Global Artificial Intelligence Ai In Insurance Market
Taille du marché en milliards USD
TCAC :
%
USD
6.44 Billion
USD
63.27 Billion
2024
2032
| 2025 –2032 | |
| USD 6.44 Billion | |
| USD 63.27 Billion | |
|
|
|
|
Segmentation du marché mondial de l'intelligence artificielle (IA) dans l'assurance, par composant (matériel, logiciels et services), technologie (apprentissage automatique et profond, traitement du langage naturel (TALN), vision artificielle et automatisation robotique), modèle de déploiement (sur site et cloud), taille des entreprises (grandes entreprises et PME), application (gestion des sinistres, gestion des risques et conformité, chatbots et autres), secteur (assurance vie, assurance maladie, assurance titres, assurance automobile et autres) - Tendances et prévisions du secteur jusqu'en 2032
L'intelligence artificielle (IA) dans la taille du marché de l'assurance
- Le marché mondial de l'intelligence artificielle (IA) dans l'assurance était évalué à 6,44 milliards USD en 2024 et devrait atteindre 63,27 milliards USD d'ici 2032.
- Au cours de la période de prévision de 2025 à 2032, le marché devrait croître à un TCAC de 33,06 %, principalement grâce aux progrès de l'analyse prédictive.
- Cette croissance est tirée par des facteurs tels qu'une meilleure évaluation des risques et une meilleure tarification, l'intégration de l'IoT et un traitement plus rapide des réclamations.
L'intelligence artificielle (IA) dans l'analyse du marché de l'assurance
- L'intelligence artificielle dans le domaine de l'assurance fait référence à l'utilisation de technologies d'intelligence artificielle telles que l'apprentissage automatique, le traitement du langage naturel et l'analyse prédictive pour améliorer l'évaluation des risques, le traitement des réclamations, la détection des fraudes et l'engagement des clients.
- La croissance du marché est portée par l'adoption croissante de l'automatisation basée sur l'IA, la demande croissante d'analyses de données en temps réel et le besoin d'une détection améliorée de la fraude. À mesure que les assureurs adoptent la transformation numérique, les solutions d'IA deviennent essentielles pour améliorer l'efficacité et réduire les coûts opérationnels.
- L'intégration de l'IA au big data, à l'IoT et au cloud computing transforme le paysage de l'assurance. Les outils d'IA permettent une tarification personnalisée des polices, une souscription automatisée et une modélisation prédictive des risques, optimisant ainsi les processus décisionnels.
- Par exemple, Lemonade , une compagnie d'assurance axée sur le numérique, utilise des chatbots IA pour traiter les réclamations en quelques minutes, tandis qu'Allstate utilise des analyses basées sur l'IA pour optimiser les recommandations de polices d'assurance en fonction des données clients.
- Le marché de l'IA dans l'assurance est voué à une croissance soutenue, portée par les progrès de l'automatisation, de l'analyse en temps réel et de la prise de décision basée sur l'IA. L'augmentation des investissements dans l'InsurTech et la demande d'expériences numériques fluides stimuleront l'expansion du marché, les assureurs priorisant l'adoption de l'IA pour maintenir leur compétitivité.
Portée du rapport et intelligence artificielle (IA) dans la segmentation du marché de l'assurance
|
Attributs |
Intelligence artificielle (IA) dans l'assurance : informations clés sur le marché |
|
Segments couverts |
|
|
Pays couverts |
Amérique du Nord
Europe
Asie-Pacifique
Moyen-Orient et Afrique
Amérique du Sud
|
|
Acteurs clés du marché |
|
|
Opportunités de marché |
|
|
Ensembles d'informations de données à valeur ajoutée |
Outre les informations sur le marché telles que la valeur marchande, le taux de croissance, les segments de marché, la couverture géographique, les acteurs du marché et le scénario du marché, le rapport de marché organisé par l'équipe de recherche sur le marché de Data Bridge comprend une analyse approfondie des experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse du pilon. |
L'intelligence artificielle (IA) dans les tendances du marché de l'assurance
« Utilisation croissante des chatbots et des assistants virtuels basés sur l'IA »
- L’une des tendances marquantes du marché mondial de l’intelligence artificielle (IA) dans l’assurance est l’ utilisation croissante de chatbots et d’assistants virtuels basés sur l’IA.
