サプライチェーンにおける人工知能 (AI) には、サプライチェーン市場における人工知能の重要性に貢献するいくつかの重要な特性があります。これらの特性には、高度なデータ分析、機械学習アルゴリズム、自動化、予測機能が含まれます。AI は大量のデータをリアルタイムで分析できるため、意思決定の改善、効率性の向上、コストの最適化につながります。需要予測、在庫管理、需要と供給のマッチング、ルートの最適化が容易になります。さらに、AI 主導のサプライチェーン ソリューションは、可視性、透明性、追跡可能性を高め、コンプライアンスを確保し、リスクを軽減します。これらの特性により、サプライチェーン市場での AI の採用が促進され、従来のサプライチェーン業務が変革され、企業に具体的なメリットがもたらされます。
データブリッジの市場調査によると、 サプライチェーン市場における人工知能 2022年から2029年の予測期間では、8.60%のCAGRを示します。したがって、サプライチェーンにおける人工知能の市場価値は、2029年までに5,451万米ドルに達するでしょう。。
「サプライチェーンと物流データの可視性と透明性の向上に対する需要が市場を牽引している」
サプライ チェーンと物流データの可視性と透明性の向上に対する需要の高まりは、サプライ チェーン市場における人工知能の大きな推進力となっています。企業も消費者も、サプライ チェーン業務に対するリアルタイムの追跡、トレーサビリティ、正確な洞察を求めています。機械学習やデータ分析などの人工知能技術により、組織は膨大な量のデータを処理し、パターンを特定し、実用的な洞察を生み出すことができます。AI を活用することで、企業はサプライ チェーンの効率を高め、在庫管理を最適化し、リスクを軽減し、顧客満足度を向上させることができます。可視性と透明性の差し迫ったニーズは、サプライ チェーン セクターで AI を採用する強力なきっかけとなります。
成長を阻害するもの サプライチェーン市場における人工知能?
「発展途上国および発展途上国における技術的専門知識の欠如」
発展途上国および発展途上国における技術的専門知識の欠如は、サプライチェーン市場における人工知能の大きな制約となっています。これらの地域では、リソース、インフラストラクチャ、熟練した労働力の制限という課題に直面することがよくあります。サプライチェーンで高度な AI 技術を実装および採用するには、専門知識と技術的専門知識が必要ですが、これらの経済ではそれが不足している可能性があります。これにより、AI ソリューションの広範な採用に対する障壁が生まれ、これらの地域での市場の成長が妨げられ、サプライチェーン分野で先進国と発展途上国の間に技術格差が生じます。
セグメンテーション: サプライチェーン市場における人工知能
サプライチェーン市場における人工知能は、提供内容、テクノロジー、アプリケーション、業界に基づいてセグメント化されています。
- 提供内容に基づいて、サプライチェーン市場における人工知能は、ハードウェア、ソフトウェア、およびサービスに分類されます。
- 技術に基づいて、サプライチェーン市場における人工知能は、機械学習、 自然言語処理、コンテキスト認識コンピューティング、コンピュータービジョン。
- アプリケーションに基づいて、サプライチェーン市場における人工知能はセグメント化されています。 車両管理、サプライチェーン計画、 危機管理、倉庫管理、バーチャルアシスタント、貨物仲介など。
- 業界別に見ると、サプライチェーン市場における人工知能は、自動車、航空宇宙、製造、小売、ヘルスケア、消費財、食品・飲料に分類されています。
地域別インサイト: サプライチェーン市場における人工知能は北米が優勢
サプライチェーン市場における人工知能における北米の優位性は、主要企業と、既存のソリューションの強化を優先する先進国の存在に起因しています。この傾向は予測期間中も継続すると予想され、市場における北米の地位がさらに強化されます。
アジア太平洋地域は、サプライチェーン市場における人工知能において、大幅な成長を遂げ、最高の複合年間成長率 (CAGR) を達成すると予測されています。これは、この地域の若く技術に精通した人口や、高度なサプライチェーン ソリューションの需要を促進するモノのインターネット (IOT) 技術の採用の増加などの要因に起因しています。
研修訪問の詳細については、 https://www.databridgemarketresearch.com/reports/global-artificial-intelligence-in-supply-chain-market
主要なキープレーヤー サプライチェーン市場における人工知能 含む:
- Amazon Web Services, Inc. (米国)
- project44 (米国)
- ドイツポストAG – (ドイツ)
- フェデックス(米国)
- ゼネラル・エレクトリック(米国)
- Google LLC(米国)
- IBM(米国)
- インテルコーポレーション(米国)
- Coupa Software Inc. (米国)
- マイクロンテクノロジー社(米国)
- マイクロソフト(米国)
- NVIDIA コーポレーション (米国)
- オラクル(米国)
- SAP SE (ドイツ)
- サムスン(韓国)
- ザイリンクス – (米国)
- ストレートAI – (米国)
- CHロビンソンワールドワイド社(米国)
- E2open, LLC – (米国)
- RELEXソリューションズ(フィンランド)
- SKFグループ(スウェーデン)
- Cainiao ネットワーク (中国)
- スプライスマシン(米国)
- アメリカンソフトウェア社(米国)
上記はレポートで取り上げられている主要プレーヤーです。サプライチェーン市場における人工知能の詳細なリストについては、企業にお問い合わせください。 https://www.databridgemarketresearch.com/contact
調査方法: サプライチェーン市場における世界の人工知能
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。市場データは、市場統計モデルとコヒーレント モデルを使用して分析および推定されます。さらに、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数の市場への影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。これとは別に、データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。さらに問い合わせる場合は、アナリストへの電話をリクエストしてください。
