Asia Pacific Deep Learning Neural Networks Dnns Market
Taille du marché en milliards USD
TCAC :
%
USD
35.66 Billion
USD
300.33 Billion
2024
2032
| 2025 –2032 | |
| USD 35.66 Billion | |
| USD 300.33 Billion | |
|
|
|
|
Segmentation du marché des réseaux neuronaux d'apprentissage profond (DNN) en Asie-Pacifique, par composant (matériel, logiciel et services), application (reconnaissance d'images, traitement du langage naturel, reconnaissance vocale, exploration de données), utilisateur final (banque, services financiers et assurances (BFSI), informatique et télécommunications, santé, commerce de détail, automobile, fabrication, aérospatiale et défense, sécurité, autres) - Tendances et prévisions du secteur jusqu'en 2032
Taille du marché des réseaux neuronaux d'apprentissage profond (DNN)
- La taille du marché des réseaux neuronaux d'apprentissage profond (DNN) en Asie-Pacifique était évaluée à 35,66 milliards USD en 2024 et devrait atteindre 300,33 milliards USD d'ici 2032 , à un TCAC de 30,52 % au cours de la période de prévision.
- Cette expansion remarquable du marché est principalement due à l'adoption accélérée de l'intelligence artificielle (IA) dans de nombreux secteurs, notamment la domotique, la santé, l'automobile et l'industrie manufacturière. Les progrès des objets connectés et des infrastructures IoT contribuent également de manière significative à la demande croissante de DNN pour les applications résidentielles et commerciales.
- • De plus, le besoin croissant de systèmes intelligents, sécurisés et automatisés fait des réseaux de neurones à apprentissage profond une technologie fondamentale pour l'analyse prédictive, la reconnaissance de formes et la prise de décision intelligente. Ces facteurs favorisent l'adoption généralisée des réseaux de neurones à apprentissage profond, alimentant une transformation numérique rapide dans la région Asie-Pacifique.
Analyse du marché des réseaux neuronaux d'apprentissage profond (DNN)
- Les réseaux de neurones à apprentissage profond (DNN) deviennent essentiels à la transformation numérique des industries de la région Asie-Pacifique, notamment dans les domaines de la domotique, des systèmes de sécurité et de la surveillance intelligente. Ces algorithmes avancés permettent aux machines d'effectuer des tâches telles que la reconnaissance d'images et de la parole, l'analyse prédictive et la prise de décision autonome avec une précision comparable à celle d'un humain.
- Le marché des DNN en Asie-Pacifique connaît une forte croissance grâce à l'adoption rapide des technologies intelligentes dans les environnements résidentiels et commerciaux. Les gouvernements et les entreprises de pays comme la Chine, le Japon, la Corée du Sud et l'Inde investissent massivement dans les infrastructures basées sur l'IA, accélérant ainsi le déploiement de solutions basées sur les DNN en zones urbaines et semi-urbaines.
- La demande croissante des consommateurs pour des solutions intelligentes, sécurisées et accessibles à distance propulse également le marché des DNN. Dans les écosystèmes de la maison connectée, les DNN améliorent des fonctionnalités telles que la reconnaissance faciale pour le contrôle d'accès, l'intégration des commandes vocales et la surveillance des comportements, offrant ainsi un niveau inédit d'automatisation, de personnalisation et de confort.
- Par ailleurs, la prolifération des objets connectés, l'amélioration de la puissance de calcul et l'expansion de l'infrastructure 5G en Asie-Pacifique favorisent l'intégration fluide des DNN dans les applications de la vie quotidienne. Ces tendances transforment profondément des secteurs comme la santé, le commerce de détail, la finance et les transports, plaçant les DNN au cœur de l'économie numérique de nouvelle génération en Asie-Pacifique.
- La Chine est l'un des principaux moteurs de l'expansion rapide du marché des réseaux neuronaux d'apprentissage profond (DNN) de la région Asie-Pacifique, contribuant de manière significative au TCAC projeté de 33,12 % de la région de 2025 à 2032.
- Le segment du matériel a représenté la plus grande part de revenus du marché en 2024, grâce au déploiement croissant de matériel de calcul haute performance (HPC) tel que les GPU, les TPU et les FPGA pour la formation et l'inférence dans les modèles DNN.
