Global Ai Agriculture Market
Taille du marché en milliards USD
TCAC :
%

![]() |
2026 –2032 |
![]() |
USD 2.08 Billion |
![]() |
USD 10.49 Billion |
![]() |
|
![]() |
|
Marché mondial de l'intelligence artificielle dans l'agriculture, par offre (matériel, logiciels et services), technologie [apprentissage automatique (ML), vision par ordinateur, traitement du langage naturel (NLP), robotique et automatisation, et autres], application (agriculture de précision, surveillance du bétail, prévisions météorologiques, gestion des sols, surveillance de la santé des cultures, optimisation de la chaîne d'approvisionnement, et autres), mode de déploiement (sur site et cloud), utilisateur final (fermes, entreprises agro-technologiques, entreprises agrochimiques, instituts de recherche, et autres) - Tendances et prévisions de l'industrie jusqu'en 2031.
Analyse et taille du marché de l'intelligence artificielle dans l'agriculture
Le marché mondial de l'intelligence artificielle dans l'agriculture est sur le point de connaître une croissance substantielle, tirée par plusieurs facteurs clés. Le principal moteur est la réduction significative des coûts offerte par les solutions TEM, qui séduit les entreprises souhaitant optimiser leurs dépenses en télécommunications. L'adoption croissante des téléphones mobiles et autres appareils portables alimente encore davantage la demande de solutions efficaces de gestion des dépenses. La TEM offre une transparence essentielle des dépenses, permettant aux organisations de mieux comprendre et contrôler leurs dépenses en télécommunications. En outre, l'essor de l'IoT et des applications basées sur le cloud a entraîné une demande accrue de solutions TEM, car ces technologies introduisent de nouvelles complexités dans la gestion des dépenses en télécommunications. Cependant, le marché est confronté à des contraintes, notamment le défi de respecter les différentes réglementations et exigences de conformité en matière de télécommunications dans différentes régions, ce qui complique la mise en œuvre et la gestion. Malgré ces défis, il existe des opportunités de croissance considérables. La technologie d'automatisation pour la gestion des dépenses en télécommunications présente une opportunité importante, tout comme l'externalisation des solutions TEM, qui peut offrir des économies de coûts et une expertise.
Selon les analyses de Data Bridge Market Research, le marché mondial de l'intelligence artificielle dans l'agriculture devrait atteindre une valeur de 8,5 milliards USD d'ici 2031, à un TCAC de 22,4 % au cours de la période de prévision. Le rapport sur le marché mondial de l'intelligence artificielle dans l'agriculture couvre également de manière exhaustive l'analyse des prix, l'analyse des brevets et les avancées technologiques.
Rapport métrique |
Détails |
Période de prévision |
2024 à 2031 |
Année de base |
2023 |
Années historiques |
2022 |
Unités quantitatives |
Chiffre d'affaires en milliards USD |
Segments couverts |
Par offre (matériel, logiciel et services), technologie [apprentissage automatique (ML), vision par ordinateur , traitement du langage naturel (NLP) , robotique et automatisation, et autres), application ( agriculture de précision , surveillance du bétail , prévisions météorologiques, gestion des sols, surveillance de la santé des cultures, optimisation de la chaîne d'approvisionnement, et autres), mode de déploiement (sur site et dans le cloud), utilisateur final (exploitations agricoles, entreprises agro-technologiques, entreprises agrochimiques, instituts de recherche, autres) |
Pays couverts |
États-Unis, Canada et Mexique, Allemagne, France, Royaume-Uni, Pays-Bas, Suisse, Belgique, Russie, Italie, Espagne, Turquie, reste de l'Europe, Chine, Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, reste de l'Asie-Pacifique, Arabie saoudite, Émirats arabes unis, Afrique du Sud, Égypte, Israël, reste du Moyen-Orient et de l'Afrique, Brésil, Argentine et reste de l'Amérique du Sud |
Acteurs du marché couverts |
Parmi les autres sociétés, on compte Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva et Bowery Farming Inc. |
Définition du marché
Le marché mondial de l'intelligence artificielle dans l'agriculture englobe les technologies et les solutions qui exploitent l'IA pour améliorer les pratiques agricoles. Cela comprend l'apprentissage automatique, la vision par ordinateur et la robotique pour optimiser la gestion des cultures, l'agriculture de précision et l'allocation des ressources. Le marché couvre les outils basés sur l'IA pour l'analyse des données, les machines autonomes et l'analyse prédictive visant à accroître l'efficacité, le rendement et la durabilité des opérations agricoles. Il sert à un large éventail d'applications, notamment la surveillance des cultures, la gestion des sols, la lutte antiparasitaire et l'optimisation de la chaîne d'approvisionnement.
