Global Artificial Intelligence Ai In Drug Discovery Market
Taille du marché en milliards USD
TCAC :
%
USD
981.64 Million
USD
1,483.82 Million
2024
2032
| 2025 –2032 | |
| USD 981.64 Million | |
| USD 1,483.82 Million | |
|
|
|
Segmentation du marché mondial de l'intelligence artificielle (IA) dans la découverte de médicaments, par application (nouveaux candidats médicaments, optimisation et réorientation des médicaments, tests et approbation précliniques, pharmacovigilance, recherche de nouvelles cibles et voies associées aux maladies, compréhension des mécanismes pathologiques, agrégation et synthèse d'informations, formulation et qualification d'hypothèses, conception de nouveaux médicaments, recherche de cibles pour d'anciens médicaments, etc.), technologie (apprentissage automatique, apprentissage profond, traitement du langage naturel, etc.), type de médicament (petite et grande molécule), offre (logiciels et services), indication (immuno-oncologie, maladies neurodégénératives, maladies cardiovasculaires, maladies métaboliques, etc.), utilisation finale (organismes de recherche sous contrat (CRO), sociétés pharmaceutiques et biotechnologiques, centres de recherche et instituts universitaires, etc.) - Tendances et prévisions du secteur jusqu'en 2032
L'intelligence artificielle (IA) dans la découverte de médicaments
- Le marché mondial de l'intelligence artificielle (IA) dans la découverte de médicaments était évalué à 981,64 millions USD en 2024 et devrait atteindre 1 483,82 millions USD d'ici 2032.
- Au cours de la période de prévision de 2025 à 2032, le marché devrait croître à un TCAC de 5,30 %, principalement grâce à la disponibilité croissante des données de santé.
- Cette croissance est due à des facteurs tels que la prévalence croissante des maladies chroniques et les progrès des technologies d’IA qui améliorent les processus de découverte de médicaments.
Analyse du marché de l'intelligence artificielle (IA) dans la découverte de médicaments
- Le marché connaît une croissance rapide, tirée par les progrès des technologies d’IA telles que l’apprentissage automatique et l’apprentissage profond, qui rationalisent les processus de découverte de médicaments et réduisent les coûts.
- L'IA est largement adoptée pour l'optimisation des médicaments, leur réutilisation, les tests précliniques et la conception des essais cliniques, accélérant considérablement le calendrier de développement des médicaments.
- L'Amérique du Nord domine le marché grâce à son secteur pharmaceutique solide, tandis que la région Asie-Pacifique devrait connaître une croissance rapide, alimentée par des investissements accrus dans la recherche et le développement.
Par exemple, les technologies d’IA telles que l’apprentissage automatique et l’apprentissage profond sont utilisées pour prédire les taux de réussite des essais cliniques, optimiser les candidats médicaments et identifier de nouvelles cibles thérapeutiques, réduisant ainsi considérablement le temps et le coût du développement des médicaments.
- L’adoption de l’IA dans la découverte de médicaments révolutionne l’industrie pharmaceutique en relevant des défis tels que les coûts élevés, les délais longs et les faibles taux de réussite dans les processus traditionnels de développement de médicaments.
Portée du rapport et segmentation du marché de la découverte de médicaments par l'intelligence artificielle (IA)
|
Attributs |
Intelligence artificielle (IA) dans la découverte de médicaments : perspectives clés du marché |
|
Segments couverts |
|
|
Pays couverts |
Amérique du Nord
Europe
Asie-Pacifique
Moyen-Orient et Afrique
Amérique du Sud
|
|
Acteurs clés du marché |
|
|
Opportunités de marché |
|
|
Ensembles d'informations de données à valeur ajoutée |
Outre les informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse des importations et des exportations, un aperçu de la capacité de production, une analyse de la consommation de production, une analyse des tendances des prix, un scénario de changement climatique, une analyse de la chaîne d'approvisionnement, une analyse de la chaîne de valeur, un aperçu des matières premières/consommables, des critères de sélection des fournisseurs, une analyse PESTLE, une analyse Porter et un cadre réglementaire. |
Tendances du marché de l'intelligence artificielle (IA) dans la découverte de médicaments
« Les innovations basées sur l'IA révolutionnent la découverte de médicaments »
- L’une des tendances marquantes du marché de l’IA dans la découverte de médicaments est l’adoption croissante des technologies d’apprentissage automatique et d’apprentissage profond pour rationaliser les processus de développement de médicaments .
