Rapport d'analyse de la taille, de la part et des tendances du marché mondial des modèles de langages de petite taille (SLM) – Aperçu du secteur et prévisions jusqu'en 2032

Demande de table des matières Demande de table des matières Parler à un analysteParler à un analyste Exemple de rapport gratuitExemple de rapport gratuit Renseignez-vous avant d'acheterRenseignez-vous avant Acheter maintenantAcheter maintenant

Rapport d'analyse de la taille, de la part et des tendances du marché mondial des modèles de langages de petite taille (SLM) – Aperçu du secteur et prévisions jusqu'en 2032

  • ICT
  • Upcoming Reports
  • Jun 2025
  • Global
  • 350 Pages
  • Nombre de tableaux : 220
  • Nombre de figures : 60
  • Author : Megha Gupta

Contournez les défis liés aux tarifs grâce à un conseil agile en chaîne d'approvisionnement

L’analyse de l’écosystème de la chaîne d’approvisionnement fait désormais partie des rapports DBMR

Global Small Language Model Slm Market

Taille du marché en milliards USD

TCAC :  % Diagram

Chart Image USD 5.30 Billion USD 26.70 Billion 2024 2032
Diagram Période de prévision
2025 –2032
Diagram Taille du marché (année de référence)
USD 5.30 Billion
Diagram Taille du marché (année de prévision)
USD 26.70 Billion
Diagram TCAC
%
Diagram Principaux acteurs du marché
  • OpenAI
  • Anthropic
  • Google DeepMind
  • Cohere
  • Reka AI

Segmentation du marché des modèles de langages globaux (SLM), par technologie (apprentissage profond, apprentissage automatique et services), déploiement (cloud, sur site et hybride), application (applications grand public, applications d'entreprise, santé, finance, vente au détail, juridique, fabrication et autres) - Tendances et prévisions du secteur jusqu'en 2032

Marché Z du modèle de langage de petite taille (SLM)

Taille du marché des petits modèles de langage (SLM)

  • La taille du marché mondial des petits modèles de langage (SLM) était évaluée à 5,3 milliards USD en 2024 et devrait atteindre 26,70 milliards USD d'ici 2032 , à un TCAC de 22,40 % au cours de la période de prévision.
  • La croissance du marché est largement alimentée par l'adoption croissante de l'automatisation basée sur l'IA et du traitement du langage naturel dans tous les secteurs, ce qui conduit à une efficacité accrue et à des expériences utilisateur améliorées dans le service client, la création de contenu et l'analyse de données.
  • De plus, la demande croissante d'applications personnalisées et contextuelles dans les secteurs de la santé, de la finance, de la vente au détail et du droit fait des petits modèles de langage des outils essentiels pour la prise de décision intelligente et l'optimisation des flux de travail.

Analyse du marché des petits modèles de langage (SLM)

  • Les petits modèles de langage (SLM), offrant des capacités avancées de compréhension et de génération de langage naturel, deviennent des composants essentiels des applications modernes basées sur l'IA dans de nombreux secteurs, notamment le service client, la santé, la finance et la vente au détail, en raison de leur capacité à fournir des interactions personnalisées et contextuelles et à automatiser des tâches linguistiques complexes.
  • La demande croissante de SLM est principalement motivée par la transformation numérique rapide, l'adoption croissante de l'automatisation basée sur l'IA et le besoin croissant de solutions efficaces et évolutives qui améliorent l'expérience utilisateur et rationalisent les processus métier.
  • L'Amérique du Nord a dominé le marché des petits modèles de langage (SLM) avec une part de 32,2 % en 2024, en raison de l'adoption généralisée d'applications basées sur l'IA dans tous les secteurs et d'investissements importants dans la recherche et l'infrastructure avancées en matière d'IA.
  • L'Asie-Pacifique devrait être la région connaissant la croissance la plus rapide sur le marché des petits modèles de langage (SLM) au cours de la période de prévision en raison de la numérisation rapide, de la pénétration croissante d'Internet et de l'adoption croissante de l'IA en Chine, au Japon et en Inde.
  • Le segment basé sur l'apprentissage automatique a dominé le marché avec une part de marché de 55,6 % en 2024, grâce à sa polyvalence et à sa rentabilité pour la gestion de diverses tâches linguistiques. Son adoption progresse dans les secteurs qui recherchent des solutions évolutives, d'une complexité modérée et d'un déploiement plus rapide. Les services, comprenant le conseil, l'intégration et le support, jouent un rôle crucial pour faciliter la mise en œuvre et l'optimisation de modèles linguistiques de petite taille, notamment pour les entreprises ne disposant pas d'une expertise interne en IA.

