Global Machine Learning Service Mlaas Market
Taille du marché en milliards USD
TCAC :
%
USD
9.82 Billion
USD
78.25 Billion
2024
2032
| 2025 –2032 | |
| USD 9.82 Billion | |
| USD 78.25 Billion | |
|
|
|
|
Segmentation du marché mondial de l'apprentissage automatique en tant que service (MLaaS) par composant (outils et services logiciels), application (marketing et publicité, détection des fraudes et analyse des risques, maintenance prédictive, réalité augmentée, analyse réseau et gestion automatisée du trafic, etc.), taille de l'organisation (petites et moyennes entreprises, grandes entreprises), utilisateur final (éducation, services bancaires et financiers, assurances, automatisation et transport, santé, défense, vente au détail, commerce électronique, médias et divertissement, télécommunications, administration publique, aérospatiale, etc.) - Tendances et prévisions du secteur jusqu'en 2032
Taille du marché de l'apprentissage automatique en tant que service (MLaaS)
- La taille du marché mondial de l'apprentissage automatique en tant que service (MLaaS) était évaluée à 9,82 milliards USD en 2024 et devrait atteindre 78,25 milliards USD d'ici 2032 , à un TCAC de 29,6 % au cours de la période de prévision.
- Cette croissance est tirée par l’adoption croissante des solutions d’apprentissage automatique en tant que service (MLaaS) par les petites et moyennes organisations et par l’accent mis sur les avancées dans la technologie de la science des données.
Analyse du marché de l'apprentissage automatique en tant que service (MLaaS)
- L'apprentissage automatique en tant que service (MLaaS) est considéré comme une sous-catégorie des services de cloud computing. Il s'agit d'un ensemble de services offrant une large gamme d'outils et de composants d'apprentissage automatique pour optimiser l'efficacité des opérations.
- La demande croissante pour les technologies de l'Internet des objets (IoT) deviendra le principal moteur de croissance du marché. Les progrès croissants de l'intelligence artificielle accéléreront encore la croissance du marché.
- L'Amérique du Nord domine le marché de l'apprentissage automatique en tant que service (MLaaS) et continuera de développer sa tendance à la domination au cours de la période de prévision en raison de l'adoption croissante de solutions basées sur le cloud par les petites et moyennes entreprises.
- L'Asie-Pacifique enregistrera toutefois le TCAC le plus élevé pour cette période, en raison de la pénétration accrue des technologies d'apprentissage automatique et de la croissance durable du secteur informatique dans la région.
- Le segment des outils logiciels devrait dominer le marché avec une part de marché significative en 2025, en raison de la demande croissante d'outils avancés de traitement des données, de création de modèles et de déploiement. Ces outils permettent des workflows de machine learning efficaces, offrant des fonctionnalités telles que le stockage de données, la validation de modèles, la prise en charge des arbres de décision et l'intégration avec des plateformes cloud. Leur rôle dans l'automatisation de processus complexes dans divers secteurs d'activité est un facteur clé de leur adoption croissante.
Portée du rapport et segmentation du marché de l'apprentissage automatique en tant que service (MLaaS)
|
Attributs |
Principales informations sur le marché de l'apprentissage automatique en tant que service (MLaaS) |
|
Segments couverts |
|
|
Pays couverts |
Amérique du Nord
Europe
Asie-Pacifique
Moyen-Orient et Afrique
Amérique du Sud
|
|
Principaux acteurs du marché |
|
|
Opportunités de marché |
|
|
Ensembles d'informations de données à valeur ajoutée |
Outre les informations sur les scénarios de marché tels que la valeur marchande, le taux de croissance, la segmentation, la couverture géographique et les principaux acteurs, les rapports de marché organisés par Data Bridge Market Research comprennent également une analyse des importations et des exportations, un aperçu de la capacité de production, une analyse de la consommation de production, une analyse des tendances des prix, un scénario de changement climatique, une analyse de la chaîne d'approvisionnement, une analyse de la chaîne de valeur, un aperçu des matières premières/consommables, des critères de sélection des fournisseurs, une analyse PESTLE, une analyse Porter et un cadre réglementaire. |
Tendances du marché de l'apprentissage automatique en tant que service (MLaaS)
« Adoption croissante des solutions cloud dans tous les secteurs »
- La préférence croissante pour les plateformes de cloud computing dans tous les secteurs est un facteur clé de l’adoption du MLaaS, car il offre évolutivité, flexibilité et rentabilité.
