アジア太平洋地域のディープラーニングニューラルネットワーク(DNN)市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
35.66 Billion
USD
300.33 Billion
2024
2032
| 2025 –2032 | |
| USD 35.66 Billion | |
| USD 300.33 Billion | |
|
|
|
|
アジア太平洋地域のディープラーニングニューラルネットワーク(DNN)市場セグメンテーション、コンポーネント別(ハードウェア、ソフトウェア、サービス)、アプリケーション別(画像認識、自然言語処理、音声認識、データマイニング)、エンドユーザー別(銀行、金融サービス、保険(BFSI)、IT・通信、ヘルスケア、小売、自動車、製造、航空宇宙・防衛、セキュリティ、その他) - 2032年までの業界動向と予測
ディープラーニングニューラルネットワーク(DNN)市場規模
- アジア太平洋地域のディープラーニングニューラルネットワーク(DNN)市場規模は、2024年に356億6000万米ドルと評価され、予測期間中に30.52%のCAGRで 成長し 、2032年には3003億3000万米ドルに達すると予想されています。
- この目覚ましい市場拡大は、スマートホーム技術、ヘルスケア、自動車、製造業など、複数の分野における人工知能(AI)の導入加速が主な原動力となっています。コネクテッドデバイスとIoTインフラの進歩も、住宅および商業用途におけるDNNの需要増加に大きく貢献しています。
- • さらに、インテリジェントで安全かつ自動化されたシステムへのニーズの高まりにより、ディープラーニング・ニューラルネットワーク(DNN)は予測分析、パターン認識、そしてインテリジェントな意思決定の基盤技術として確立されつつあります。これらの要因により、DNNは主流へと押し上げられ、アジア太平洋地域全体で急速なデジタル変革を促進しています。
ディープラーニングニューラルネットワーク(DNN)市場分析
- ディープラーニング・ニューラルネットワーク(DNN)は、アジア太平洋地域、特にスマートホームオートメーション、セキュリティシステム、インテリジェント監視といった産業のデジタル変革に不可欠な存在になりつつあります。これらの高度なアルゴリズムにより、機械は画像認識や音声認識、予測分析、自律的な意思決定といったタスクを人間並みの精度で実行できるようになります。
- アジア太平洋地域のDNN市場は、住宅および商業施設におけるスマートテクノロジーの急速な導入により、堅調な成長を遂げています。中国、日本、韓国、インドなどの国々では、政府や企業がAI主導のインフラに多額の投資を行っており、都市部および準都市部におけるDNNを活用したソリューションの導入が加速しています。
- インテリジェントで安全、かつリモートアクセス可能なソリューションに対する消費者の需要の高まりも、DNN市場の成長を牽引しています。スマートホームエコシステムにおいて、DNNはアクセス制御のための顔認識、音声コマンドの統合、行動パターンのモニタリングといった機能を強化し、新たなレベルの自動化、パーソナライゼーション、そして利便性を提供します。
- さらに、IoTデバイスの普及、計算能力の向上、そしてアジア太平洋地域における5Gインフラの拡大は、DNNを日常生活のアプリケーションにシームレスに統合することを促進しています。これらのトレンドは、ヘルスケア、小売、金融、交通といった分野に大きな変革をもたらし、DNNをアジア太平洋地域の次世代デジタル経済の中核として確立しています。
- 中国は、アジア太平洋地域のディープラーニングニューラルネットワーク(DNN)市場の急速な拡大を牽引する主要な国であり、2025年から2032年にかけて同地域で予測されるCAGR 33.12%に大きく貢献しています。
- 2024年には、DNNモデルのトレーニングと推論用のGPU、TPU、FPGAなどの高性能コンピューティング(HPC)ハードウェアの導入増加により、ハードウェアセグメントが最大の市場収益シェアを占めました。
レポートの範囲とディープラーニングニューラルネットワーク(DNN)市場のセグメンテーション
|
属性 |
ディープラーニングニューラルネットワーク(DNN)の主要市場インサイト |
|
対象セグメント |
|
|
対象国 |
アジア太平洋