Dynamique du marché mondial de l'intelligence artificielle dans l'agriculture
Cette section traite de la compréhension des moteurs, des avantages, des opportunités, des contraintes et des défis du marché. Tout cela est discuté en détail ci-dessous :
Conducteurs
- Améliorer la surveillance des cultures et la précision des prévisions de rendement
L’intelligence artificielle (IA) dans l’agriculture améliore la surveillance des cultures et la précision des prévisions de rendement. En s’appuyant sur des algorithmes d’apprentissage automatique et d’analyse de données, l’IA peut analyser de vastes quantités de données provenant de diverses sources, telles que l’imagerie satellite, les capteurs de sol et les prévisions météorologiques. Cela permet aux agriculteurs de surveiller la santé des cultures, d’identifier les infestations de parasites et de prévoir les rendements avec plus de précision. Par conséquent, les informations générées par l’IA aident à optimiser l’allocation des ressources, à améliorer la prise de décision et à augmenter la productivité agricole globale.
Par exemple,
- En juillet 2021, selon le blog publié par Gramener, la prévision du rendement des cultures à l’aide de l’apprentissage automatique et de l’IA est devenue de plus en plus pertinente. L’article expliquait comment l’analyse spatiale et les appareils IoT amélioraient la surveillance des cultures et la prévision du rendement. Les modèles d’IA et d’apprentissage automatique utilisant l’imagerie satellite et les données climatiques ont amélioré la précision de la prévision du rendement des cultures en évaluant les conditions du sol et les conditions météorologiques. L’utilisation de ces technologies a profité aux producteurs agricoles en permettant une surveillance à distance, une cartographie efficace des ressources et des analyses prédictives, ce qui a facilité une meilleure prise de décision et une meilleure planification. Cette avancée favorise une gestion plus efficace des cultures
Mise en œuvre croissante de meilleures techniques agricoles grâce à l'IA
L’amélioration de la mise en œuvre de meilleures techniques agricoles grâce à l’IA implique d’optimiser l’utilisation d’intrants tels que l’eau, les engrais et les pesticides. Les solutions basées sur l’IA permettent une gestion précise de ces ressources, garantissant qu’elles sont appliquées efficacement et uniquement là où c’est nécessaire. Cela réduit les coûts et améliore la productivité en minimisant le gaspillage et en maximisant le rendement des cultures, ce qui conduit finalement à des pratiques agricoles plus durables et plus rentables.
Par exemple,
- En janvier 2024, selon un article publié par Intellias, l’IA a eu un impact significatif sur l’agriculture en améliorant les techniques agricoles. L’IA a permis une gestion précise de l’eau, des engrais et des pesticides, réduisant ainsi les coûts et augmentant la productivité. Les systèmes automatisés ont optimisé l’irrigation et l’application d’engrais, ce qui a conduit à de meilleurs rendements des cultures et à une meilleure efficacité des ressources. Ces avancées ont soutenu des pratiques agricoles plus durables et plus rentables, bénéficiant en fin de compte aux agriculteurs grâce à de meilleurs rendements et à des économies de coûts
Opportunité
- Technologie d'automatisation pour la gestion des dépenses en télécommunications
La technologie d'automatisation de la gestion des dépenses en télécommunications (TEM) rationalise les processus, améliore la précision et réduit les coûts. En exploitant des outils et des logiciels automatisés, les opérateurs de télécommunications et les entreprises gèrent efficacement les factures, suivent les dépenses et analysent les habitudes d'utilisation en temps réel. Cette technologie améliore la transparence, le contrôle et permet une prise de décision proactive basée sur des informations basées sur les données. De plus, l'automatisation minimise les erreurs humaines, garantit la conformité aux exigences réglementaires et optimise l'allocation des ressources, transformant la TEM en un atout stratégique
Par exemple,
- En juillet 2022, selon un article publié par Brightfin, le passage à un système automatisé de gestion des dépenses télécoms a apporté plusieurs avantages. Tout d'abord, il a considérablement réduit le nombre de tickets d'assistance liés aux problèmes de télécommunications, libérant ainsi des ressources informatiques. Cette automatisation a également permis aux employés de gagner du temps en gérant des tâches de routine comme le traitement des factures et la gestion des dépenses, leur permettant de se concentrer sur des projets plus critiques. De plus, l'automatisation a réduit les erreurs humaines, garantissant la cohérence et l'efficacité des opérations. Enfin, le système a fourni des informations précieuses sur les données et a contribué à réduire les coûts grâce à des processus de gestion des télécommunications rationalisés.