- Cette tendance est motivée par le fait que les assureurs intègrent l'IA conversationnelle pour gérer les demandes de renseignements, traiter les réclamations et proposer des recommandations de polices personnalisées, réduisant ainsi les temps de réponse et améliorant l'efficacité.
- Par exemple, l'assistante virtuelle de GEICO, Kate , fournit aux assurés une assistance en temps réel, tandis que le chatbot IA de Lemonade, Maya, facilite le traitement transparent des réclamations en quelques minutes.
- La demande croissante d'un service client numérique 24h/24 et 7j/7 accélère l'adoption de chatbots basés sur l'IA dans le secteur des assurances.
- Alors que les assureurs cherchent à réduire leurs coûts opérationnels et à améliorer l'expérience utilisateur, le rôle de l'IA conversationnelle va continuer de se développer. Les avancées futures en matière d'IA émotionnelle et de reconnaissance vocale devraient affiner les capacités des chatbots, rendant les interactions plus humaines et personnalisées.
L'intelligence artificielle (IA) dans la dynamique du marché de l'assurance
Conducteur
« Demande croissante de traitement automatisé des réclamations »
- Le recours croissant à l'intelligence artificielle (IA) et à l'automatisation est un moteur essentiel de la croissance de l'IA sur le marché de l'assurance. Alors que les assureurs passent du traitement traditionnel des sinistres à l'automatisation par l'IA, le besoin d'un traitement efficace et précis des sinistres est plus crucial que jamais.
- Cette transition est particulièrement évidente dans les domaines de l'assurance santé, automobile et immobilière, où les assureurs exploitent l'automatisation des réclamations basée sur l'IA pour réduire les délais de traitement, détecter les fraudes et améliorer l'expérience client.
- Les assureurs manipulant d'énormes volumes de données sur les sinistres, la complexité de leur gestion s'est accrue. Les entreprises investissent désormais dans des solutions de gestion des sinistres basées sur l'IA pour évaluer les dommages, vérifier les documents et garantir une interaction fluide avec les assurés, tout en réduisant les inefficacités opérationnelles.
- La préférence croissante des clients pour des règlements de sinistres rapides et numériques alimente davantage la demande d'automatisation basée sur l'IA.
- En intégrant l'apprentissage automatique (ML) et le traitement du langage naturel (NLP), les assureurs peuvent améliorer la prise de décision, minimiser l'intervention humaine et renforcer la confiance des assurés.
Par exemple,
- Progressive Insurance utilise des outils d'évaluation des dommages alimentés par l'IA dans l'assurance automobile, en utilisant la vision par ordinateur pour analyser les photos d'accident et fournir des estimations de réparation en temps réel
- Le système de réclamations basé sur l'IA d'Allstate détecte les activités frauduleuses et garantit un règlement plus rapide en automatisant les évaluations de réclamations de routine
- Avec l'augmentation des investissements dans l'automatisation et la transformation numérique basées sur l'IA, le traitement des réclamations basé sur l'IA jouera un rôle crucial dans la réduction des délais d'exécution, la prévention des réclamations frauduleuses et l'amélioration de la satisfaction des assurés, stimulant ainsi une croissance soutenue du marché.
Opportunité
« Élargissement de l'évaluation des risques basée sur l'IA »
- L'adoption croissante de modèles d'évaluation des risques basés sur l'IA représente une opportunité majeure pour le marché de l'assurance. Les assureurs exploitent l'analyse du Big Data, la modélisation prédictive et l'apprentissage automatique (ML) pour améliorer l'évaluation des risques, personnaliser les polices et optimiser la précision des souscriptions.