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジマーケットリサーチがまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、専門家による詳細な分析、価格設定分析、ブランドシェア分析、消費者調査、人口統計分析、サプライチェーン分析、バリューチェーン分析、原材料/消耗品の概要、ベンダー選択基準、PESTLE分析、ポーター分析、規制の枠組みも含まれています。 |
ディープラーニングニューラルネットワーク(DNN)市場動向
「AI統合とリアルタイムデータ処理の需要の加速」
- 金融、ヘルスケア、小売、製造業など、複数の分野における人工知能(AI)の統合が進むにつれ、ディープラーニング・ニューラルネットワーク(DNN)の需要が大幅に高まっています。企業は、予測分析、顧客行動モデリング、不正検出、パーソナライズされたレコメンデーションシステムなど、リアルタイムで高精度なデータ解釈を必要とするタスクにDNNを活用するケースが増えています。
- 例えば、IBMは2024年3月にWatsonx AIおよびデータプラットフォームを強化し、BFSIセクターにおけるインテリジェントな自動化と顧客エンゲージメントのためのより高度なDNNモデルをサポートしました。この進歩により、金融機関はAI主導の洞察を通じてリアルタイムのリスク評価を強化し、顧客体験を向上させることができます。
- さらに、DNNは画像、音声、動画といった非構造化データをリアルタイムで処理できるため、現代のAIアプリケーションには欠かせない存在となっています。企業がデジタルトランスフォーメーションに注力する中で、スケーラブルでクラウド統合型のDNNソリューションの導入は、競争力の維持と業務効率の向上に不可欠になりつつあります。
ディープラーニングニューラルネットワーク(DNN)市場の動向
ドライバ
「スマートデバイスとIoTエコシステムの拡大」
- モノのインターネット(IoT)デバイスの普及とスマートインフラストラクチャの利用拡大により、エッジにおけるDNNの導入が加速しています。DNNは、レイテンシを低減し、ローカライズされた処理を可能にすることで、自動運転車、スマートホームシステム、産業オートメーションシステムなどのコネクテッドデバイスにおけるリアルタイムの意思決定を可能にします。
- たとえば、2024 年 4 月、Qualcomm Technologies, Inc. は、交通管制やエネルギー管理などのスマート シティ アプリケーションの応答性を向上させるために、高度な DNN モデルを統合した AI 対応エッジ コンピューティング プラットフォームを発表しました。
- DNN と IoT およびエッジ コンピューティングの融合により、さまざまな分野、特にアジア太平洋、米国、ヨーロッパの一部など、スマート インフラストラクチャへの投資が活発な地域で、堅調な需要が促進されると予想されます。
抑制/挑戦
「高い計算コストとエネルギー消費」
- ディープラーニング・ニューラルネットワーク(DNN)市場が直面する大きな課題は、複雑なモデルの学習と展開に必要な膨大な計算能力とエネルギーです。こうした要件を満たすには、高性能GPU、大規模データストレージ、高度な冷却システムの使用が必要になることが多く、運用コストの上昇につながります。
- これは中小企業(SME)にとって障壁となり、特にインフラや資金へのアクセスが限られている発展途上国においては顕著です。さらに、環境の持続可能性が世界的な優先事項となるにつれ、大規模なDNNのトレーニングに伴う高い二酸化炭素排出量は、規制当局や利害関係者から厳しい監視の目を向けられています。
- その結果、業界は、DNN の導入をより持続可能かつあらゆる経済階層で利用しやすくするために、より効率的なアルゴリズムと低電力 AI ハードウェアを開発するというプレッシャーに直面しています。
ディープラーニングニューラルネットワーク(DNN)市場の範囲
市場は、コンポーネント、アプリケーション、エンドユーザーに基づいてセグメント化されています。
- コンポーネント別