Portée du rapport et segmentation du marché des modèles de langage simplifiés (SLM)       

Attributs

Aperçus clés du marché du modèle de langage compact (SLM)

Segments couverts

  • Par technologie : apprentissage profond, apprentissage automatique et services
  • Par déploiement : Cloud, sur site et hybride
  • Par application : applications grand public, applications d'entreprise, soins de santé, finance, vente au détail, juridique, fabrication et autres

Pays couverts

Amérique du Nord

  • NOUS
  • Canada
  • Mexique

Europe

  • Allemagne
  • France
  • ROYAUME-UNI
  • Pays-Bas
  • Suisse
  • Belgique
  • Russie
  • Italie
  • Espagne
  • Turquie
  • Reste de l'Europe

Asie-Pacifique

  • Chine
  • Japon
  • Inde
  • Corée du Sud
  • Singapour
  • Malaisie
  • Australie
  • Thaïlande
  • Indonésie
  • Philippines
  • Reste de l'Asie-Pacifique

Moyen-Orient et Afrique

  • Arabie Saoudite
  • Émirats arabes unis
  • Afrique du Sud
  • Egypte
  • Israël
  • Reste du Moyen-Orient et de l'Afrique

Amérique du Sud

  • Brésil
  • Argentine
  • Reste de l'Amérique du Sud

Acteurs clés du marché

  • OpenAI (États-Unis)
  • Anthropique (États-Unis)
  • Google DeepMind (Royaume-Uni)
  • Cohere (Canada)
  • Reka AI (États-Unis)
  • Zhipu AI (Chine)
  • Nomic AI (États-Unis)
  • Stabilité IA (Royaume-Uni)
  • LightOn (France)
  • Sarvam AI (Inde)
  • Arcee AI (États-Unis)
  • Prem Labs (États-Unis)
  • Meta AI (États-Unis)
  • Microsoft (États-Unis)
  • Salesforce AI (États-Unis)
  • Alibaba (Chine)
  • Mosaic ML (États-Unis)
  • Institut d'innovation technologique (TII) (EAU)
  • Visage qui fait un câlin (États-Unis)

Opportunités de marché

  • Demande croissante de solutions d'IA
  • L'accent est mis de plus en plus sur la confidentialité des données et le traitement sur les appareils

Ensembles d'informations de données à valeur ajoutée

Outre les informations sur le marché telles que la valeur marchande, le taux de croissance, les segments de marché, la couverture géographique, les acteurs du marché et le scénario du marché, le rapport de marché organisé par l'équipe de recherche sur le marché de Data Bridge comprend une analyse approfondie des experts, une analyse des importations/exportations, une analyse des prix, une analyse de la consommation de production et une analyse du pilon.

Tendances du marché des petits modèles de langage (SLM)

« Augmentation du déploiement basé sur le cloud » :

  • Une tendance significative et croissante sur le marché mondial des petits modèles de langage (SLM) est le passage croissant vers un déploiement basé sur le cloud, permettant un accès évolutif, flexible et rentable aux capacités linguistiques basées sur l'IA dans tous les secteurs.
    • Par exemple, les modèles GPT d'OpenAI et Vertex AI de Google fournissent des services de modèles linguistiques de petite taille hébergés dans le cloud qui permettent aux entreprises d'intégrer un traitement linguistique avancé sans investissements lourds dans l'infrastructure sur site.
  • Le déploiement dans le cloud facilite les mises à jour continues des modèles, l'intégration transparente avec d'autres services cloud et la collaboration plus facile entre les équipes, améliorant considérablement l'accessibilité et réduisant les délais de mise sur le marché des applications d'IA.
  • Des entreprises telles que Microsoft Azure et Amazon Web Services (AWS) proposent des plateformes SLM gérées qui prennent en charge le développement et le déploiement rapides de solutions de traitement du langage naturel, permettant aux entreprises de tirer parti de l'IA de pointe sans frais techniques importants.
  • Cette tendance vers le déploiement de SLM basé sur le cloud favorise une adoption plus large dans des secteurs tels que la santé, la finance, la vente au détail et le service client, où des solutions linguistiques d'IA évolutives et fiables sont essentielles à la transformation numérique.
  • La préférence croissante pour les SLM hébergés dans le cloud reflète le besoin de capacités d'IA flexibles et à la demande capables de gérer des charges de travail dynamiques, permettant aux organisations d'innover plus rapidement et de fournir des expériences utilisateur personnalisées à grande échelle.

