Global Ai Agriculture Market
Taille du marché en milliards USD
TCAC :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
Marché mondial de l'intelligence artificielle dans l'agriculture, par offre (matériel, logiciel et services), technologie (apprentissage automatique, vision par ordinateur, traitement automatique du langage naturel, robotique et automatisation, et autres), application (agriculture de précision, surveillance du bétail, prévisions météorologiques, gestion des sols, surveillance de la santé des cultures, optimisation de la chaîne d'approvisionnement, et autres), mode de déploiement (sur site et cloud), utilisateur final (exploitations agricoles, entreprises agrotechnologiques, entreprises agrochimiques, instituts de recherche, et autres) - Tendances du secteur et prévisions jusqu'en 2032
Taille du marché de l'intelligence artificielle dans l'agriculture
Selon une analyse de Data Bridge Market Research, le marché mondial de l'intelligence artificielle dans l'agriculture devrait atteindre 10,49 milliards de dollars américains d'ici 2032, contre 2,08 milliards en 2025, soit un taux de croissance annuel composé (TCAC) de 22,39 % sur la période de prévision. Le rapport sur ce marché couvre également en détail l'analyse des prix, l'analyse des brevets et les avancées technologiques.
Analyse du marché de l'intelligence artificielle dans l'agriculture
Le marché mondial de l'intelligence artificielle dans l'agriculture est promis à une croissance substantielle, portée par plusieurs facteurs clés. Le principal moteur est la réduction significative des coûts offerte par les solutions de gestion des dépenses télécoms (TEM), qui séduit les entreprises souhaitant optimiser leurs coûts. L'adoption croissante des téléphones mobiles et autres appareils portables alimente également la demande de solutions efficaces de gestion des dépenses. La TEM assure une transparence essentielle des dépenses, permettant aux organisations de mieux comprendre et maîtriser leurs investissements télécoms. Par ailleurs, l'essor de l'Internet des objets (IoT) et des applications cloud a engendré une demande accrue de solutions TEM, ces technologies introduisant de nouvelles complexités dans la gestion des dépenses télécoms. Cependant, le marché est confronté à des contraintes, notamment la difficulté de se conformer aux réglementations et exigences de conformité variables selon les régions, ce qui complexifie la mise en œuvre et la gestion. Malgré ces défis, le potentiel de croissance reste considérable. L'automatisation de la gestion des dépenses télécoms représente une opportunité majeure, tout comme l'externalisation des solutions TEM, qui peut offrir des gains d'efficacité et une expertise précieuse.
|
Indicateur de rapport |
Détails |
|
Période de prévision |
2025 à 2032 |
|
Année de base |
2024 |
|
Années historiques |
2023 (2018-2022) |
|
Unités quantitatives |
Revenus en milliards de dollars américains |
|
Segments couverts |
Par offre (matériel, logiciel et services), technologie (apprentissage automatique, vision par ordinateur , traitement automatique du langage naturel , robotique et automatisation, etc.), application ( agriculture de précision , suivi du bétail , prévisions météorologiques, gestion des sols, surveillance de la santé des cultures, optimisation de la chaîne d'approvisionnement, etc.), mode de déploiement (sur site et dans le cloud), utilisateur final (exploitations agricoles, entreprises agrotechnologiques, entreprises agrochimiques, instituts de recherche, etc.). |
|
Pays couverts |
États-Unis, Canada et Mexique, Allemagne, France, Royaume-Uni, Pays-Bas, Suisse, Belgique, Russie, Italie, Espagne, Turquie, reste de l'Europe, Chine, Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines, reste de l'Asie-Pacifique, Arabie saoudite, Émirats arabes unis, Afrique du Sud, Égypte, Israël, reste du Moyen-Orient et de l'Afrique, Brésil, Argentine et reste de l'Amérique du Sud |
|
Acteurs du marché couverts |
Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva et Bowery Farming Inc., entre autres. |
Définition du marché
Le marché mondial de l'intelligence artificielle en agriculture englobe les technologies et les solutions qui exploitent l'IA pour améliorer les pratiques agricoles. Il comprend l'apprentissage automatique, la vision par ordinateur et la robotique pour optimiser la gestion des cultures, l'agriculture de précision et l'allocation des ressources. Ce marché couvre les outils d'analyse de données basés sur l'IA, les machines autonomes et l'analyse prédictive visant à accroître l'efficacité, le rendement et la durabilité des opérations agricoles. Il trouve des applications dans de nombreux domaines, tels que la surveillance des cultures, la gestion des sols, la lutte antiparasitaire et l'optimisation de la chaîne d'approvisionnement.