- Le MLaaS basé sur le cloud élimine le besoin d’investissements lourds en infrastructure, ce qui en fait une option attrayante pour les organisations de toutes tailles.
- Il permet un déploiement plus rapide des modèles et des analyses en temps réel, soutenant la prise de décision agile et l'innovation.
Par exemple,
- En 2022, Microsoft Azure Machine Learning a signalé une augmentation de 30 % du nombre de clients d'entreprise utilisant sa plateforme pour la modélisation prédictive en temps réel, reflétant de fortes tendances en matière de migration vers le cloud.
- Cela indique une évolution continue vers le MLaaS, car l’infrastructure cloud devient la nouvelle norme dans la transformation numérique.
Dynamique du marché de l'apprentissage automatique en tant que service (MLaaS)
Conducteur
« Besoin croissant de comprendre le comportement des clients »
- Les entreprises exploitent les outils MLaaS pour analyser des quantités massives de données clients afin d’améliorer la personnalisation et l’engagement.
- Des informations comportementales précises obtenues grâce à l’apprentissage automatique aident les entreprises à optimiser leurs stratégies marketing et à améliorer la fidélisation de leurs clients.
- Les plateformes MLaaS fournissent des modèles prédéfinis pour la segmentation, l'analyse des sentiments et la prédiction du taux de désabonnement, permettant ainsi d'obtenir des informations plus rapides.
Par exemple,
- En 2023, Salesforce a intégré des analyses basées sur MLaaS dans sa plateforme de gestion de la relation client (CRM), aidant les entreprises à augmenter l'efficacité de leurs campagnes jusqu'à 40 %.
- Cette demande croissante de stratégies axées sur le comportement contribue de manière significative à la croissance du marché MLaaS.
Opportunité
« Utilisation accrue dans la détection des fraudes et l'analyse des risques »
- Les institutions financières et les plateformes de commerce électronique utilisent de plus en plus le MLaaS pour la détection des fraudes en temps réel et l’analyse des risques de crédit.
- Les modèles d’apprentissage automatique aident à identifier les anomalies et à détecter les modèles suspects à grande échelle, réduisant ainsi les risques financiers.
Par exemple,
- FICO, leader en matière de notation de crédit, propose désormais un MLaaS basé sur le cloud pour les banques, améliorant les taux de détection de fraude de plus de 25 % grâce à l'analyse prédictive.
- Ce cas d’utilisation continue de croître, d’autant plus que les cybermenaces deviennent plus sophistiquées.
Retenue/Défi
« Inquiétudes concernant la sécurité et la confidentialité des données »
- Les problèmes de sécurité et de confidentialité des données restent un défi majeur, en particulier lorsque des informations sensibles sont traitées sur des plateformes cloud tierces.
- Les organisations de secteurs tels que la finance et la santé hésitent à adopter pleinement le MLaaS en raison des risques de conformité et des violations potentielles de données.
Par exemple,
- En septembre 2024, une violation de données impliquant un fournisseur d'analyses basées sur le cloud a suscité un examen réglementaire, soulevant des inquiétudes quant à la fiabilité du MLaaS dans les secteurs réglementés.
- Ce défi pourrait entraver la croissance du marché à moins que des cadres de protection des données robustes et des garanties de conformité ne soient mis en œuvre.