Portée du rapport et segmentation du marché des réseaux neuronaux d'apprentissage profond (DNN)
|
Attributs |
Informations clés sur le marché des réseaux neuronaux d'apprentissage profond (DNN) |
|
Segments couverts |
|
|
Pays couverts |
Asie-Pacifique
|
|
Acteurs clés du marché |
|
|
Opportunités de marché |
|
|
Ensembles d'informations de données à valeur ajoutée |
Outre les informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse approfondie des experts, une analyse des prix, une analyse de la part de marque, une enquête auprès des consommateurs, une analyse démographique, une analyse de la chaîne d'approvisionnement, une analyse de la chaîne de valeur, un aperçu des matières premières/consommables, des critères de sélection des fournisseurs, une analyse PESTLE, une analyse Porter et un cadre réglementaire. |
Tendances du marché des réseaux neuronaux d'apprentissage profond (DNN)
« Accélération de l'intégration de l'IA et de la demande de traitement des données en temps réel »
- L'intégration croissante de l'intelligence artificielle (IA) dans de nombreux secteurs, tels que la finance, la santé, la distribution et l'industrie manufacturière, stimule considérablement la demande en réseaux de neurones à apprentissage profond (DNN). Les entreprises exploitent de plus en plus les DNN pour des tâches telles que l'analyse prédictive, la modélisation du comportement client, la détection des fraudes et les systèmes de recommandation personnalisés, qui nécessitent une interprétation des données en temps réel et de haute précision.
- Par exemple, en mars 2024, IBM a amélioré sa plateforme d'IA et de données Watsonx afin de prendre en charge des modèles DNN plus sophistiqués pour l'automatisation intelligente et l'engagement client dans le secteur des BFSI. Cette avancée permet aux institutions financières d'optimiser l'évaluation des risques en temps réel et d'optimiser l'expérience client grâce à des informations issues de l'IA.
- De plus, la capacité des DNN à traiter des données non structurées telles que des images, de la parole et des vidéos en temps réel les rend indispensables aux applications d'IA modernes. Alors que les entreprises se concentrent sur leur transformation numérique, l'adoption de solutions DNN évolutives et intégrées au cloud devient essentielle pour maintenir leur compétitivité et atteindre l'efficacité opérationnelle.
Dynamique du marché des réseaux neuronaux d'apprentissage profond (DNN)
Conducteur
« Expansion des appareils intelligents et des écosystèmes IoT »
- La prolifération des objets connectés (IoT) et l'utilisation croissante des infrastructures intelligentes accélèrent le déploiement des réseaux de neurones profonds (DNN) en périphérie. Ces réseaux permettent la prise de décision en temps réel dans les appareils connectés tels que les véhicules autonomes, les systèmes domotiques et les systèmes d'automatisation industrielle, en réduisant la latence et en permettant un traitement localisé.
- Par exemple, en avril 2024, Qualcomm Technologies, Inc. a lancé une plateforme informatique de pointe basée sur l'IA et intégrée à des modèles DNN avancés pour améliorer la réactivité des applications de ville intelligente telles que le contrôle du trafic et la gestion de l'énergie.
- La convergence des DNN avec l’IoT et l’informatique de pointe devrait stimuler une forte demande dans divers secteurs, en particulier dans les régions où les investissements en infrastructures intelligentes sont importants, comme l’Asie-Pacifique, les États-Unis et certaines régions d’Europe.
Retenue/Défi
« Coûts de calcul et consommation d'énergie élevés »
- L'un des principaux défis du marché des réseaux de neurones à apprentissage profond (DNN) réside dans la puissance de calcul et l'énergie considérables requises pour entraîner et déployer des modèles complexes. Ces exigences nécessitent souvent l'utilisation de GPU hautes performances, d'un stockage de données à grande échelle et de systèmes de refroidissement avancés, ce qui augmente les coûts d'exploitation.
- Cela constitue un obstacle pour les petites et moyennes entreprises (PME), en particulier dans les pays en développement où l'accès aux infrastructures et au financement peut être limité. De plus, alors que la durabilité environnementale devient une priorité mondiale, l'empreinte carbone élevée associée à la formation des grands réseaux de neurones profonds suscite l'attention des régulateurs et des parties prenantes.
- Par conséquent, l’industrie est confrontée à la pression de développer des algorithmes plus efficaces et du matériel d’IA à faible consommation d’énergie pour rendre l’adoption du DNN plus durable et accessible à toutes les couches économiques.
Portée du marché des réseaux neuronaux d'apprentissage profond (DNN)
Le marché est segmenté en fonction du composant, de l’application et de l’utilisateur final.
- Par composant
Sur la base des composants, le marché des réseaux de neurones d'apprentissage profond (DNN) est segmenté en matériel, logiciels et services. Le segment matériel a représenté la plus grande part de chiffre d'affaires du marché en 2024, grâce au déploiement croissant de matériel de calcul haute performance (HPC) tel que les GPU, les TPU et les FPGA pour l'entraînement et l'inférence dans les modèles DNN. Le besoin croissant d'infrastructures évolutives pour les charges de travail d'apprentissage profond dans les entreprises et les instituts de recherche stimule encore la demande de matériel spécifique à l'IA.