ディープラーニング・ニューラルネットワーク(DNN)市場は、コンポーネントベースでハードウェア、ソフトウェア、サービスに分類されます。ハードウェアセグメントは、DNNモデルの学習および推論用GPU、TPU、FPGAなどの高性能コンピューティング(HPC)ハードウェアの導入増加に牽引され、2024年には市場収益シェアで最大のシェアを占めました。企業や研究機関におけるディープラーニングワークロードにおけるスケーラブルなインフラストラクチャへのニーズの高まりは、AI専用ハードウェアの需要をさらに押し上げています。
ソフトウェアセグメントは、ディープラーニングフレームワーク(TensorFlow、PyTorch、MXNetなど)の進歩と、自然言語処理、コンピュータービジョン、レコメンデーションシステム向けの事前学習済みモデルやライブラリの利用増加により、2025年から2032年にかけて最も高いCAGRを達成すると予測されています。クラウドベースのAIプラットフォームも、モデル開発と展開の簡素化を通じて、この成長を加速させています。
- アプリケーション別
ディープラーニング・ニューラルネットワーク(DNN)市場は、用途別に画像認識、音声認識、自然言語処理(NLP)、データマイニングに分類されます。画像認識分野は、自動運転車、医療診断、顔認識、監視システムへの広範な導入を背景に、2024年には最大の市場シェアを獲得しました。畳み込みニューラルネットワーク(CNN)の視覚データ分析やリアルタイム画像処理への利用増加は、この分野の成長を大きく牽引しています。
自然言語処理(NLP)分野は、生成AI、バーチャルアシスタント、チャットボット、感情分析ツール、AIを活用した翻訳サービスの急速な進歩に牽引され、2025年から2032年にかけて最も急速な成長を遂げると予想されています。顧客サービス、教育、エンタープライズオートメーションといった分野におけるNLPの有用性の拡大は、引き続き市場の成長を牽引しています。
- エンドユーザー別
エンドユーザー別に見ると、ディープラーニング・ニューラルネットワーク(DNN)市場は、銀行・金融サービス・保険(BFSI)、IT・通信、ヘルスケア、小売、自動車、製造、航空宇宙・防衛、セキュリティ、その他に分類されます。2024年には、リアルタイムネットワーク最適化、異常検知、予知保全のニーズに牽引され、IT・通信分野が市場を牽引しました。通信事業者は、インテリジェントな仮想エージェントとデータ分析を通じて、顧客体験の向上とサービス提供の自動化にDNNを活用しています。
ヘルスケア分野は、医用画像、創薬、診断、患者リスク評価におけるDNNの導入拡大を背景に、2025年から2032年にかけて最も高いCAGRで成長すると予想されています。大量の非構造化医療データを処理できるディープラーニングモデルの能力は、個別化医療に革命をもたらし、研究開発ワークフローを加速させています。
ディープラーニングニューラルネットワーク(DNN)市場の地域分析
- 中国は、アジア太平洋地域のディープラーニングニューラルネットワーク(DNN)市場の急速な拡大を牽引する主要な国であり、2025年から2032年にかけて同地域で予測されるCAGR 33.12%に大きく貢献しています。
- この国の成長は、業界全体にわたる DNN の広範な統合を推進する「次世代人工知能開発計画」などの国家戦略を通じて人工知能に多額の政府投資を行うことによって推進されています。
- 中国の巨大な消費者基盤とスマート シティの取り組みにより、顔認識、インテリジェント監視、自律走行車、パーソナライズされた電子商取引エクスペリエンスにおける DNN を活用したソリューションの普及が促進されています。
- さらに、Baidu、Alibaba、Tencent、Huawei などの国内の有力企業は、AI チップセット、クラウド プラットフォーム、ディープラーニング フレームワークを積極的に開発しており、DNN アプリケーションのより迅速でローカライズされた展開を促進しています。
- 同国の低コストの電子機器製造エコシステムは、広範囲にわたる5Gインフラの展開と相まって、参入障壁を下げ、都市部と農村部の両市場でDNNベースのシステムの導入を可能にしています。
- 中国が世界的な AI 超大国としての地位を確立するにつれ、国内のディープラーニング ニューラル ネットワーク (DNN) 市場は、積極的なイノベーション、有利な政策枠組み、企業と政府の連携の増加の恩恵を受け、アジア太平洋地域におけるリーダーシップをさらに強化しています。
日本におけるディープラーニング・ニューラルネットワーク(DNN)市場分析