Portée du marché de l'apprentissage automatique en tant que service (MLaaS)
Le marché de l’apprentissage automatique en tant que service (MLaaS) est segmenté en fonction du composant, de l’application, de la taille de l’organisation et de l’utilisateur final.
|
Segmentation |
Sous-segmentation |
|
Par composant |
|
|
Par application |
|
|
Par taille d'organisation |
|
|
Par utilisateur final |
|
En 2025, les outils logiciels devraient dominer le marché avec une part de marché plus importante dans le segment des composants
Le segment des outils logiciels devrait dominer le marché avec une part de marché significative en 2025, en raison de la demande croissante d'outils avancés de traitement des données, de création de modèles et de déploiement. Ces outils permettent des workflows de machine learning efficaces, offrant des fonctionnalités telles que le stockage de données, la validation de modèles, la prise en charge des arbres de décision et l'intégration avec des plateformes cloud. Leur rôle dans l'automatisation de processus complexes dans divers secteurs d'activité est un facteur clé de leur adoption croissante.
Le segment des grandes entreprises devrait dominer le marché en termes de taille d'organisation
Le segment des grandes entreprises devrait dominer le marché en termes de taille d'organisation d'ici 2025 grâce à leurs capacités d'investissement plus importantes, à leur capacité de génération de données à grande échelle et à leur adoption précoce des technologies basées sur l'IA. Ces entreprises déploient de plus en plus de solutions MLaaS pour optimiser leurs opérations, améliorer la prise de décision et renforcer l'engagement client, ce qui stimule la demande de plateformes de machine learning évolutives.
Analyse régionale du marché de l'apprentissage automatique en tant que service (MLaaS)
« L'Amérique du Nord détient la plus grande part du marché de l'apprentissage automatique en tant que service (MLaaS) »
- L'Amérique du Nord domine le marché de l'apprentissage automatique en tant que service (MLaaS), alimenté par l'adoption généralisée des technologies cloud, une infrastructure informatique robuste et une forte présence de grandes entreprises technologiques telles que Google, Microsoft, IBM et Amazon Web Services.
- Les États-Unis représentent la plus grande part de marché en raison de leur adoption précoce des technologies d’IA et d’apprentissage automatique dans divers secteurs, notamment le BFSI, la santé, la vente au détail et les télécommunications.
- Les investissements élevés dans la recherche et le développement, la disponibilité de professionnels qualifiés et les cadres réglementaires favorables soutiennent davantage le leadership du marché dans cette région.
- De plus, les entreprises d’Amérique du Nord utilisent de plus en plus le MLaaS pour améliorer l’analyse des clients, améliorer les systèmes de détection des fraudes et stimuler l’innovation dans les systèmes autonomes et la modélisation prédictive, accélérant ainsi davantage la croissance du marché.
« L'Asie-Pacifique devrait enregistrer le TCAC le plus élevé sur le marché de l'apprentissage automatique en tant que service (MLaaS) »
- La région Asie-Pacifique devrait connaître le taux de croissance le plus élevé sur le marché MLaaS au cours de la période de prévision, grâce à la numérisation rapide, à l'expansion du secteur informatique et au soutien croissant du gouvernement aux initiatives d'IA et d'apprentissage automatique.
- Des pays comme la Chine, l’Inde, le Japon et la Corée du Sud apparaissent comme des contributeurs importants en raison de l’augmentation des investissements dans l’infrastructure cloud et de la hausse de la demande d’analyses commerciales intelligentes.
- La Chine est en tête du marché régional en termes de développement de l'IA piloté par le gouvernement, tandis que l'Inde affiche une croissance exponentielle de l'adoption du MLaaS parmi les startups et les PME qui l'exploitent pour l'efficacité opérationnelle et le ciblage des clients.
- L’utilisation croissante de l’apprentissage automatique dans les domaines de la santé, de la fabrication, du commerce électronique et de la fintech, associée à l’augmentation des volumes de données et au besoin de prise de décision en temps réel, propulse l’expansion du marché dans toute la région Asie-Pacifique.