Dynamique du marché des petits modèles de langage (SLM)

Conducteur

« Adoption croissante de l'automatisation basée sur l'IA »

  • L'adoption croissante de l'automatisation basée sur l'IA dans tous les secteurs est un facteur important de la demande croissante de modèles de langage de petite taille (SLM), alors que les entreprises cherchent à rationaliser leurs opérations, à améliorer leur productivité et à fournir des interactions utilisateur intelligentes basées sur le langage.
    • Par exemple, en février 2024, Microsoft a intégré des modèles de langage d'IA à petite échelle dans sa suite Dynamics 365, permettant des réponses automatisées aux clients, une synthèse des données en temps réel et des requêtes en langage naturel, permettant aux utilisateurs d'exploiter des systèmes complexes avec une simple saisie de texte.
  • Alors que les entreprises cherchent à réduire les tâches manuelles et à accélérer les processus décisionnels, les SLM offrent des solutions efficaces pour automatiser des tâches telles que les chatbots de service client, la génération de documents et la traduction, contribuant ainsi à optimiser l'engagement des utilisateurs et l'efficacité opérationnelle. De plus, le déploiement croissant d'assistants IA et d'agents virtuels dans des secteurs tels que la santé, la finance et la vente au détail amplifie la demande de modèles linguistiques compacts et spécifiques à un domaine, capables d'offrir des performances élevées tout en consommant moins de ressources.
  • La capacité des SLM à être optimisés pour des applications spécifiques, combinée à leur coût de déploiement inférieur par rapport aux grands modèles de langage, les rend particulièrement attractifs pour les entreprises qui adoptent l'IA pour la première fois ou qui étendent l'intégration de l'IA à diverses fonctions.
  • La tendance vers l'automatisation basée sur l'IA et la disponibilité croissante de SLM pré-formés et hébergés dans le cloud auprès de fournisseurs tels qu'OpenAI, Google Cloud et AWS devraient accélérer l'adoption de ces modèles dans les PME et les grandes entreprises.

Retenue/Défi

« La taille limitée du modèle limite la précision et la compréhension contextuelle »

  • La taille limitée du modèle, qui restreint la précision et la compréhension contextuelle, constitue un défi important pour l'adoption plus large des modèles de langage réduits (SLM), en particulier dans les applications d'entreprise qui exigent des réponses nuancées et spécifiques au domaine.
    • Par exemple, bien que les modèles LLaMA de Meta et Command R+ de Cohere soient conçus pour fonctionner efficacement à des échelles plus petites, ils ont souvent du mal à comprendre un contexte long ou à produire des résultats très précis requis dans des secteurs tels que le droit ou la santé.
  • Maintenir une génération de langage de haute qualité avec des ressources de calcul réduites oblige les développeurs à faire des compromis entre efficacité et performances linguistiques, en particulier lors du déploiement de SLM en temps réel ou sur des appareils périphériques.
  • Alors que la demande d'outils d'IA compacts et rentables qui rivalisent avec les capacités des LLM plus grands augmente, surmonter les limites des architectures plus petites nécessitera des progrès continus dans la conception de modèles, les méthodologies de formation et les stratégies de réglage fin.
  • Relever ce défi par le biais de la recherche et de l'innovation, investir dans le réglage spécifique aux tâches et améliorer la qualité des données de formation sera essentiel pour garantir que les SLM puissent répondre aux attentes de l'industrie sans compromettre les performances.