- Ces technologies avancées améliorent l’efficacité et la précision de la découverte de médicaments en analysant de vastes ensembles de données, en prédisant les propriétés de liaison des molécules et en identifiant des candidats médicaments potentiels.
- Par exemple, les plateformes basées sur l’IA sont utilisées pour réutiliser des médicaments existants dans de nouveaux domaines thérapeutiques, réduisant ainsi considérablement le temps et les coûts associés aux méthodes traditionnelles de découverte de médicaments.
- L’intégration de l’IA permet également une meilleure conception des essais cliniques en prédisant les taux de réussite et en identifiant les populations de patients, améliorant ainsi le succès global du développement de médicaments.
- Cette tendance transforme l’industrie pharmaceutique, accélère le développement de thérapies innovantes et répond à des besoins médicaux non satisfaits, stimulant ainsi la demande de solutions basées sur l’IA sur le marché.
L'intelligence artificielle (IA) dans la dynamique du marché de la découverte de médicaments
Conducteur
« Augmentation des investissements en R&D dans l'industrie pharmaceutique »
- Les sociétés pharmaceutiques augmentent leurs budgets de R&D pour développer de nouveaux médicaments et thérapies, garantissant ainsi leur compétitivité et répondant aux besoins évolutifs des patients.
- Les outils d’IA sont intégrés aux processus de R&D pour améliorer la découverte de médicaments, permettant une identification plus rapide des candidats médicaments, améliorant les taux de réussite et optimisant la recherche à un stade précoce.
- L’IA permet un criblage à haut débit, accélérant considérablement le processus de test des composés et identifiant des candidats prometteurs pour un développement ultérieur.
- L’IA peut traiter de grands ensembles de données provenant de la génomique, des essais cliniques et des données démographiques des patients pour découvrir des modèles cachés, accélérant ainsi l’identification de nouvelles cibles thérapeutiques.
- Grâce aux algorithmes d’IA optimisant le recrutement des patients et la conception des essais, les sociétés pharmaceutiques peuvent mener des essais cliniques plus efficaces, réduisant ainsi le temps et les coûts.
Par exemple,
- Sanofi s'est associé à Exscientia pour concevoir de nouveaux médicaments candidats grâce à l'IA, accélérant ainsi leur cheminement vers les essais cliniques. Dans le cadre de l'une de leurs collaborations, ils ont identifié un candidat prometteur pour le traitement des maladies auto-immunes en une fraction du temps nécessaire avec les méthodes traditionnelles.
- GlaxoSmithKline (GSK) et 24M travaillent ensemble pour appliquer l'IA afin d'optimiser le processus de R&D, notamment l'identification de nouvelles cibles médicamenteuses et l'accélération du développement de nouvelles thérapies, notamment pour les maladies rares.
- L’augmentation des investissements dans la R&D, associée à la puissance de l’IA, améliore considérablement la capacité de l’industrie pharmaceutique à découvrir de nouveaux médicaments plus rapidement, de manière plus rentable et avec une plus grande précision.
Opportunité
« Modélisation prédictive améliorée pour les essais cliniques »
- L’IA peut optimiser la conception des essais cliniques en identifiant les paramètres d’essai les plus appropriés, tels que la taille de l’échantillon, les critères d’évaluation et les schémas thérapeutiques, ce qui conduit à des études plus efficaces et plus efficientes.
- En analysant les dossiers médicaux électroniques et d’autres données, l’IA peut aider à identifier les bons patients pour les essais cliniques en fonction de critères d’inclusion/exclusion spécifiques, améliorant ainsi la vitesse et la précision du recrutement.
- Les modèles d’IA peuvent prédire le succès ou l’échec probable d’un essai clinique sur la base de données historiques et d’informations en temps réel, permettant ainsi des ajustements précoces aux protocoles d’essai et augmentant les chances de succès.
- En utilisant l’analyse prédictive, l’IA peut identifier les patients risquant d’abandonner et suggérer des interventions pour les maintenir engagés, réduisant ainsi le nombre d’essais incomplets.
- La capacité de l’IA à rationaliser le processus d’essai clinique, de la sélection des participants à la prédiction des résultats, peut réduire considérablement les coûts associés aux méthodes d’essai traditionnelles.