Dynamique du marché mondial de l'intelligence artificielle dans l'agriculture
Les conducteurs
- Amélioration de la surveillance des cultures et de la précision des prévisions de rendement
L'intelligence artificielle (IA) en agriculture améliore la surveillance des cultures et la précision des prévisions de rendement. Grâce aux algorithmes d'apprentissage automatique et à l'analyse de données, l'IA peut analyser d'immenses quantités de données provenant de diverses sources, telles que l'imagerie satellite, les capteurs de sol et les prévisions météorologiques. Les agriculteurs peuvent ainsi surveiller la santé de leurs cultures, identifier les infestations de ravageurs et prévoir les rendements avec une plus grande précision. Par conséquent, les informations fournies par l'IA contribuent à optimiser l'allocation des ressources, à améliorer la prise de décision et à accroître la productivité agricole globale.
Par exemple,
- En juillet 2021, selon un article de blog publié par Gramener, la prévision des rendements agricoles grâce à l'apprentissage automatique et à l'intelligence artificielle est devenue de plus en plus pertinente. L'article expliquait comment l'analyse spatiale et les objets connectés (IoT) ont amélioré la surveillance des cultures et la prévision des rendements. Les modèles d'IA et d'apprentissage automatique, exploitant l'imagerie satellitaire et les données climatiques, ont permis d'améliorer la précision des prévisions de rendement en évaluant l'état des sols et les conditions météorologiques. L'utilisation de ces technologies a profité aux agriculteurs en permettant la surveillance à distance, la cartographie efficace des ressources et l'analyse prédictive, facilitant ainsi la prise de décision et la planification. Cette avancée contribue à une gestion des cultures plus efficace.
Accroître la mise en œuvre de meilleures techniques agricoles grâce à l'IA
L'adoption accrue de meilleures techniques agricoles grâce à l'IA implique l'optimisation de l'utilisation des intrants tels que l'eau, les engrais et les pesticides. Les solutions basées sur l'IA permettent une gestion précise de ces ressources, garantissant leur application efficace et ciblée. Ceci permet de réduire les coûts et d'améliorer la productivité en minimisant le gaspillage et en maximisant les rendements, pour des pratiques agricoles plus durables et rentables.
Par exemple,
- En janvier 2024, selon un article publié par Intellias, l'IA a profondément transformé l'agriculture en optimisant les techniques agricoles. Elle a permis une gestion précise de l'eau, des engrais et des pesticides, réduisant ainsi les coûts et augmentant la productivité. Les systèmes automatisés ont optimisé l'irrigation et l'application d'engrais, ce qui a permis d'améliorer les rendements et l'utilisation des ressources. Ces avancées ont favorisé des pratiques agricoles plus durables et rentables, bénéficiant en fin de compte aux agriculteurs grâce à l'amélioration des rendements et à la réduction des coûts.
Opportunité
- Technologie d'automatisation pour la gestion des dépenses de télécommunications
L'automatisation de la gestion des dépenses télécoms (TEM) simplifie les processus, améliore la précision et réduit les coûts. Grâce aux outils et logiciels automatisés, les opérateurs et entreprises télécoms gèrent efficacement leurs factures, suivent leurs dépenses et analysent leurs habitudes d'utilisation en temps réel. Cette technologie renforce la transparence et le contrôle, et permet une prise de décision proactive basée sur des données pertinentes. De plus, l'automatisation minimise les erreurs humaines, garantit la conformité réglementaire et optimise l'allocation des ressources, faisant de la TEM un atout stratégique.
Par exemple,
- En juillet 2022, selon un article publié par Brightfin, le passage à un système automatisé de gestion des dépenses télécoms a apporté plusieurs avantages. Premièrement, il a considérablement réduit le nombre de tickets d'assistance liés aux problèmes de télécommunications, libérant ainsi des ressources informatiques. Cette automatisation a également permis aux employés de gagner du temps en prenant en charge les tâches routinières telles que le traitement des factures et la gestion des dépenses, leur permettant ainsi de se concentrer sur des projets plus stratégiques. De plus, l'automatisation a réduit les erreurs humaines, garantissant la cohérence et l'efficacité des opérations. Enfin, le système a fourni des données précieuses et a contribué à réduire les coûts grâce à la rationalisation des processus de gestion des télécommunications.