Le secteur des logiciels devrait connaître le TCAC le plus rapide entre 2025 et 2032, grâce aux avancées des frameworks d'apprentissage profond (tels que TensorFlow, PyTorch et MXNet) et à l'utilisation accrue de modèles et bibliothèques pré-entraînés pour le traitement du langage naturel, la vision par ordinateur et les systèmes de recommandation. Les plateformes d'IA basées sur le cloud alimentent également cette croissance grâce à la simplification du développement et du déploiement des modèles.
- Par application
En fonction des applications, le marché des réseaux de neurones convolutifs (RNC) est segmenté en reconnaissance d'images, reconnaissance vocale, traitement du langage naturel (TLN) et exploration de données. Le segment de la reconnaissance d'images détenait la plus grande part de marché en 2024, grâce à son adoption massive dans les véhicules autonomes, les diagnostics médicaux, la reconnaissance faciale et les systèmes de surveillance. L'utilisation croissante des réseaux de neurones convolutifs (RNC) pour l'analyse visuelle des données et le traitement d'images en temps réel stimule considérablement la croissance de ce segment.
Le segment du traitement automatique du langage naturel (TALN) devrait connaître la croissance la plus rapide entre 2025 et 2032, grâce aux progrès rapides de l'IA générative, des assistants virtuels, des chatbots, des outils d'analyse des sentiments et des services de traduction basés sur l'IA. L'utilisation croissante du TALN dans le service client, l'éducation et l'automatisation des entreprises continue de stimuler le marché.
- Par utilisateur final
En fonction de l'utilisateur final, le marché des réseaux de neurones à apprentissage profond (DNN) est segmenté en banques, services financiers et assurances (BFSI), technologies de l'information et télécommunications, santé, commerce de détail, automobile, industrie manufacturière, aérospatiale et défense, sécurité, etc. En 2024, le segment des technologies de l'information et des télécommunications a dominé le marché, porté par le besoin d'optimisation des réseaux en temps réel, de détection des anomalies et de maintenance prédictive. Les opérateurs télécoms exploitent les DNN pour améliorer l'expérience client et automatiser la prestation de services grâce à des agents virtuels intelligents et à l'analyse de données.
Le secteur de la santé devrait connaître son taux de croissance annuel composé le plus élevé entre 2025 et 2032, propulsé par le déploiement croissant des réseaux de neurones profonds (DNN) dans l'imagerie médicale, la découverte de médicaments, le diagnostic et l'évaluation des risques pour les patients. La capacité des modèles d'apprentissage profond à traiter de grands volumes de données médicales non structurées révolutionne la médecine personnalisée et accélère les flux de recherche et développement.
Analyse régionale du marché des réseaux neuronaux d'apprentissage profond (DNN)
- La Chine est l'un des principaux moteurs de l'expansion rapide du marché des réseaux neuronaux d'apprentissage profond (DNN) de la région Asie-Pacifique, contribuant de manière significative au TCAC projeté de 33,12 % de la région de 2025 à 2032.
- La croissance du pays est alimentée par des investissements gouvernementaux substantiels dans l'intelligence artificielle à travers des stratégies nationales comme le « Plan de développement de l'intelligence artificielle de nouvelle génération », qui favorise l'intégration généralisée des DNN dans tous les secteurs.
- L'énorme base de consommateurs de la Chine et les initiatives en matière de villes intelligentes encouragent la prolifération de solutions basées sur DNN dans la reconnaissance faciale, la surveillance intelligente, les véhicules autonomes et les expériences de commerce électronique personnalisées.
- En outre, des acteurs nationaux puissants tels que Baidu, Alibaba, Tencent et Huawei développent activement des chipsets d'IA, des plateformes cloud et des cadres d'apprentissage profond, facilitant un déploiement plus rapide et localisé des applications DNN.
- L'écosystème de fabrication électronique à faible coût du pays, combiné au déploiement généralisé de l'infrastructure 5G, réduit également les barrières à l'entrée et permet l'adoption de systèmes basés sur DNN sur les marchés urbains et ruraux.
- Alors que la Chine se positionne comme une superpuissance mondiale de l'IA, le marché local des réseaux neuronaux d'apprentissage profond (DNN) bénéficie d'une innovation agressive, de cadres politiques favorables et de collaborations croissantes entre les entreprises et les gouvernements, consolidant ainsi davantage son leadership dans la région Asie-Pacifique.