Par exemple,
- Pfizer a utilisé l'IA en partenariat avec IBM Watson Health pour améliorer le recrutement des participants aux essais cliniques et optimiser la conception des essais en vue du développement d'un traitement contre les maladies rares. Leur approche basée sur l'IA a permis d'accélérer le recrutement et d'améliorer les résultats des essais.
- Novartis a utilisé l'IA pour prédire la réponse des patients et optimiser la conception des essais cliniques de ses traitements de thérapie génique. Cette approche, basée sur l'IA, a permis de mieux cibler les thérapies et d'optimiser l'efficacité des essais cliniques.
- La capacité de l’IA à améliorer la modélisation prédictive dans les essais cliniques offre des avantages significatifs, notamment des conceptions d’essais plus efficaces, un recrutement plus rapide des patients, des coûts réduits et de meilleurs résultats d’essais, accélérant ainsi le développement de nouveaux traitements.
Retenue/Défi
« Coûts d'investissement initiaux élevés »
- Les outils basés sur l’IA nécessitent une infrastructure technologique coûteuse, notamment des systèmes informatiques puissants, des solutions de stockage de données et des logiciels spécialisés, ce qui rend l’investissement initial élevé.
- Le recrutement de professionnels qualifiés tels que des scientifiques des données, des experts en IA et des chercheurs biopharmaceutiques possédant des connaissances en IA et en découverte de médicaments est coûteux, ce qui alourdit le fardeau financier de la mise en œuvre de l’IA dans la R&D.
- L’intégration des outils d’IA dans les flux de travail de découverte de médicaments existants, en particulier dans les systèmes existants, nécessite des ressources financières importantes pour l’adaptation, la formation et l’optimisation.
- Les technologies d’IA nécessitent une maintenance continue, des mises à jour logicielles et des mises à niveau matérielles pour rester à jour avec les avancées de l’apprentissage automatique et de l’analyse des données, contribuant ainsi aux coûts opérationnels à long terme.
- Les systèmes d’IA dans la découverte de médicaments dépendent de vastes ensembles de données de haute qualité, et l’acquisition ou l’octroi de licences pour ces ensembles de données peut être coûteux pour les petites entreprises ou les startups, ce qui augmente encore le coût de la mise en œuvre de l’IA.
Par exemple,
- BenevolentAI a investi massivement dans des plateformes et une expertise de découverte de médicaments basées sur l'IA afin de rationaliser le processus de développement de médicaments, en se concentrant sur l'oncologie. Malgré un investissement initial élevé, leur approche a permis une découverte de médicaments plus rapide et des taux de réussite améliorés.
- Insilico Medicine , une startup utilisant l'IA pour la découverte de médicaments, a nécessité un investissement initial important pour construire sa plateforme basée sur l'IA, ce qui lui a permis d'accélérer le développement de médicaments pour des maladies comme la fibrose et le cancer, mais les coûts étaient élevés et difficiles à égaler pour les petits concurrents.
- Les coûts d'investissement initiaux élevés de l'IA pour la découverte de médicaments constituent un obstacle pour les petites entreprises et les startups, limitant leur capacité à concurrencer les grandes organisations qui peuvent se permettre ces technologies. Relever ce défi pourrait nécessiter des modèles de financement ou des partenariats innovants pour rendre l'IA plus accessible à un plus large éventail d'acteurs de l'industrie pharmaceutique.
L'intelligence artificielle (IA) dans le marché de la découverte de médicaments
Le marché est segmenté en fonction de l'application, du type de produit, de la technologie, du type de grossissement, de l'utilisateur final et du canal de distribution.
|
Segmentation |
Sous-segmentation |
|
Par application |
|
|
Par technologie |
|
|
Par type de médicament |
|
|
En offrant |
|
|
Par indication |
|
|
Par utilisation finale
|
|
Analyse régionale du marché de l'intelligence artificielle (IA) dans la découverte de médicaments
« L'Amérique du Nord est la région dominante sur le marché de l'intelligence artificielle (IA) dans la découverte de médicaments »
- L'Amérique du Nord domine le marché de l'intelligence artificielle (IA) dans la découverte de médicaments , grâce à une infrastructure de soins de santé avancée, une forte adoption de technologies médicales de pointe et une forte présence d'acteurs clés du marché.