- Selon un article publié par le PAG, l’automatisation transforme la gestion des dépenses de télécommunications. Elle a simplifié des tâches telles que le suivi de l’utilisation et le rapprochement des factures, ce qui est particulièrement bénéfique pour les hôpitaux et les organismes de santé. Les solutions automatisées réduisent le temps et les efforts consacrés aux audits, en identifiant des économies importantes en optimisant l’utilisation des équipements et les contrats de télécommunications
Retenue/Défi
- Préoccupations persistantes en matière de confidentialité et de sécurité des données
Malgré les avancées prometteuses de l’IA pour l’agriculture, les préoccupations persistantes en matière de confidentialité et de sécurité des données éclipsent ces avantages. Les systèmes d’IA collectent et analysent de vastes quantités de données agricoles sensibles, notamment sur le rendement des cultures, l’état des sols et les opérations agricoles. Ils exposent les agriculteurs à des risques importants. L’accès non autorisé et les violations de ces données peuvent entraîner de graves conséquences, notamment la perte de propriété intellectuelle, la manipulation d’informations sensibles et une vulnérabilité accrue aux cyberattaques. Ces problèmes de sécurité sapent la confiance dans les technologies de l’IA et entravent leur adoption généralisée.
Par exemple
- En août 2023, selon un blog publié par ShardSecure, l'agriculture a été confrontée à des préoccupations croissantes en matière de confidentialité et de sécurité des données. Les cyberattaques, comme l'attaque par ransomware de 2021 contre JBS Foods, ont mis en évidence la vulnérabilité du secteur. L'agriculture de précision générant de vastes quantités de données et l'essor des appareils IoT ont amplifié les risques. Le Centre d'analyse et de partage d'informations sur l'alimentation et l'agriculture, récemment créé, visait à résoudre ces problèmes. Cependant, de nombreuses entreprises agroalimentaires ont encore des difficultés à assurer la sécurité des données, la conformité et la protection contre les menaces liées à l'IA. Des mesures de sécurité améliorées peuvent profiter aux entreprises en protégeant les données sensibles et en réduisant le risque de perturbations coûteuses
Impact de la pandémie de Covid-19 sur le marché mondial de l'intelligence artificielle dans l'agriculture
Le contexte post-COVID-19 a eu un impact considérable sur le marché mondial. Cependant, à mesure que l'économie se redresse progressivement, l'accent est mis sur le développement des infrastructures, ce qui entraîne une résurgence des projets. Le secteur s'adapte aux nouvelles normes avec des protocoles de sécurité renforcés et des technologies numériques pour rationaliser les processus. La demande de services de télécommunications rebondit à mesure que les projets de construction reprennent de l'ampleur, offrant aux acteurs du marché des opportunités de contribuer à la croissance des infrastructures du pays dans l'ère post-pandémique.
Développements récents
Par exemple,
- En juin 2024, TeeJet Technologies a lancé le débitmètre électromagnétique FM9380-F75, doté d'une conception innovante sans pièces mobiles pour un fonctionnement sans entretien, des performances optimisées dans toutes les conditions de fluide et une large compatibilité avec les applications, bénéficiant à son portefeuille de produits d'agriculture de précision et améliorant l'efficacité opérationnelle
- En novembre 2023, Kubota Corporation a présenté l'Agri Robo KVT à l'Agritechnica, marquant ainsi une avancée significative dans la technologie de l'agriculture autonome. Ce tracteur amélioré a permis de remédier aux pénuries de main-d'œuvre, d'améliorer la sécurité et de promouvoir une agriculture efficace, ce qui a permis à Kubota d'accroître sa compétitivité sur le marché et de devenir un leader en matière d'innovation
Portée du marché mondial de l'intelligence artificielle dans l'agriculture
Le marché de l'intelligence artificielle dans l'agriculture est segmenté en cinq segments notables, qui sont basés sur l'offre, la technologie, l'application, le mode de déploiement et l'utilisateur final. La croissance parmi ces segments vous aidera à analyser les segments de croissance faibles dans les industries et à fournir aux utilisateurs un aperçu précieux du marché et des informations sur le marché pour les aider à prendre des décisions stratégiques pour identifier les principales applications du marché.
Ce rapport de recherche classe le marché mondial de l’intelligence artificielle dans l’agriculture dans les segments suivants :
OFFRE
- MATÉRIEL
- LOGICIEL
- SERVICES
Sur la base de l’offre, le marché est segmenté en matériel, logiciels et services.