- D'après un article publié par le PAG, l'automatisation transforme la gestion des dépenses télécoms. Elle a rationalisé des tâches telles que le suivi de la consommation et le rapprochement des factures, ce qui est particulièrement avantageux pour les hôpitaux et les établissements de santé. Les solutions automatisées réduisent le temps et les efforts consacrés aux audits, permettant ainsi de réaliser des économies substantielles grâce à l'optimisation de l'utilisation des équipements et des contrats télécoms.
Retenue/Défi
- Préoccupations persistantes en matière de confidentialité et de sécurité des données
Malgré les progrès prometteurs de l'IA en agriculture, les préoccupations persistantes concernant la confidentialité et la sécurité des données occultent ces avantages. Les systèmes d'IA, en collectant et en analysant d'énormes quantités de données agricoles sensibles (rendements des cultures, état des sols, opérations agricoles, etc.), exposent les agriculteurs à des risques importants. L'accès non autorisé à ces données et les violations de celles-ci peuvent avoir de graves conséquences : perte de propriété intellectuelle, manipulation d'informations sensibles et vulnérabilité accrue aux cyberattaques. Ces problèmes de sécurité minent la confiance dans les technologies d'IA et freinent leur adoption à grande échelle.
Par exemple
- En août 2023, selon un article de blog publié par ShardSecure, l'agriculture était confrontée à des préoccupations croissantes en matière de confidentialité et de sécurité des données. Les cyberattaques, telles que l'attaque par rançongiciel de 2021 contre JBS Foods, ont mis en évidence la vulnérabilité du secteur. Avec l'agriculture de précision générant d'énormes quantités de données et l'essor des objets connectés, les risques se sont amplifiés. Le Centre d'analyse et de partage d'informations sur l'alimentation et l'agriculture, récemment créé, visait à répondre à ces problématiques. Cependant, de nombreuses entreprises agroalimentaires peinent encore à assurer la sécurité de leurs données, leur conformité réglementaire et à se protéger contre les menaces liées à l'intelligence artificielle. Des mesures de sécurité renforcées peuvent être bénéfiques aux entreprises en protégeant les données sensibles et en réduisant le risque de perturbations coûteuses.
Impact de la COVID-19 sur le marché mondial de l'intelligence artificielle dans l'agriculture
Le contexte post-COVID-19 a profondément marqué le marché mondial. Cependant, la reprise progressive de l'économie s'accompagne d'un regain d'intérêt pour le développement des infrastructures, entraînant une recrudescence des projets. Le secteur s'adapte aux nouvelles normes, notamment grâce à des protocoles de sécurité renforcés et au recours aux technologies numériques pour optimiser les processus. La demande de services de télécommunications rebondit avec la reprise des chantiers, offrant ainsi aux acteurs du marché l'opportunité de contribuer à la croissance des infrastructures nationales dans l'ère post-pandémique.
Développements récents
Par exemple,
- En juin 2024, TeeJet Technologies a lancé le débitmètre électromagnétique FM9380-F75. Ce débitmètre innovant, sans pièces mobiles, ne nécessite aucun entretien et offre des performances optimisées quelles que soient les conditions du fluide. Sa large compatibilité avec de nombreuses applications enrichit sa gamme de produits pour l'agriculture de précision et améliore l'efficacité opérationnelle.
- En novembre 2023, Kubota Corporation a présenté l'Agri Robo KVT au salon Agritechnica, marquant une avancée significative dans le domaine de l'agriculture autonome. Ce tracteur amélioré a permis de pallier la pénurie de main-d'œuvre, d'améliorer la sécurité et de promouvoir une agriculture plus efficace, contribuant ainsi à renforcer la compétitivité de Kubota sur le marché et son leadership en matière d'innovation.
Étendue du marché mondial de l'intelligence artificielle dans l'agriculture
Le marché de l'intelligence artificielle en agriculture est segmenté en cinq catégories principales, définies par l'offre, la technologie, l'application, le mode de déploiement et l'utilisateur final. L'analyse de la croissance de ces segments vous permettra d'identifier les segments à faible croissance au sein des industries et d'offrir aux utilisateurs une vue d'ensemble et des informations précieuses sur le marché, les aidant ainsi à prendre des décisions stratégiques pour identifier les applications clés.
Ce rapport de recherche catégorise le marché mondial de l'intelligence artificielle dans l'agriculture selon les segments suivants :
OFFRE
- MATÉRIEL
- LOGICIEL
- SERVICES
En fonction de l'offre, le marché est segmenté en matériel, logiciels et services.