- Les méthodes traditionnelles d'évaluation des risques s'appuient sur des données historiques et des critères standardisés, ce qui entraîne souvent des inefficacités dans la tarification des polices et l'approbation des sinistres. Les outils d'IA analysent les données comportementales et contextuelles en temps réel, permettant aux assureurs de réaliser des évaluations des risques plus précises et dynamiques.
- L'évaluation des risques basée sur l'IA permet aux assureurs de personnaliser les tarifs des primes en fonction du comportement de conduite en temps réel (assurance automobile), des habitudes de vie (assurance maladie) et des habitudes d'utilisation des biens (assurance habitation).
Par exemple,
- Swiss Re utilise des modèles prédictifs basés sur l'IA pour évaluer les risques climatiques, aidant ainsi les assureurs à souscrire des assurances immobilières et catastrophes avec plus de précision.
- Lemonade Inc., une société d'assurance basée sur l'IA, utilise des données comportementales et des algorithmes d'IA pour évaluer les risques et rationaliser la souscription, permettant ainsi des approbations de polices instantanées.
- Alors que le secteur de l'assurance évolue vers des modèles axés sur les données et centrés sur le client, les solutions d'évaluation des risques basées sur l'IA continueront d'accroître l'efficacité, de réduire les pertes et d'améliorer la satisfaction des assurés, créant ainsi d'importantes opportunités de croissance pour les acteurs du marché.
Retenue/Défi
« Confidentialité des données et conformité réglementaire »
- L'adoption généralisée de solutions basées sur l'IA dans le secteur de l'assurance soulève d'importantes préoccupations en matière de confidentialité des données, de sécurité et de conformité réglementaire. Les assureurs s'appuient sur de vastes quantités de données personnelles, financières et comportementales pour améliorer l'évaluation des risques, le traitement des sinistres et la détection des fraudes, faisant de la protection des données un enjeu crucial.
- Des réglementations strictes telles que le Règlement général sur la protection des données (RGPD) en Europe, le California Consumer Privacy Act (CCPA) aux États-Unis et des lois sectorielles telles que le Health Insurance Portability and Accountability Act (HIPAA) imposent des directives strictes sur la manière dont les assureurs collectent, traitent et stockent les données des clients.
- En outre, la prise de décision basée sur l'IA dans la souscription et le traitement des sinistres a suscité des inquiétudes quant aux biais algorithmiques et au manque de transparence.
Par exemple,
- La loi chinoise sur la protection des informations personnelles (PIPL) a imposé des réglementations strictes aux assureurs étrangers opérant dans le pays, ce qui a un impact sur l'analyse des données basée sur l'IA et la personnalisation des politiques.
- Ces défis réglementaires et de confidentialité pourraient ralentir l'adoption de l'IA dans le secteur de l'assurance, augmentant les coûts de conformité et limitant l'innovation. Les assureurs devront concilier les avancées de l'IA avec un respect réglementaire strict, ce qui pourrait ralentir l'expansion du marché et conduire à des stratégies de mise en œuvre prudentes de l'IA dans les années à venir.
L'intelligence artificielle (IA) dans le marché de l'assurance
Le marché est segmenté en fonction du composant, de la technologie, du modèle de déploiement, de la taille de l'entreprise, de l'application et du secteur.
|
Segmentation |
Sous-segmentation |
|
Par composant |
|
|
Par technologie |
|
|
Par modèle de déploiement |
|
|
Par taille d'entreprise
|
|
|
Par application |
|
|
Par secteur |
|
Analyse régionale de l'intelligence artificielle (IA) dans le marché de l'assurance
« L'Amérique du Nord est la région dominante sur le marché de l'intelligence artificielle (IA) dans l'assurance »
- L'Amérique du Nord domine le marché de l'intelligence artificielle (IA) dans l'assurance , grâce à l' adoption précoce de technologies basées sur l'IA, à des cadres réglementaires solides et à la présence de fournisseurs de solutions d'IA de premier plan dans la région.
- Les États-Unis détiennent une part importante en raison des investissements importants réalisés par les principales compagnies d’assurance dans la souscription basée sur l’IA, l’automatisation des réclamations et la détection des fraudes.