TECHNOLOGIE
- APPRENTISSAGE AUTOMATIQUE (ML)
- VISION PAR ORDINATEUR
- TRAITEMENT DU LANGAGE NATUREL (TAL)
- ROBOTIQUE ET AUTOMATISATION
- AUTRES
Sur la base de la technologie, le marché est segmenté en apprentissage automatique (ML), vision par ordinateur, traitement du langage naturel (NLP), robotique et automatisation et autres.
APPLICATION
- AGRICULTURE DE PRÉCISION
- SUIVI DU BÉTAIL
- PRÉVISION MÉTÉO
- GESTION DES SOLS
- SURVEILLANCE DE LA SANTÉ DES CULTURES
- OPTIMISATION DE LA CHAÎNE D'APPROVISIONNEMENT
- AUTRES
Sur la base des applications, le marché est segmenté en agriculture de précision, surveillance du bétail, prévisions météorologiques, gestion des sols, surveillance de la santé des cultures, optimisation de la chaîne d'approvisionnement et autres.
MODE DE DEPLOIEMENT
- NUAGE
- SUR PLACE
Sur la base du mode de déploiement, le marché est segmenté en cloud et sur site.
UTILISATEUR FINAL
- FERMES
- ENTREPRISES AGROTECHNOLOGIQUES
- ENTREPRISES AGROCHIMIQUES
- INSTITUTS DE RECHERCHE
- AUTRES
Sur la base de l'utilisateur final, le marché est segmenté en fermes, entreprises agro-technologiques, entreprises agrochimiques, instituts de recherche et autres.
L'intelligence artificielle dans le marché mondial de l'agriculture
Le marché mondial de l'intelligence artificielle dans l'agriculture est segmenté en cinq segments notables, qui sont basés sur l'offre, la technologie, l'application, le mode de déploiement et l'utilisateur final. Les pays couverts par le marché mondial de l'Internet des objets (IOT) dans l'agriculture sont les États-Unis, le Canada et le Mexique en Amérique du Nord, l'Allemagne, la France, le Royaume-Uni, les Pays-Bas, la Suisse, la Belgique, la Russie, l'Italie, l'Espagne, la Turquie, le reste de l'Europe, la Chine, le Japon, l'Inde, la Corée du Sud, Singapour, la Malaisie, l'Australie, la Thaïlande, l'Indonésie, les Philippines, le reste de l'Asie-Pacifique, l'Arabie saoudite, les Émirats arabes unis, l'Afrique du Sud, l'Égypte, Israël, le reste du Moyen-Orient et de l'Afrique, le Brésil, l'Argentine et le reste de l'Amérique du Sud.
En Amérique du Nord, les États-Unis sont le pays qui compte le plus grand nombre de fournisseurs de composants matériels. En Europe, c'est le Royaume-Uni qui domine en raison de ses avancées technologiques dans tout le pays. En Asie-Pacifique, c'est la Chine qui domine, car c'est le pays qui compte le plus grand nombre de fabricants de composants matériels de la région.
La section par pays du rapport fournit également des facteurs individuels ayant un impact sur le marché et des changements dans la réglementation du marché qui ont un impact sur les tendances actuelles et futures du marché. Des points de données tels que l'analyse de la chaîne de valeur en aval et en amont, les tendances techniques et l'analyse des cinq forces de Porter, ainsi que des études de cas sont quelques-uns des indicateurs utilisés pour prévoir le scénario de marché pour chaque pays. En outre, la présence et la disponibilité des marques APAC et les défis auxquels elles sont confrontées en raison de la concurrence importante ou rare des marques locales et nationales, l'impact des tarifs nationaux et les routes commerciales sont pris en compte lors de l'analyse prévisionnelle des données nationales.
Analyse du paysage concurrentiel et des parts de marché mondiales de l'intelligence artificielle dans l'agriculture
Le paysage concurrentiel du marché mondial de l'intelligence artificielle dans l'agriculture fournit des détails sur le concurrent. Les détails inclus sont la présentation de l'entreprise, les finances de l'entreprise, les revenus générés, le potentiel du marché, l'investissement dans la recherche et le développement, les nouvelles initiatives du marché, la présence dans la région APAC et SEA, les sites et installations de production, les capacités de production, les forces et les faiblesses de l'entreprise, le lancement du produit, la largeur et l'étendue du produit, la domination des applications. Les points de données ci-dessus fournis ne concernent que l'orientation des entreprises liée au marché mondial de l'intelligence artificielle dans l'agriculture. Certains des principaux acteurs opérant sur le marché mondial de l'intelligence artificielle dans l'agriculture sont : Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation et IBM, entre autres.
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.