- Les États-Unis abritent certaines des plus grandes entreprises pharmaceutiques, telles que Pfizer , Johnson & Johnson , Merck et Eli Lilly , qui sont à l'avant-garde de l'adoption de l'IA dans la découverte de médicaments. Ces entreprises investissent massivement dans l'IA pour rationaliser le processus de développement des médicaments et améliorer les résultats.
- L'Amérique du Nord dispose d'un écosystème technologique bien établi, avec des acteurs majeurs de l'IA comme IBM Watson Health et Google DeepMind, qui stimulent l'innovation dans la découverte de médicaments. Ces entreprises sont à la pointe de la recherche en IA et fournissent des outils d'IA performants pour la R&D pharmaceutique.
- L'Amérique du Nord investit systématiquement une part importante de son PIB dans la recherche et le développement (R&D). Ce financement favorise l'adoption de technologies d'IA avancées dans la découverte de médicaments, les entreprises cherchant à accélérer la découverte de nouveaux médicaments et traitements.
- L'Amérique du Nord a connu de nombreux partenariats entre des sociétés pharmaceutiques et des startups ou entreprises technologiques spécialisées dans l'IA. Par exemple, des collaborations comme celle entre Novartis et Microsoft pour utiliser l'IA dans la découverte de médicaments témoignent du leadership de la région dans l'exploitation de l'IA pour innover dans le développement de médicaments.
« L'Asie-Pacifique devrait enregistrer le taux de croissance le plus élevé »
- La région Asie-Pacifique devrait connaître le taux de croissance le plus élevé en matière d’ intelligence artificielle (IA) dans la découverte de médicaments , grâce à l’expansion rapide des infrastructures de santé, à la sensibilisation croissante à la santé oculaire et à l’augmentation des volumes chirurgicaux.
- Des pays comme la Chine , l'Inde et le Japon investissent massivement dans l'IA et les biotechnologies afin de renforcer leur secteur pharmaceutique et de répondre aux besoins croissants en matière de santé. Ces investissements accélèrent l'adoption de l'IA dans la découverte de médicaments.
- Les gouvernements de la région Asie-Pacifique encouragent activement la santé numérique et l'intégration de l'IA par le biais de diverses initiatives. Par exemple, la Chine a mis en œuvre des stratégies nationales pour intégrer l'IA dans les soins de santé, favorisant ainsi son développement dans la découverte de médicaments.
- Les pays de l'APAC disposent d'une population importante et d'un volume considérable de données de santé qui peuvent être exploitées pour la découverte de médicaments grâce à l'IA. La robuste infrastructure numérique de la région favorise l'intégration des technologies d'IA pour le développement de médicaments.
- La région Asie-Pacifique (APAC) est celle qui connaît la croissance la plus rapide sur le marché de l'IA dans la découverte de médicaments, grâce à des investissements croissants, des politiques gouvernementales de soutien, un vaste bassin de données et l'expansion des entreprises de biotechnologie exploitant la technologie de l'IA.
Part de marché de l'intelligence artificielle (IA) dans la découverte de médicaments
Le paysage concurrentiel du marché fournit des détails par concurrent. Il comprend la présentation de l'entreprise, ses données financières, son chiffre d'affaires, son potentiel de marché, ses investissements en recherche et développement, ses nouvelles initiatives commerciales, sa présence mondiale, ses sites et installations de production, ses capacités de production, ses forces et faiblesses, le lancement de nouveaux produits, leur ampleur et leur portée, ainsi que la domination de ses applications. Les données ci-dessus ne concernent que les activités des entreprises par rapport à leur marché.
Les principaux leaders du marché opérant sur le marché sont :
- NVIDIA Corporation (États-Unis)
- IBM Corp. (États-Unis)
- Atomwise Inc. (États-Unis)
- Microsoft (États-Unis)
- IA bienveillante (Royaume-Uni)
- Aria Pharmaceuticals, Inc. (États-Unis)
- GENOMIQUE PROFONDE (Canada)
- Exscientia (Royaume-Uni)
- Médecine Insilico (Hong Kong)
- Cyclica (Canada)
- NuMedii, Inc. (États-Unis)
- Envisagenics (États-Unis)
- Owkin Inc. (États-Unis)
- BERG LLC (États-Unis)
- Schrödinger, Inc. (États-Unis)
- XtalPi Inc. (Chine)
- BIOAGE Inc. (États-Unis)
Derniers développements sur le marché mondial de l'intelligence artificielle (IA) pour la découverte de médicaments
- En mai 2024, Google DeepMind a dévoilé la troisième version de son modèle d'IA AlphaFold, conçu pour optimiser le développement de médicaments et le ciblage des maladies. Cette version avancée permet aux chercheurs de DeepMind et d'Isomorphic Labs d'analyser le comportement de toutes les molécules, y compris l'ADN humain.