- L'infrastructure informatique avancée de la région et le taux élevé d'adoption de l'IA par les assureurs contribuent à son leadership sur le marché. Aux États-Unis et au Canada, les entreprises exploitent l'apprentissage automatique, le traitement du langage naturel et l'analyse prédictive pour améliorer l'expérience client et l'efficacité opérationnelle.
- De plus, les initiatives réglementaires favorisant la transparence de l'IA et son utilisation éthique ont encouragé les assureurs à intégrer la prise de décision basée sur l'IA tout en maintenant la conformité, renforçant ainsi la position de l'Amérique du Nord en tant qu'acteur dominant sur le marché.
« L'Asie-Pacifique devrait enregistrer le taux de croissance le plus élevé »
- La région Asie-Pacifique devrait connaître le taux de croissance le plus élevé sur le marché de l' intelligence artificielle (IA) dans l'assurance , grâce aux initiatives de transformation numérique menées par les gouvernements et à l'augmentation des investissements dans les technologies d'assurance basées sur l'IA.
- Des pays comme la Chine, l'Inde et le Japon connaissent une numérisation rapide, conduisant à l'adoption de chatbots basés sur l'IA, de traitement automatisé des réclamations et de modèles de tarification des polices d'assurance personnalisés pour améliorer l'engagement des clients et l'efficacité opérationnelle.
- L'expansion des startups insurtech, la pénétration croissante des solutions d'évaluation des risques basées sur l'IoT et la demande croissante de détection de fraude basée sur l'IA alimentent davantage la croissance du marché dans la région.
- Alors que les assureurs de la région Asie-Pacifique continuent d'intégrer l'analyse basée sur l'IA, la télématique et la modélisation prédictive, la région présente des opportunités importantes pour les fournisseurs de solutions d'IA qui cherchent à se développer sur les marchés émergents de l'assurance.
Part de marché de l'intelligence artificielle (IA) dans l'assurance
Le paysage concurrentiel du marché fournit des détails par concurrent. Il comprend la présentation de l'entreprise, ses données financières, son chiffre d'affaires, son potentiel de marché, ses investissements en recherche et développement, ses nouvelles initiatives commerciales, sa présence mondiale, ses sites et installations de production, ses capacités de production, ses forces et faiblesses, le lancement de nouveaux produits, leur ampleur et leur portée, ainsi que la domination de ses applications. Les données ci-dessus ne concernent que les activités des entreprises par rapport à leur marché.
Les principaux leaders du marché opérant sur le marché sont :
- Microsoft (États-Unis)
- Infosys Limited (Inde)
- Tractable (Royaume-Uni)
- Insurify, Inc. (États-Unis)
- Slice Insurance Technologies Inc (États-Unis)
- Google (États-Unis)
- Oracle (États-Unis)
- Amazon Web Services Inc. (États-Unis)
- IBM (États-Unis)
- Avaamo (États-Unis)
- CAPE Analytics (États-Unis)
- Wipro (Inde)
- Acko General Insurance (Inde)
- Shift Technology (France)
- Quantemplate (Royaume-Uni)
- Zurich (Suisse)
- Lemonade Inc. (États-Unis)
Dernières évolutions de l'intelligence artificielle (IA) mondiale sur le marché de l'assurance
- En juin 2023, Simplifai , entreprise spécialisée dans les solutions d'automatisation par l'IA, a lancé Simplifai InsuranceGPT , le premier outil GPT propriétaire spécialement conçu pour le secteur de l'assurance. Cette innovation révolutionnaire s'appuie sur la plateforme sans code de Simplifai, optimisée par l'IA, renforçant ainsi les solides capacités d'automatisation des processus métier de l'entreprise.
- En janvier 2023, AI inside Inc. , une entreprise dédiée à la démocratisation de l'IA par le biais d'infrastructures et de services de conseil, a lancé une nouvelle solution DX . Cette solution facilite le développement de nouveaux produits d'assurance en exploitant des certificats de santé semi-structurés numérisés par OCR, spécialement conçus pour le secteur de l'assurance-vie.