Part de marché de l'apprentissage automatique en tant que service (MLaaS)
Le paysage concurrentiel du marché fournit des détails par concurrent. Il comprend la présentation de l'entreprise, ses données financières, son chiffre d'affaires, son potentiel de marché, ses investissements en recherche et développement, ses nouvelles initiatives commerciales, sa présence mondiale, ses sites et installations de production, ses capacités de production, ses forces et faiblesses, le lancement de nouveaux produits, leur ampleur et leur portée, ainsi que la domination de ses applications. Les données ci-dessus ne concernent que les activités des entreprises par rapport à leur marché.
Les principaux leaders du marché opérant sur le marché sont :
- Google LLC (États-Unis)
- IBM (États-Unis)
- Microsoft (États-Unis)
- SAS Institute Inc. (États-Unis)
- Amazon Web Services, Inc. (États-Unis)
- BigML, Inc. (États-Unis)
- FICO (États-Unis)
- Hewlett Packard Enterprise Development LP (États-Unis)
- Propriété intellectuelle d'AT&T (États-Unis)
- Yottamine Analytics Inc. (États-Unis)
- PurePredictive, Inc (États-Unis)
- H2O.ai (États-Unis)
- Tamr (États-Unis)
- PREDICTRON LABS (États-Unis)
- LogDNA (États-Unis)
- DeepMind Technologies Limited (Royaume-Uni)
- Figure Eight Federal Inc. (États-Unis)
- Amplero, Inc. (États-Unis)
- Darktrace (Royaume-Uni)
Derniers développements sur le marché mondial de l'apprentissage automatique en tant que service (MLaaS)
- En mars 2025, Amazon Web Services (AWS) a lancé Amazon SageMaker HyperPod, une nouvelle offre MLaaS conçue pour entraîner les modèles fondamentaux jusqu'à 40 % plus rapidement. Ce service offre une infrastructure optimisée avec prise en charge intégrée de la scalabilité et de l'automatisation, aidant les entreprises à accélérer le développement de modèles d'IA tout en réduisant la complexité opérationnelle et les coûts.
- En février 2025, Google Cloud a annoncé l'extension de sa plateforme Vertex AI, intégrant des fonctionnalités avancées pour l'entraînement de modèles multimodaux et l'inférence en temps réel. Cette mise à niveau améliore l'interopérabilité entre les API et simplifie le déploiement dans les environnements hybrides et multicloud, afin de stimuler l'adoption des services de machine learning par les entreprises.
- En janvier 2025, Microsoft Azure s'est associé à OpenAI pour lancer une API Copilot dédiée aux entreprises via Azure ML. Cette offre permet aux entreprises d'intégrer l'IA conversationnelle et le ML génératif à leurs applications avec un minimum de codage, améliorant ainsi considérablement la productivité et l'expérience utilisateur dans des secteurs tels que la finance, la vente au détail et le service client.
- En novembre 2024, IBM a lancé Watsonx, une suite d'outils d'IA et de machine learning repensée et améliorée, conçue pour un apprentissage de modèles plus sécurisé et évolutif. Watsonx offre des fonctionnalités de gouvernance et de transparence améliorées, notamment l'auditabilité et la détection des biais, répondant ainsi aux préoccupations critiques en matière de conformité et de déploiement éthique de l'IA dans des secteurs réglementés tels que la santé et la finance.
SKU-
Accédez en ligne au rapport sur le premier cloud mondial de veille économique
- Tableau de bord d'analyse de données interactif
- Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
- Accès d'analyste de recherche pour la personnalisation et les requêtes
- Analyse de la concurrence avec tableau de bord interactif
- Dernières actualités, mises à jour et analyse des tendances
- Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Méthodologie de recherche
La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.
La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.
Personnalisation disponible
Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.