Portée du marché des petits modèles de langage (SLM)

Le marché est segmenté en fonction de la technologie, du déploiement et de l’application.

  • Par technologie

Sur le plan technologique, le marché des petits modèles linguistiques est segmenté en deux catégories : le deep learning, le machine learning et les services. Le segment du machine learning représentait la plus grande part de chiffre d'affaires du marché, avec 55,6 % en 2024, grâce à sa polyvalence et à sa rentabilité dans la gestion de diverses tâches linguistiques. Son adoption est en hausse dans les secteurs qui recherchent des solutions évolutives, d'une complexité modérée et d'un déploiement plus rapide. Les services, qui englobent le conseil, l'intégration et le support, jouent un rôle crucial pour faciliter la mise en œuvre et l'optimisation des petits modèles linguistiques, en particulier pour les entreprises ne disposant pas d'expertise interne en IA.

Le segment basé sur le Deep Learning devrait connaître la croissance la plus rapide entre 2025 et 2032, grâce à sa capacité supérieure à comprendre des schémas linguistiques complexes et à fournir des résultats plus précis et contextuels. Cette technologie bénéficie des progrès constants des architectures de réseaux neuronaux et de vastes ensembles de données, ce qui en fait le choix privilégié pour les applications exigeant une précision et une adaptabilité élevées.

  • Par déploiement

En termes de déploiement, le marché est segmenté en Cloud, On-premise et Hybride. Le segment Cloud détenait la plus grande part de chiffre d'affaires du marché, avec 45,3 % en 2024, grâce à son évolutivité, sa rentabilité et sa facilité d'accès, permettant aux entreprises d'exploiter des modèles linguistiques de petite taille sans investissements lourds en infrastructure. Le déploiement Cloud prend également en charge les mises à jour continues des modèles et une intégration transparente avec d'autres services Cloud, améliorant ainsi les fonctionnalités et l'expérience utilisateur.

Le segment hybride devrait connaître le TCAC le plus rapide entre 2025 et 2032, porté par la demande croissante des entreprises qui souhaitent combiner la flexibilité du cloud computing avec la sécurité et le contrôle des infrastructures sur site. Le déploiement hybride est adapté aux secteurs soumis à des réglementations strictes en matière de confidentialité des données, permettant de conserver les données sensibles sur site tout en bénéficiant des fonctionnalités du cloud. Le déploiement sur site reste essentiel pour les secteurs exigeant un contrôle maximal des données et des modèles, notamment dans les environnements hautement réglementés.

  • Par application

En fonction des applications, le marché des Small Language Models est segmenté en applications grand public, applications d'entreprise, santé, finance, commerce de détail, droit, industrie manufacturière, etc. Les applications grand public ont représenté la plus grande part de chiffre d'affaires du marché en 2024, grâce à l'adoption croissante des assistants virtuels, des chatbots et de la génération de contenu personnalisé. La facilité d'intégration aux appareils et services du quotidien stimule l'engagement et la demande des consommateurs.

Le segment des applications d'entreprise devrait connaître le TCAC le plus rapide entre 2025 et 2032, porté par les besoins croissants en matière d'automatisation du support client, de traitement des documents et de gestion des connaissances. Des secteurs comme la santé et la finance bénéficient de modèles linguistiques spécialisés, adaptés à la documentation clinique, à la détection des fraudes et à la conformité, accélérant ainsi leur adoption. Les secteurs de la vente au détail et du droit exploitent de plus en plus ces modèles pour améliorer l'expérience client et rationaliser les flux de travail, tandis que l'industrie manufacturière utilise des modèles linguistiques pour la documentation technique et la communication au sein de la chaîne d'approvisionnement. Le segment « Autres » comprend les applications pour l'éducation, les médias et les administrations publiques, qui connaissent également une croissance grâce à la transformation numérique croissante.