日本のディープラーニング・ニューラルネットワーク(DNN)市場は、先進的な技術環境、自動化への需要の高まり、そして高度に都市化された社会を背景に、大幅な成長を遂げています。ロボット工学とAI駆動型システムへの日本の強い関心は、リアルタイム分析、医療診断、自動車システム、スマートホームアプリケーションにおけるDNNの導入拡大を補完するものです。また、日本の高齢化は、安全性、利便性、そしてケアの質を向上させるためにDNNアルゴリズムを活用するAI搭載支援技術の機会も生み出しています。
インドのディープラーニングニューラルネットワーク(DNN)市場洞察
インドのディープラーニング・ニューラルネットワーク(DNN)市場は、デジタルエコシステムの拡大、テクノロジー系スタートアップ企業の活況、そして国家AI戦略やデジタル・インディアといった取り組みを通じた政府によるAI重視の高まりにより、急速な成長が見込まれています。ヘルスケア、銀行金融サービス(BFSI)、eコマースといった業界のデジタル化が急速に進む中、不正検出、顧客分析、パーソナライズされたレコメンデーションといったDNNベースのツールに対する需要が急増しています。さらに、コスト意識の高いインド市場は、クラウドベースおよびオープンソースのDNNフレームワークの台頭の恩恵を受けており、幅広い実験と導入が促進されています。
ディープラーニングニューラルネットワーク(DNN)の市場シェア
ディープラーニング ニューラル ネットワーク (DNN) 業界は、主に次のような定評のある企業によってリードされています。
- LYUDA RESEARCH, LLC(米国)
- Alphabet Inc.(Google)(米国)
- IBM(アメリカ)
- マイクロンテクノロジーズ社(米国)
- ニューラルテクノロジーズリミテッド(イギリス)
- ニューロディメンション社(米国)
- ニューラルウェア(アメリカ)
- NVIDIA Corporation(米国)
- Skymind Inc.(米国)
- サムスン(韓国)
- クアルコムテクノロジーズ(米国)
- インテルコーポレーション(米国)
- Amazon Web Services, Inc.(米国)
- マイクロソフト(米国)
- GMDH LLC.(米国)
- Sensory Inc.(米国)
- Ward Systems Group, Inc.(米国)
- ザイリンクス社(米国)
- スターマインド(スイス)
アジア太平洋地域のディープラーニングニューラルネットワーク(DNN)市場の最新動向
- 2025年2月、中国の国家発展改革委員会(NDRC)と半導体企業は、オープンソースのドメイン特化型DNNモデルを支援するための画期的な規制改革を発表しました。この取り組みは、手頃な価格のGPUセットアップでのトレーニングを可能にし、国内のイノベーションを促進し、外国のインフラへの依存を減らすことで、高度なAI開発の民主化を目指しています。
- 2024年、ファーウェイはオープンソースのディープラーニングフレームワーク「MindSpore」(v2.3)を全面的に刷新し、HarmonyOSおよびAscendチップ上のARMベースのNPU向けに最適化しました。このアップデートにより、アジア太平洋地域のスマートフォン、IoTデバイス、エッジコンピューティングプラットフォームにおけるオンデバイスDNNのパフォーマンスが向上します。
- 2025年2月、ネイチャー誌は、中国と欧米のAIモデル間の競争が加速し、中国の小規模DNNがパフォーマンスの差を縮めていると報じました。これは、アジア太平洋地域において、高品質で現地開発されているニューラルネットワークモデルの成熟したエコシステムを反映しています。
- 2025年初頭、Origin QuantumはPhoenixと提携し、同社の超伝導量子チップ「Wukong」をDNNの学習に活用しました。この中国における最先端の協業は、量子コンピューティングとニューラルネットワークのワークフローの統合への関心の高まりを示しています。
- 2025年6月、MLANN 2025カンファレンスが中国・厦門で開催され、機械学習とニューラルネットワーク分野の第一線研究者と業界関係者が一堂に会しました。このイベントでは、ヘルスケア、ロボティクス、スマート製造分野における新しいアーキテクチャ、最適化手法、そして実世界のDNNアプリケーションが紹介されました。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