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Table des matières
1. INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2. MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMAPANY MARKET SHARE ANALYSIS
2.2.5 MULTIVARIATE MODELLING
2.2.6 TOP TO BOTTOM ANALYSIS
2.2.7 STANDARDS OF MEASUREMENT
2.2.8 VENDOR SHARE ANALYSIS
2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3. MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4. EXECUTIVE SUMMARY
5. PREMIUM INSIGHT
5.1 PORTERS FIVE FORCES
5.2 REGULATORY STANDARDS
5.3 TECHNOLOGICAL TRENDS
5.4 PATENT ANALYSIS
5.5 CASE STUDY
5.6 VALUE CHAIN ANALYSIS
5.7 COMPANY COMPARITIVE ANALYSIS
5.8 THE IMPACT OF AI ON THE FUTURE OF INSURANCE
5.9 AI DRIVEN INNOVATION IN THE INSURANCE SECTOR
6. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.2.1 PROCESSORS
6.2.1.1. MICROPROCESSING UNIT
6.2.1.2. GRAPHICS PROCESSING UNIT
6.2.1.3. FIELD PROGRAMMABLE GATE ARRAYS
6.2.1.4. OTHERS
6.2.2 MEMORY
6.2.3 NETWORK
6.3 SOFTWARE
6.3.1 SOFTWARE TOOL
6.3.1.1. DATA DISCOVERY
6.3.1.2. DATA QUALITY AND DATA GOVERNANCE
6.3.1.3. DATA VISUALIZATION
6.3.2 PLATFORM
6.4 SERVICES
6.4.1 MANAGED SERVICES
6.4.2 PROFESSIONAL SERVICES
7. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING
7.2.1 DEEP LEARNING
7.2.1.1. CONVOLUTIONAL NEURAL NETWORK (CNN)
7.2.1.2. RECURRENT NEURAL NETWORK (RNN)
7.2.1.3. GENERATIVE ADVERSARIAL NETWORKS (GAN)
7.2.2 SUPERVISED LEARNING
7.2.3 UNSUPERVISED LEARNING
7.2.4 REINFORCEMENT LEARNING
7.3 NATURAL LANGUAGE PROCESSING (NLP)
7.4 COMPUTER VISION
7.5 CONTEXT AWARENESS
7.6 ROBOTIC AUTOMATION
7.7 OTHERS
8. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY DEPLOYMENT MODE
8.1 OVERVIEW
8.2 CLOUD
8.3 ON-PREMISE
9. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY ENTERPRISE SIZE
9.1 OVERVIEW
9.2 SMALL & MEDIUM SIZE ENTERPRISE
9.2.1 BY DEPLOYMENT MODE
9.2.1.1. CLOUD
9.2.1.2. ON-PREMISE
9.3 LARGE SIZE ENTERPRISE
9.3.1 BY DEPLOYMENT MODE
9.3.1.1. CLOUD
9.3.1.2. ON-PREMISE
10. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY APPLICATION
10.1 OVERVIEW
10.2 CLAIMS MANAGEMENT