Analyse régionale du marché du modèle de langage réduit (SLM)

  • L'Amérique du Nord a dominé le marché des petits modèles de langage (SLM) avec la plus grande part de revenus de 32,2 % en 2024, grâce à l'adoption généralisée d'applications basées sur l'IA dans tous les secteurs et à un investissement important dans la recherche et l'infrastructure avancées en matière d'IA.
  • Les organisations de la région accordent une grande importance à l’intégration de petits modèles linguistiques pour améliorer l’automatisation, améliorer les interactions avec les clients et rationaliser les flux de travail dans des secteurs tels que la santé, la finance et la vente au détail.
  • Cette adoption est également soutenue par l'expertise technologique, les dépenses informatiques élevées et la présence d'entreprises d'IA de premier plan, faisant de l'Amérique du Nord un pôle clé pour l'innovation et le déploiement de solutions SLM.

Aperçu du marché américain des petits modèles linguistiques

Le marché américain du SLM a capté la plus grande part de chiffre d'affaires en Amérique du Nord en 2024, porté par une transformation numérique rapide et une demande accrue d'outils basés sur l'IA pour optimiser les processus métier. L'utilisation croissante d'assistants virtuels, de chatbots et de la génération automatisée de contenu contribue à la croissance du marché. L'accent croissant mis sur la compréhension du langage naturel et l'amélioration de l'expérience client, combiné à un soutien gouvernemental fort aux initiatives d'IA, dynamise encore davantage le marché. De plus, les géants technologiques américains investissent continuellement dans le développement de petits modèles linguistiques sophistiqués, favorisant ainsi leur adoption généralisée dans de nombreux secteurs.

Aperçu du marché européen des petits modèles linguistiques

Le marché européen des SLM devrait connaître une croissance régulière au cours de la période de prévision, porté par une sensibilisation croissante aux applications de l'IA et par une réglementation favorable à la confidentialité des données et à une utilisation responsable de l'IA. L'augmentation des investissements dans les pôles de recherche en IA et les collaborations entre l'industrie et le monde universitaire stimulent l'innovation. Les entreprises européennes adoptent les SLM pour améliorer leur efficacité opérationnelle, leur engagement client et leur gestion de la conformité, notamment dans les secteurs de la finance, de la santé et du droit.

Aperçu du marché britannique des petits modèles linguistiques

Le marché britannique des SLM devrait connaître une croissance significative au cours de la période de prévision, portée par l'accent mis par le gouvernement sur la stratégie d'IA et l'innovation numérique. L'adoption croissante de l'IA dans les secteurs des services publics, de la finance et du commerce de détail stimule la demande de modèles linguistiques compacts. De plus, les startups et les incubateurs technologiques en pleine croissance accélèrent l'innovation et l'intégration de solutions linguistiques basées sur l'IA.

Aperçu du marché allemand des petits modèles linguistiques

Le marché allemand des SLM devrait connaître une croissance annuelle composée (TCAC) soutenue, grâce à sa base industrielle solide et à l'importance accordée à l'IA pour l'Industrie 4.0. L'attention croissante portée à la sécurité des données, à la confidentialité et aux applications éthiques de l'IA encourage son adoption dans les secteurs manufacturier, juridique et de la santé. Les institutions de recherche allemandes bien établies en matière d'IA et les initiatives gouvernementales favorisant l'innovation dans ce domaine renforcent encore la croissance du marché.

Aperçu du marché des modèles linguistiques de petite taille en Asie-Pacifique

Le marché SLM d'Asie-Pacifique est sur le point de connaître la croissance la plus rapide, avec un TCAC entre 2025 et 2032, porté par la numérisation rapide, la pénétration croissante d'Internet et l'adoption croissante de l'IA en Chine, au Japon et en Inde. Les initiatives gouvernementales favorisant le développement de l'IA et des technologies intelligentes accélèrent le déploiement. L'augmentation des investissements dans les startups et les infrastructures technologiques d'IA accroît l'accessibilité et le caractère abordable des solutions de modèles linguistiques de petite taille dans la région.

Aperçu du marché des modèles linguistiques de petite taille au Japon

Le marché japonais des SLM prend de l'ampleur grâce à son écosystème technologique avancé et à son orientation vers l'automatisation. L'utilisation croissante de l'IA dans l'électronique grand public, la robotique et les applications d'entreprise stimule la demande. Le vieillissement de la population japonaise accroît également le besoin de solutions d'IA améliorant l'accessibilité et l'efficacité, notamment dans les secteurs de la santé et du service client. L'intégration des SLM aux appareils IoT et aux systèmes intelligents soutient la croissance continue du marché.