- En avril 2024, Xaira Therapeutics, une entreprise innovante spécialisée dans la découverte et le développement de médicaments basés sur l'IA, a levé plus d'un million de dollars lors d'un tour de financement collaboratif avec ARCH Venture Partners et Foresite Labs. S'appuyant sur l'apprentissage automatique, les modèles de génération de données et le développement de produits thérapeutiques, l'entreprise se concentre sur des cibles médicamenteuses traditionnellement difficiles à atteindre.
- En décembre 2023, MilliporeSigma, la division sciences de la vie de Merck, a lancé AIDDISON, un logiciel de découverte de médicaments de pointe. Cette plateforme comble le fossé entre la conception de molécules virtuelles et la fabricabilité en conditions réelles grâce à l'intégration de l'API du logiciel de rétrosynthèse Synthia. Elle combine IA générative, apprentissage automatique et conception assistée par ordinateur de médicaments pour optimiser les processus de développement de médicaments.
- En mai 2023, Google a lancé deux outils innovants basés sur l'IA, destinés à aider les entreprises biotechnologiques et pharmaceutiques à accélérer la découverte de médicaments et à perfectionner la médecine de précision. Ces solutions visent à réduire les délais et les coûts liés à l'introduction de nouveaux traitements sur le marché américain. Parmi les premiers utilisateurs de ces outils figurent Cerevel Therapeutics, Pfizer et Colossal Biosciences .
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Table des matières
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 MARKETS COVERED
2.5 GEOGRAPHIC SCOPE
2.6 YEARS CONSIDERED FOR THE STUDY
2.7 RESEARCH METHODOLOGY
2.8 TECHNOLOGY LIFE LINE CURVE
2.9 MULTIVARIATE MODELLING
2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.11 DBMR MARKET POSITION GRID
2.12 MARKET APPLICATION COVERAGE GRID
2.13 DBMR MARKET CHALLENGE MATRIX
2.14 SECONDARY SOURCES
2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT
2.16 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 PESTEL ANALYSIS
5.2 PORTER’S FIVE FORCES MODEL
6 INDUSTRY INSIGHTS
6.1 MICRO AND MACRO ECONOMIC FACTORS
6.2 PENETRATION AND GROWTH PROSPECT MAPPING
6.3 KEY PRICING STRATEGIES
6.4 INTERVIEWS WITH SPECIALIST
6.5 ANALYIS AND RECOMMENDATION
7 INTELLECTUAL PROPERTY (IP) PORTFOLIO
7.1 PATENT QUALITY AND STRENGTH
7.2 PATENT FAMILIES
7.3 LICENSING AND COLLABORATIONS
7.4 COMPETITIVE LANDSCAPE
7.5 IP STRATEGY AND MANAGEMENT
7.6 OTHER
8 COST ANALYSIS BREAKDOWN
9 TECHNONLOGY ROADMAP
10 INNOVATION TRACKER AND STRATEGIC ANALYSIS
10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS
10.1.1 JOINT VENTURES
