SECTOR
13.5.1 BY OFFERING
13.5.1.1. SOFTWARE
13.5.1.2. SERVICES
13.6 RETAIL & ECOMMERCE
13.6.1 BY OFFERING
13.6.1.1. SOFTWARE
13.6.1.2. SERVICES
13.7 MANUFACTURING
13.7.1 BY OFFERING
13.7.1.1. SOFTWARE
13.7.1.2. SERVICES
13.8 HEALTHCARE AND PHARMACEUTICALS
13.8.1 BY OFFERING
13.8.1.1. SOFTWARE
13.8.1.2. SERVICES
13.9 TRAVEL & LOGISTICS
13.9.1 BY OFFERING
13.9.1.1. SOFTWARE
13.9.1.2. SERVICES
13.1 ENERGY AND UTILITY
13.10.1 BY OFFERING
13.10.1.1. SOFTWARE
13.10.1.2. SERVICES
13.10.2 BY OFFERING
13.10.2.1. SOFTWARE
13.10.2.2. SERVICES
13.11 MEDIA AND ENTERTAINMENT
13.11.1 BY OFFERING
13.11.1.1. SOFTWARE
13.11.1.2. SERVICES
13.12 ACADEMIA AND RESEARCH
13.12.1 BY OFFERING
13.12.1.1. SOFTWARE
13.12.1.2. SERVICES
13.13 OTHERS
14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: SPAIN
14.2 MERGERS & ACQUISITIONS
14.3 NEW PRODUCT DEVELOPMENT & APPROVALS
14.4 EXPANSIONS
14.5 REGULATORY CHANGES
14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS
16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE
16.1 MICROSOFT
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 AMAZON WEB SERVICES, INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 GEOGRAPHIC PRESENCE
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENTS
16.3 GOOGLE,LLC
16.3.1 COMPANY SNAPSHOT
16.3.2 GEOGRAPHIC PRESENCE
16.3.3 REVENUE ANALYSIS
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 IBM
16.4.1 COMPANY SNAPSHOT
16.4.2 GEOGRAPHIC PRESENCE
16.4.3 REVENUE ANALYSIS
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 SAP SE
16.5.1 COMPANY SNAPSHOT
16.5.2 GEOGRAPHIC PRESENCE
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENTS
16.6 BIGML
16.6.1 COMPANY SNAPSHOT
16.6.2 GEOGRAPHIC PRESENCE
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENTS
16.7 ISHIR
16.7.1 COMPANY SNAPSHOT
16.7.2 GEOGRAPHIC PRESENCE
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENTS
16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.8.1 COMPANY SNAPSHOT
16.8.2 GEOGRAPHIC PRESENCE
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENTS
16.9 SAS INSTITUTE INC.
16.9.1 COMPANY SNAPSHOT
16.9.2 GEOGRAPHIC PRESENCE
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENTS
16.1 FICO
16.10.1 COMPANY SNAPSHOT
16.10.2 GEOGRAPHIC PRESENCE
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENTS
17 QUESTIONNAIRE
18 CONCLUSION
19 RELATED REPORTS
20 ABOUT DATA BRIDGE MARKET RESEARCH

Metodología de investigación
La recopilación de datos y el análisis del año base se realizan utilizando módulos de recopilación de datos con muestras de gran tamaño. La etapa incluye la obtención de información de mercado o datos relacionados a través de varias fuentes y estrategias. Incluye el examen y la planificación de todos los datos adquiridos del pasado con antelación. Asimismo, abarca el examen de las inconsistencias de información observadas en diferentes fuentes de información. Los datos de mercado se analizan y estiman utilizando modelos estadísticos y coherentes de mercado. Además, el análisis de la participación de mercado y el análisis de tendencias clave son los principales factores de éxito en el informe de mercado. Para obtener más información, solicite una llamada de un analista o envíe su consulta.
La metodología de investigación clave utilizada por el equipo de investigación de DBMR es la triangulación de datos, que implica la extracción de datos, el análisis del impacto de las variables de datos en el mercado y la validación primaria (experto en la industria). Los modelos de datos incluyen cuadrícula de posicionamiento de proveedores, análisis de línea de tiempo de mercado, descripción general y guía del mercado, cuadrícula de posicionamiento de la empresa, análisis de patentes, análisis de precios, análisis de participación de mercado de la empresa, estándares de medición, análisis global versus regional y de participación de proveedores. Para obtener más información sobre la metodología de investigación, envíe una consulta para hablar con nuestros expertos de la industria.
Personalización disponible
Data Bridge Market Research es líder en investigación formativa avanzada. Nos enorgullecemos de brindar servicios a nuestros clientes existentes y nuevos con datos y análisis que coinciden y se adaptan a sus objetivos. El informe se puede personalizar para incluir análisis de tendencias de precios de marcas objetivo, comprensión del mercado de países adicionales (solicite la lista de países), datos de resultados de ensayos clínicos, revisión de literatura, análisis de mercado renovado y base de productos. El análisis de mercado de competidores objetivo se puede analizar desde análisis basados en tecnología hasta estrategias de cartera de mercado. Podemos agregar tantos competidores sobre los que necesite datos en el formato y estilo de datos que esté buscando. Nuestro equipo de analistas también puede proporcionarle datos en archivos de Excel sin procesar, tablas dinámicas (libro de datos) o puede ayudarlo a crear presentaciones a partir de los conjuntos de datos disponibles en el informe.