Aperçu du marché des modèles linguistiques de petite taille en Chine

En 2024, la Chine a représenté la plus grande part de chiffre d'affaires du marché SLM de la région Asie-Pacifique, grâce au soutien des pouvoirs publics au développement de l'IA, à l'essor de l'économie numérique et à l'importante base d'entreprises technologiques investissant dans l'IA linguistique. L'essor des villes intelligentes, la croissance du e-commerce et l'adoption généralisée du mobile soutiennent la demande dans tous les secteurs. Des prix compétitifs et la rapidité d'innovation des entreprises nationales d'IA sont des facteurs clés qui maintiennent le leadership du marché en Chine.

Part de marché du Small Language Model (SLM)

L'industrie des petits modèles de langage (SLM) est principalement dirigée par des entreprises bien établies, notamment :

  • OpenAI (États-Unis)
  • Anthropique (États-Unis)
  • Google DeepMind (Royaume-Uni)
  • Cohere (Canada)
  • Reka AI (États-Unis)
  • Zhipu AI (Chine)
  • Nomic AI (États-Unis)
  • Stabilité IA (Royaume-Uni)
  • LightOn (France)
  • Sarvam AI (Inde)
  • Arcee AI (États-Unis)
  • Prem Labs (États-Unis)
  • Meta AI (États-Unis)
  • Microsoft (États-Unis)
  • Salesforce AI (États-Unis)
  • Alibaba (Chine)
  • Mosaic ML (États-Unis)
  • Institut d'innovation technologique (TII) (EAU)
  • Visage qui fait un câlin (États-Unis)

Derniers développements sur le marché mondial des modèles de langage compacts (SLM)

  • En février 2025, Microsoft a renforcé sa présence sur le marché SLM avec le lancement de la série Phi-4, comprenant Phi-4-mini-instruct et Phi-4-multimodal. Ces modèles offrent des capacités améliorées en matière de raisonnement, de compréhension multilingue et de codage, ce qui les rend idéaux pour les entreprises comme pour les développeurs. Leur disponibilité sur des plateformes telles que Hugging Face, Azure AI Foundry et Ollama devrait considérablement élargir l'accès des utilisateurs et accélérer leur adoption dans divers secteurs.
  • En février 2025, IBM a élargi sa gamme de modèles Granite pour inclure des modèles multimodaux et axés sur le raisonnement destinés aux applications d'entreprise. Avec Granite Multimodal et Granite Reasoning, IBM répond à un besoin crucial d'IA interprétable et logique, et pourrait ainsi conquérir une part plus importante du segment de marché SLM destiné aux entreprises. Ces outils sont conçus pour une intégration transparente et une adoption responsable, améliorant ainsi la prise de décision et l'automatisation basées sur l'IA.
  • En janvier 2025, Arcee AI a renforcé sa position concurrentielle en lançant deux nouveaux SLM : Virtuoso-Lite et Virtuoso-Medium-v2, basés sur DeepSeek-V3. Ces modèles, notamment Virtuoso-Medium-v2, qui a surpassé les précédents benchmarks d'Arcee, améliorent les performances des applications mathématiques et de programmation. Leur architecture avancée et leurs techniques propriétaires devraient stimuler l'innovation dans les cas d'usage académiques et techniques sur le marché des SLM.
  • En novembre 2024, Amazon a renforcé sa présence dans le secteur de l'IA en investissant 4 milliards de dollars supplémentaires dans Anthropic. Cette opération, combinée à l'entraînement des modèles Claude, tels que Claude 3.5 Haiku et Claude 3.5 Sonnet, optimisé par AWS Trainium, souligne l'ambition d'Amazon de devenir leader dans les modèles agentiques hautes performances. Les excellentes performances de la série Claude dans les tâches de codage la positionnent comme un acteur majeur du marché des SLM commerciaux, notamment pour les applications destinées aux développeurs.
  • En avril 2024, Microsoft a lancé « Phi-3-mini », un modèle d'IA léger visant à offrir des capacités linguistiques avancées à un plus large éventail d'utilisateurs à moindre coût. En le rendant disponible via des plateformes telles que Microsoft Azure AI Model Catalog, Hugging Face, Ollama et NVIDIA NIM, Microsoft renforce sa position sur le marché des modèles de langage compacts (SLM). Ce lancement marque le début de sa série SLM ouverte, améliorant considérablement l'accessibilité et favorisant une adoption généralisée dans tous les secteurs.