10.3 RISK MANAGEMENT AND COMPLIANCE
10.4 CHATBOTS
10.5 FRAUD DETECTION
10.6 CUSTOMER RELATIONSHIP MANAGEMENT
10.7 CYBERSECURITY
10.8 OTHERS
11. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY END USER
11.1 OVERVIEW
11.2 INSURANCE COMPANIES
11.3 BROKERS
11.4 AGENTS
12. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY SECTOR
12.1 OVERVIEW
12.2 LIFE INSURANCE
12.2.1 BY COMPONENT
12.2.1.1. HARDWARE
12.2.1.2. SOFTWARE
12.2.1.3. SERVICES
12.3 HEALTH INSURANCE
12.3.1 BY COMPONENT
12.3.1.1. HARDWARE
12.3.1.2. SOFTWARE
12.3.1.3. SERVICES
12.4 TITLE INSURANCE
12.4.1 BY COMPONENT
12.4.1.1. HARDWARE
12.4.1.2. SOFTWARE
12.4.1.3. SERVICES
12.5 AUTO INSURANCE
12.5.1 BY COMPONENT
12.5.1.1. HARDWARE
12.5.1.2. SOFTWARE
12.5.1.3. SERVICES
12.6 OTHERS
13. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY GEOGRAPHY
13.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
13.1.1 NORTH AMERICA
13.1.1.1. U.S.
13.1.1.2. CANADA
13.1.1.3. MEXICO
13.1.2 EUROPE
13.1.2.1. GERMANY
13.1.2.2. FRANCE
13.1.2.3. U.K.
13.1.2.4. ITALY
13.1.2.5. SPAIN
13.1.2.6. RUSSIA
13.1.2.7. TURKEY
13.1.2.8. BELGIUM
13.1.2.9. NETHERLANDS
13.1.2.10. NORWAY
13.1.2.11. FINLAND
13.1.2.12. SWITZERLAND
13.1.2.13. DENMARK
13.1.2.14. SWEDEN
13.1.2.15. POLAND
13.1.2.16. REST OF EUROPE
13.1.3 ASIA PACIFIC
13.1.3.1. JAPAN
13.1.3.2. CHINA
13.1.3.3. SOUTH KOREA
13.1.3.4. INDIA
13.1.3.5. AUSTRALIA
13.1.3.6. NEW ZEALAND
13.1.3.7. SINGAPORE
13.1.3.8. THAILAND
13.1.3.9. MALAYSIA
13.1.3.10. INDONESIA
13.1.3.11. PHILIPPINES
13.1.3.12. TAIWAN
13.1.3.13. VIETNAM
13.1.3.14. REST OF ASIA PACIFIC
13.1.4 SOUTH AMERICA
13.1.4.1. BRAZIL
13.1.4.2. ARGENTINA
13.1.4.3. REST OF SOUTH AMERICA
13.1.5 MIDDLE EAST AND AFRICA
13.1.5.1. SOUTH AFRICA
13.1.5.2. EGYPT
13.1.5.3. SAUDI ARABIA
13.1.5.4. U.A.E
13.1.5.5. OMAN
13.1.5.6. BAHRAIN
13.1.5.7. ISRAEL
13.1.5.8. KUWAIT
13.1.5.9. QATAR
13.1.5.10. REST OF MIDDLE EAST AND AFRICA
13.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
14. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET,COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: GLOBAL