10.1.2 MERGERS AND ACQUISITIONS
10.1.3 LICENSING AND PARTNERSHIP
10.1.4 TECHNOLOGY COLLABORATIONS
10.1.5 STRATEGIC DIVESTMENTS
10.2 NUMBER OF PRODUCTS IN DEVELOPMENT
10.3 STAGE OF DEVELOPMENT
10.4 TIMELINES AND MILESTONES
10.5 INNOVATION STRATEGIES AND METHODOLOGIES
10.6 RISK ASSESSMENT AND MITIGATION
10.7 FUTURE OUTLOOK
11 REGULATORY COMPLIANCE
11.1 REGULATORY AUTHORITIES
11.2 REGULATORY CLASSIFICATIONS
11.2.1 CLASS I
11.2.2 CLASS II
11.2.3 CLASS III
11.3 REGULATORY SUBMISSIONS
11.4 INTERNATIONAL HARMONIZATION
11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS
11.6 REGULATORY CHALLENGES AND STRATEGIES
12 REIMBURSEMENT FRAMEWORK
13 OPPUTUNITY MAP ANALYSIS
14 VALUE CHAIN ANALYSIS
15 HEALTHCARE ECONOMY
15.1 HEALTHCARE EXPENDITURE
15.2 CAPITAL EXPENDITURE
15.3 CAPEX TRENDS
15.4 CAPEX ALLOCATION
15.5 FUNDING SOURCES
15.6 INDUSTRY BENCHMARKS
15.7 GDP RATION IN OVERALL GDP
15.8 HEALTHCARE SYSTEM STRUCTURE
15.9 GOVERNMENT POLICIES
15.1 ECONOMIC DEVELOPMENT
16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
16.1 OVERVIEW
16.2 SOFTWARE
16.2.1 INTEGRATED
16.2.2 STANDALONE
16.3 SERVICES
17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
17.1 OVERVIEW
17.2 MACHINE LEARNING (ML)
17.2.1 SUPERVISED LEARNING
17.2.2 UNSUPERVISED LEARNING
17.2.3 REINFORCEMENT LEARNING
17.3 DEEP LEARNING
17.4 NATURAL LANGUAGE PROCESSING (NLP)
17.5 OTHERS
18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE
18.1 OVERVIEW
18.2 SMALL MOLECULE
18.3 LARGE MOLECULE
19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
19.1 OVERVIEW
19.2 NOVEL DRUG CANDIDATES
19.2.1 IDENTIFY BIOLOGICS TARGET
19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE
19.2.3 OTHERS
19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL
19.4 DRUG MONITORING
19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS
19.6 UNDERSTANDING DISEASE MECHANISMS
19.7 AGGREGATING AND SYNTHESIZING INFORMATION
19.8 FORM ATION & QUALIFICATION OF HYPOTHESES
19.9 DE NOVO DRUG DESIGN
19.1 FINDING DRUG TARGETS OF AN OLD DRUG
19.11 OTHERS
20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
20.1 OVERVIEW
20.2 IMMUNO-ONCOLOGY
20.2.1 PROSTATE CANCER
20.2.2 BREAST CANCER
20.2.3 BRAIN CANCER
20.2.4 LUNG CANCER
20.2.5 PANCREATIC CANCER
20.2.6 COLORECTAL CANCER
20.2.7 LEUKEMIA
20.2.8 OTHERS
20.3 NEURODEGENERATIVE DISEASES
20.4 CARDIOVASCULAR DISEASES
20.5 METABOLIC DISEASES
20.6 OTHERS
21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER
21.1 OVERVIEW
21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
21.3 CONTRACT RESEARCH ORGANIZATIONS
21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES
21.5 OTHERS
22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)
GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
22.1 OVERVIEW
22.2 NORTH AMERICA
22.2.1 U.S.
22.2.2 CANADA
22.2.3 MEXICO
22.3 EUROPE
22.3.1 GERMANY
22.3.2 U.K.
22.3.3 ITALY
22.3.4 FRANCE
22.3.5 SPAIN
22.3.6 SWITZERLAND
22.3.7 RUSSIA
22.3.8 TURKEY
22.3.9 BELGIUM
22.3.10 NETHERLANDS
22.3.11 REST OF EUROPE
22.4 ASIA-PACIFIC
22.4.1 JAPAN
22.4.2 CHINA
22.4.3 SOUTH KOREA
22.4.4 INDIA
22.4.5 AUSTRALIA & NEW ZEALAND
22.4.6 SINGAPORE
22.4.7 THAILAND
22.4.8 INDONESIA
22.4.9 MALAYSIA
22.4.10 PHILIPPINES
22.4.11 REST OF ASIA-PACIFIC
22.5 SOUTH AMERICA
22.5.1 BRAZIL
22.5.2 ARGENTINA
22.5.3 REST OF SOUTH AMERICA
22.6 MIDDLE EAST AND AFRICA
22.6.1 SOUTH AFRICA
22.6.2 EGYPT
22.6.3 SAUDI ARABIA
22.6.4 UNITED ARAB EMIRATES
22.6.5 ISRAEL
22.6.6 REST OF MIDDLE EAST AND AFRICA
23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE
23.1 COMPANY SHARE ANALYSIS: GLOBAL
23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
23.3 COMPANY SHARE ANALYSIS: EUROPE
23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
23.5 MERGERS & ACQUISITIONS
23.6 NEW PRODUCT DEVELOPMENT & APPROVALS
23.7 EXPANSIONS
23.8 REGULATORY CHANGES
23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES
24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS
25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE
25.1 MICROSOFT
25.1.1 COMPANY OVERVIEW
25.1.2 REVENUE ANALYSIS
25.1.3 PRODUCT PORTFOLIO
25.1.4 RECENT DEVELOPMENTS
25.2 SHANGHAI MEDICILON INC.
25.2.1 COMPANY OVERVIEW
25.2.2 REVENUE ANALYSIS
25.2.3 PRODUCT PORTFOLIO
25.2.4 RECENT DEVELOPMENTS
25.3 NVIDIA CORPORATION + ASTRAZENECA
25.3.1 COMPANY OVERVIEW
25.3.2 REVENUE ANALYSIS
25.3.3 PRODUCT PORTFOLIO
25.3.4 RECENT DEVELOPMENTS
25.4 ATOMWISE INC.
25.4.1 COMPANY OVERVIEW
25.4.2 REVENUE ANALYSIS
25.4.3 PRODUCT PORTFOLIO
25.4.4 RECENT DEVELOPMENTS
25.5 DEEP GENOMICS
25.5.1 COMPANY OVERVIEW
25.5.2 REVENUE ANALYSIS
25.5.3 PRODUCT PORTFOLIO
25.5.4 RECENT DEVELOPMENTS
25.6 CLOUD PHARMACEUTICALS INC.
25.6.1 COMPANY OVERVIEW
25.6.2 REVENUE ANALYSIS
25.6.3 PRODUCT PORTFOLIO
25.6.4 RECENT DEVELOPMENTS
25.7 INSILICO MEDICINE
25.7.1 COMPANY OVERVIEW
25.7.2 REVENUE ANALYSIS
25.7.3 PRODUCT PORTFOLIO
25.7.4 RECENT DEVELOPMENTS
25.8 BENEVOLENTAI
25.8.1 COMPANY OVERVIEW
25.8.2 REVENUE ANALYSIS
25.8.3 PRODUCT PORTFOLIO
25.8.4 RECENT DEVELOPMENTS
25.9 EXSCIENTIA
25.9.1 COMPANY OVERVIEW
25.9.2 REVENUE ANALYSIS
25.9.3 PRODUCT PORTFOLIO
25.9.4 RECENT DEVELOPMENTS
25.1 CYCLICA
25.10.1 COMPANY OVERVIEW
25.10.2 REVENUE ANALYSIS
25.10.3 PRODUCT PORTFOLIO
25.10.4 RECENT DEVELOPMENTS
25.11 OWKIN, INC
25.11.1 COMPANY OVERVIEW
25.11.2 REVENUE ANALYSIS
25.11.3 PRODUCT PORTFOLIO
25.11.4 RECENT DEVELOPMENTS
25.12 ENVISAGENICS
25.12.1 COMPANY OVERVIEW
25.12.2 REVENUE ANALYSIS
25.12.3 PRODUCT PORTFOLIO
25.12.4 RECENT DEVELOPMENTS
25.13 NUMEDII, INC.