Analyse du marché japonais des réseaux neuronaux d'apprentissage profond (DNN)
Le marché japonais des réseaux neuronaux d'apprentissage profond (DNN) connaît une croissance substantielle, portée par son paysage technologique avancé, la demande croissante d'automatisation et une société fortement urbanisée. L'accent mis par le pays sur la robotique et les systèmes pilotés par l'IA complète le déploiement croissant des DNN dans l'analyse en temps réel, le diagnostic médical, les systèmes automobiles et les applications de maison intelligente. Le vieillissement de la population japonaise crée également des opportunités pour les technologies d'assistance basées sur l'IA, qui s'appuient sur les algorithmes des DNN pour améliorer la sécurité, le confort et la qualité des soins.
Aperçu du marché indien des réseaux neuronaux d'apprentissage profond (DNN)
Le marché indien des réseaux neuronaux d'apprentissage profond (DNN) devrait connaître une croissance rapide grâce à l'expansion de l'écosystème numérique, à l'essor des start-up technologiques et à l'attention croissante du gouvernement pour l'IA, notamment grâce à des initiatives telles que la Stratégie nationale d'IA et Digital India. Avec la numérisation rapide de secteurs comme la santé, les services financiers et le e-commerce, la demande d'outils basés sur les DNN pour la détection des fraudes, l'analyse client et les recommandations personnalisées est en plein essor. De plus, le marché indien, sensible aux coûts, bénéficie de l'essor des frameworks DNN cloud et open source, favorisant ainsi une expérimentation et une adoption généralisées.
Part de marché des réseaux neuronaux d'apprentissage profond (DNN)
L'industrie des réseaux neuronaux d'apprentissage profond (DNN) est principalement dirigée par des entreprises bien établies, notamment :
- LYUDA RESEARCH, LLC (États-Unis)
- Alphabet Inc. (Google) (États-Unis)
- IBM (États-Unis)
- Micron Technologies, Inc. (États-Unis)
- Neural Technologies Limited (Royaume-Uni)
- NEURODIMENSION, INC. (États-Unis)
- NEURALWARE (États-Unis)
- NVIDIA Corporation (États-Unis)
- Skymind Inc. (États-Unis)
- Samsung (Corée du Sud)
- Qualcomm Technologies, Inc. (États-Unis)
- Intel Corporation (États-Unis)
- Amazon Web Services, Inc. (États-Unis)
- Microsoft (États-Unis)
- GMDH LLC.(États-Unis)
- Sensory Inc. (États-Unis)
- Ward Systems Group, Inc. (États-Unis)
- Xilinx Inc. (États-Unis)
- Starmind (Suisse)
Derniers développements sur le marché des réseaux neuronaux d'apprentissage profond (DNN) en Asie-Pacifique
- En février 2025, la Commission nationale chinoise des données et des communications (NDRC) et les fabricants de semi-conducteurs ont dévoilé des réformes réglementaires majeures visant à soutenir les modèles DNN open source spécifiques à chaque domaine. Cette initiative vise à démocratiser le développement de l'IA avancée en permettant la formation sur des configurations GPU abordables, en favorisant l'innovation locale et en réduisant la dépendance aux infrastructures étrangères.
- En 2024, Huawei a entièrement repensé son framework d'apprentissage profond open source MindSpore (v2.3), optimisé pour les NPU ARM sur les puces HarmonyOS et Ascend. Cette mise à jour améliore les performances DNN sur les smartphones, les objets connectés et les plateformes d'informatique de pointe en Asie-Pacifique.
- En février 2025, la revue Nature a signalé une accélération de la concurrence entre les modèles d'IA chinois et occidentaux, les réseaux neuronaux neuronaux de petite taille chinois réduisant l'écart de performance. Cela reflète la maturation de l'écosystème de modèles de réseaux neuronaux de haute qualité, développés localement, en Asie-Pacifique.
- Début 2025, Origin Quantum s'est associé à Phoenix pour exploiter ses puces quantiques supraconductrices « Wukong » dans l'entraînement des réseaux neuronaux profonds (DNN). Cette collaboration de pointe en Chine témoigne d'un intérêt croissant pour l'intégration de l'informatique quantique aux flux de travail des réseaux neuronaux.
- En juin 2025, la conférence MLANN 2025 s'est tenue à Xiamen, en Chine, réunissant des chercheurs et des professionnels de premier plan du secteur de l'apprentissage automatique et des réseaux neuronaux. Cet événement a présenté de nouvelles architectures, des techniques d'optimisation et des applications concrètes des DNN dans les domaines de la santé, de la robotique et de la fabrication intelligente.
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.