TECHNOLOGIE
- APPRENTISSAGE AUTOMATIQUE (AA)
- VISION PAR ORDINATEUR
- TRAITEMENT AUTOMATIQUE DU LANGAGE (TALN)
- ROBOTIQUE ET AUTOMATISATION
- AUTRES
Sur la base de la technologie, le marché est segmenté en apprentissage automatique (ML), vision par ordinateur, traitement automatique du langage naturel (NLP), robotique et automatisation, et autres.
APPLICATION
- AGRICULTURE DE PRÉCISION
- SURVEILLANCE DU BÉTAIL
- PRÉVISION MÉTÉO
- GESTION DES SOLS
- SURVEILLANCE DE LA SANTÉ DES CULTURES
- OPTIMISATION DE LA CHAÎNE D'APPROVISIONNEMENT
- AUTRES
En fonction de l'application, le marché est segmenté en agriculture de précision, surveillance du bétail, prévisions météorologiques, gestion des sols, surveillance de la santé des cultures, optimisation de la chaîne d'approvisionnement et autres.
MODE DE DÉPLOIEMENT
- NUAGE
- SUR SITE
En fonction du mode de déploiement, le marché est segmenté en cloud et sur site.
UTILISATEUR FINAL
- FERMES
- ENTREPRISES AGRO-TECHNOLOGIQUES
- ENTREPRISES AGROCHIMIQUES
- INSTITUTS DE RECHERCHE
- AUTRES
En fonction de l'utilisateur final, le marché est segmenté en exploitations agricoles, entreprises agrotechnologiques, entreprises agrochimiques, instituts de recherche et autres.
Marché mondial de l'intelligence artificielle dans l'agriculture
Le marché mondial de l'intelligence artificielle dans l'agriculture est segmenté en cinq catégories principales, selon l'offre, la technologie, l'application, le mode de déploiement et l'utilisateur final. Les pays couverts par le marché mondial de l'Internet des objets (IoT) dans l'agriculture sont les suivants : États-Unis, Canada et Mexique en Amérique du Nord ; Allemagne, France, Royaume-Uni, Pays-Bas, Suisse, Belgique, Russie, Italie, Espagne, Turquie et autres pays d'Europe ; Chine, Japon, Inde, Corée du Sud, Singapour, Malaisie, Australie, Thaïlande, Indonésie, Philippines et autres pays d'Asie-Pacifique ; Arabie saoudite, Émirats arabes unis, Afrique du Sud, Égypte, Israël et autres pays du Moyen-Orient et d'Afrique ; Brésil, Argentine et autres pays d'Amérique du Sud.
En Amérique du Nord, les États-Unis dominent le marché en tant que pays comptant le plus grand nombre de fournisseurs de composants matériels. En Europe, le Royaume-Uni occupe la première place grâce à son avance technologique. En Asie-Pacifique, la Chine est le principal fabricant de composants matériels de la région.
La section du rapport consacrée aux pays présente également les facteurs ayant un impact sur chaque marché, ainsi que les évolutions réglementaires qui influencent les tendances actuelles et futures. Des données telles que l'analyse de la chaîne de valeur en amont et en aval, les tendances technologiques, l'analyse des cinq forces de Porter et des études de cas sont autant d'éléments utilisés pour prévoir le scénario de marché dans chaque pays. Par ailleurs, la présence et la disponibilité des marques de la région Asie-Pacifique, ainsi que les défis qu'elles rencontrent face à une concurrence locale plus ou moins forte, l'impact des droits de douane nationaux et les routes commerciales sont pris en compte dans l'analyse prévisionnelle des données par pays.
Analyse du paysage concurrentiel et des parts de marché mondiales de l'intelligence artificielle dans l'agriculture
L'analyse du paysage concurrentiel du marché mondial de l'intelligence artificielle dans l'agriculture fournit des informations détaillées sur les concurrents. Ces informations comprennent un aperçu de l'entreprise, ses données financières, son chiffre d'affaires, son potentiel de marché, ses investissements en recherche et développement, ses nouvelles initiatives, sa présence en Asie-Pacifique et en Asie du Sud-Est, ses sites et installations de production, ses capacités de production, ses forces et faiblesses, ses lancements de produits, l'étendue de sa gamme et sa position dominante sur le marché. Ces données concernent uniquement les activités des entreprises liées au marché mondial de l'intelligence artificielle dans l'agriculture. Parmi les principaux acteurs de ce marché figurent Open Text Corporation, OpenAI, Valmont Industries, Inc., AGCO Corporation et IBM.
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.