25.13.1 COMPANY OVERVIEW
25.13.2 REVENUE ANALYSIS
25.13.3 PRODUCT PORTFOLIO
25.13.4 RECENT DEVELOPMENTS
25.14 BIOSYNTAGMA
25.14.1 COMPANY OVERVIEW
25.14.2 REVENUE ANALYSIS
25.14.3 PRODUCT PORTFOLIO
25.14.4 RECENT DEVELOPMENTS
25.15 COLLABORATIONS PHARMACEUTICALS, INC.
25.15.1 COMPANY OVERVIEW
25.15.2 REVENUE ANALYSIS
25.15.3 PRODUCT PORTFOLIO
25.15.4 RECENT DEVELOPMENTS
25.16 INVENIAI LLC
25.16.1 COMPANY OVERVIEW
25.16.2 REVENUE ANALYSIS
25.16.3 PRODUCT PORTFOLIO
25.16.4 RECENT DEVELOPMENTS
25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION
25.17.1 COMPANY OVERVIEW
25.17.2 REVENUE ANALYSIS
25.17.3 PRODUCT PORTFOLIO
25.17.4 RECENT DEVELOPMENTS
25.18 VALO HEALTH
25.18.1 COMPANY OVERVIEW
25.18.2 REVENUE ANALYSIS
25.18.3 PRODUCT PORTFOLIO
25.18.4 RECENT DEVELOPMENTS
25.19 AIFORIA
25.19.1 COMPANY OVERVIEW
25.19.2 REVENUE ANALYSIS
25.19.3 PRODUCT PORTFOLIO
25.19.4 RECENT DEVELOPMENTS
25.2 CHEMALIVE
25.20.1 COMPANY OVERVIEW
25.20.2 REVENUE ANALYSIS
25.20.3 PRODUCT PORTFOLIO
25.20.4 RECENT DEVELOPMENTS
25.21 DEEPMATTER GROUP LIMITED
25.21.1 COMPANY OVERVIEW
25.21.2 REVENUE ANALYSIS
25.21.3 PRODUCT PORTFOLIO
25.21.4 RECENT DEVELOPMENTS
25.22 MABSILICO.
25.22.1 COMPANY OVERVIEW
25.22.2 REVENUE ANALYSIS
25.22.3 PRODUCT PORTFOLIO
25.22.4 RECENT DEVELOPMENTS
25.23 OPTIBRIUM, LTD.
25.23.1 COMPANY OVERVIEW
25.23.2 REVENUE ANALYSIS
25.23.3 PRODUCT PORTFOLIO
25.23.4 RECENT DEVELOPMENTS
25.24 ABBVIE AND BIGHAT BIOSCIENCES
25.24.1 COMPANY OVERVIEW
25.24.2 REVENUE ANALYSIS
25.24.3 PRODUCT PORTFOLIO
25.24.4 RECENT DEVELOPMENTS
25.25 ADAGENE
25.25.1 COMPANY OVERVIEW
25.25.2 REVENUE ANALYSIS
25.25.3 PRODUCT PORTFOLIO
25.25.4 RECENT DEVELOPMENTS
25.26 PEPTICOM LTD.
25.26.1 COMPANY OVERVIEW
25.26.2 REVENUE ANALYSIS
25.26.3 PRODUCT PORTFOLIO
25.26.4 RECENT DEVELOPMENTS
25.27 DEARGEN INC.
25.27.1 COMPANY OVERVIEW
25.27.2 REVENUE ANALYSIS
25.27.3 PRODUCT PORTFOLIO
25.27.4 RECENT DEVELOPMENTS
25.28 GERO.AI
25.28.1 COMPANY OVERVIEW
25.28.2 REVENUE ANALYSIS
25.28.3 PRODUCT PORTFOLIO
25.28.4 RECENT DEVELOPMENTS
25.29 3BIGS CO. LTD.
25.29.1 COMPANY OVERVIEW
25.29.2 REVENUE ANALYSIS
25.29.3 PRODUCT PORTFOLIO
25.29.4 RECENT DEVELOPMENTS
25.3 BPGBIO INC.
25.30.1 COMPANY OVERVIEW
25.30.2 REVENUE ANALYSIS
25.30.3 PRODUCT PORTFOLIO
25.30.4 RECENT DEVELOPMENTS
25.31 SCHRÖDINGER, INC.
25.31.1 COMPANY OVERVIEW
25.31.2 REVENUE ANALYSIS
25.31.3 PRODUCT PORTFOLIO
25.31.4 RECENT DEVELOPMENTS
25.32 XTALPI INC.
25.32.1 COMPANY OVERVIEW
25.32.2 REVENUE ANALYSIS
25.32.3 PRODUCT PORTFOLIO
25.32.4 RECENT DEVELOPMENTS
25.33 BIOAGE INC.
25.33.1 COMPANY OVERVIEW
25.33.2 REVENUE ANALYSIS
25.33.3 PRODUCT PORTFOLIO
25.33.4 RECENT DEVELOPMENTS
26 RELATED REPORTS
27 QUESTIONNAIRE
28 CONCLUSION
29 ABOUT DATA BRIDGE MARKET RESEARCH
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.