SKU-

Accédez en ligne au rapport sur le premier cloud mondial de veille économique

  • Tableau de bord d'analyse de données interactif
  • Tableau de bord d'analyse d'entreprise pour les opportunités à fort potentiel de croissance
  • Accès d'analyste de recherche pour la personnalisation et les requêtes
  • Analyse de la concurrence avec tableau de bord interactif
  • Dernières actualités, mises à jour et analyse des tendances
  • Exploitez la puissance de l'analyse comparative pour un suivi complet de la concurrence
Demande de démonstration

Méthodologie de recherche

La collecte de données et l'analyse de l'année de base sont effectuées à l'aide de modules de collecte de données avec des échantillons de grande taille. L'étape consiste à obtenir des informations sur le marché ou des données connexes via diverses sources et stratégies. Elle comprend l'examen et la planification à l'avance de toutes les données acquises dans le passé. Elle englobe également l'examen des incohérences d'informations observées dans différentes sources d'informations. Les données de marché sont analysées et estimées à l'aide de modèles statistiques et cohérents de marché. De plus, l'analyse des parts de marché et l'analyse des tendances clés sont les principaux facteurs de succès du rapport de marché. Pour en savoir plus, veuillez demander un appel d'analyste ou déposer votre demande.

La méthodologie de recherche clé utilisée par l'équipe de recherche DBMR est la triangulation des données qui implique l'exploration de données, l'analyse de l'impact des variables de données sur le marché et la validation primaire (expert du secteur). Les modèles de données incluent la grille de positionnement des fournisseurs, l'analyse de la chronologie du marché, l'aperçu et le guide du marché, la grille de positionnement des entreprises, l'analyse des brevets, l'analyse des prix, l'analyse des parts de marché des entreprises, les normes de mesure, l'analyse globale par rapport à l'analyse régionale et des parts des fournisseurs. Pour en savoir plus sur la méthodologie de recherche, envoyez une demande pour parler à nos experts du secteur.

Personnalisation disponible

Data Bridge Market Research est un leader de la recherche formative avancée. Nous sommes fiers de fournir à nos clients existants et nouveaux des données et des analyses qui correspondent à leurs objectifs. Le rapport peut être personnalisé pour inclure une analyse des tendances des prix des marques cibles, une compréhension du marché pour d'autres pays (demandez la liste des pays), des données sur les résultats des essais cliniques, une revue de la littérature, une analyse du marché des produits remis à neuf et de la base de produits. L'analyse du marché des concurrents cibles peut être analysée à partir d'une analyse basée sur la technologie jusqu'à des stratégies de portefeuille de marché. Nous pouvons ajouter autant de concurrents que vous le souhaitez, dans le format et le style de données que vous recherchez. Notre équipe d'analystes peut également vous fournir des données sous forme de fichiers Excel bruts, de tableaux croisés dynamiques (Fact book) ou peut vous aider à créer des présentations à partir des ensembles de données disponibles dans le rapport.

Questions fréquemment posées

Le marché est segmenté en fonction de Segmentation du marché des modèles de langages globaux (SLM), par technologie (apprentissage profond, apprentissage automatique et services), déploiement (cloud, sur site et hybride), application (applications grand public, applications d'entreprise, santé, finance, vente au détail, juridique, fabrication et autres) - Tendances et prévisions du secteur jusqu'en 2032 .
La taille du Rapport d'analyse de la taille, de la part et des tendances du marché était estimée à 5.30 USD Billion USD en 2024.
Le Rapport d'analyse de la taille, de la part et des tendances du marché devrait croître à un TCAC de 22.4% sur la période de prévision de 2025 à 2032.
Les principaux acteurs du marché sont OpenAI, Anthropic, Google DeepMind, Cohere, Reka AI .
Testimonial