14.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
14.3 COMPANY SHARE ANALYSIS: EUROPE
14.4 COMPANY SHARE ANALYSIS: ASIA PACIFIC
14.5 MERGERS & ACQUISITIONS
14.6 NEW PRODUCT DEVELOPMENT AND APPROVALS
14.7 EXPANSIONS
14.8 REGULATORY CHANGES
14.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, SWOT & DBMR ANALYSIS
16. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, COMPANY PROFILE
16.1 IBM
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 PRODUCT PORTFOLIO
16.1.4 RECENT DEVELOPMENT
16.2 DAMCO GROUP
16.2.1 COMPANY SNAPSHOT
16.2.2 REVENUE ANALYSIS
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENT
16.3 MICROSOFT
16.3.1 COMPANY SNAPSHOT
16.3.2 REVENUE ANALYSIS
16.3.3 PRODUCT PORTFOLIO
16.3.4 RECENT DEVELOPMENT
16.4 AMAZON WEB SERVICES, INC.
16.4.1 COMPANY SNAPSHOT
16.4.2 REVENUE ANALYSIS
16.4.3 PRODUCT PORTFOLIO
16.4.4 RECENT DEVELOPMENT
16.5 ORACLE
16.5.1 COMPANY SNAPSHOT
16.5.2 REVENUE ANALYSIS
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENT
16.6 AVAAMO
16.6.1 COMPANY SNAPSHOT
16.6.2 REVENUE ANALYSIS
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENT
16.7 SAP
16.7.1 COMPANY SNAPSHOT
16.7.2 REVENUE ANALYSIS
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENT
16.8 CAPE ANALYTICS
16.8.1 COMPANY SNAPSHOT
16.8.2 REVENUE ANALYSIS
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENT
16.9 WIPRO
16.9.1 COMPANY SNAPSHOT
16.9.2 REVENUE ANALYSIS
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENT
16.10 SHIFT TECHNOLOGY
16.10.1 COMPANY SNAPSHOT
16.10.2 REVENUE ANALYSIS
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENT
16.11 QUANTEMPLATE
16.11.1 COMPANY SNAPSHOT
16.11.2 REVENUE ANALYSIS
16.11.3 PRODUCT PORTFOLIO
16.11.4 RECENT DEVELOPMENT
16.12 ZURICH
16.12.1 COMPANY SNAPSHOT
16.12.2 REVENUE ANALYSIS
16.12.3 PRODUCT PORTFOLIO
16.12.4 RECENT DEVELOPMENT
16.13 LEMONADE, INC.
16.13.1 COMPANY SNAPSHOT
16.13.2 REVENUE ANALYSIS
16.13.3 PRODUCT PORTFOLIO
16.13.4 RECENT DEVELOPMENT
16.14 SLICE INSURANCE TECHNOLOGIES INC
16.14.1 COMPANY SNAPSHOT
16.14.2 REVENUE ANALYSIS
16.14.3 PRODUCT PORTFOLIO
16.14.4 RECENT DEVELOPMENT
16.15 INSURIFY, INC.
16.15.1 COMPANY SNAPSHOT
16.15.2 REVENUE ANALYSIS
16.15.3 PRODUCT PORTFOLIO
16.15.4 RECENT DEVELOPMENT
16.16 INSURMI
16.16.1 COMPANY SNAPSHOT
16.16.2 REVENUE ANALYSIS
16.16.3 PRODUCT PORTFOLIO
16.16.4 RECENT DEVELOPMENT
16.17 PLANCK RESOLUTION LTD.
16.17.1 COMPANY SNAPSHOT
16.17.2 REVENUE ANALYSIS
16.17.3 PRODUCT PORTFOLIO
16.17.4 RECENT DEVELOPMENT
16.18 TRACTABLE LTD.
16.18.1 COMPANY SNAPSHOT
16.18.2 REVENUE ANALYSIS
16.18.3 PRODUCT PORTFOLIO
16.18.4 RECENT DEVELOPMENT
16.19 GOOGLE
16.19.1 COMPANY SNAPSHOT
16.19.2 REVENUE ANALYSIS
16.19.3 PRODUCT PORTFOLIO
16.19.4 RECENT DEVELOPMENT
16.20 INFOSYS LIMITED
16.20.1 COMPANY SNAPSHOT
16.20.2 REVENUE ANALYSIS
16.20.3 PRODUCT PORTFOLIO
16.20.4 RECENT DEVELOPMENT
16.21 FLYREEL, INC. ( A PART OF LEXISNEXIS® RISK SOLUTIONS)
16.21.1 COMPANY SNAPSHOT
16.21.2 REVENUE ANALYSIS
16.21.3 PRODUCT PORTFOLIO
16.21.4 RECENT DEVELOPMENT
16.22 ANADEA, INC
16.22.1 COMPANY SNAPSHOT
16.22.2 REVENUE ANALYSIS
16.22.3 PRODUCT PORTFOLIO
16.22.4 RECENT DEVELOPMENT
16.23 WORKFUSION, INC.
16.23.1 COMPANY SNAPSHOT
16.23.2 REVENUE ANALYSIS
16.23.3 PRODUCT PORTFOLIO
16.23.4 RECENT DEVELOPMENT
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
17. CONCLUSION
18. QUESTIONNAIRE
19. RELATED REPORTS
20. ABOUT DATA BRIDGE MARKET RESEARCH
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.
