世界の人工知能(AI)チップセット市場の規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
73.24 Billion
USD
558.18 Billion
2024
2032
| 2025 –2032 | |
| USD 73.24 Billion | |
| USD 558.18 Billion | |
|
|
|
|
世界の人工知能(AI)チップセット市場のセグメンテーション、ハードウェア(プロセッサ、メモリ、ネットワーク)、テクノロジー(機械学習、自然言語処理、コンテキスト認識コンピューティング、コンピュータービジョン、予測分析)、機能(トレーニング、推論)、エンドユーザー(家電、ヘルスケア、製造、自動車、農業、小売、サイバーセキュリティ、人事、マーケティング、法律、フィンテック、政府) - 2032年までの業界動向と予測
人工知能(AI)チップセット市場規模
- 世界の人工知能(AI)チップセット市場規模は2024年に732.4億米ドルと評価され、予測期間中に28.9%のCAGRで成長し、2032年には5,581.8億米ドル に達すると予想されています。
- 市場の成長は、AIアプリケーションにおける高速プロセッサの需要の高まり、医療、自動車、金融、製造などの分野でのAIの採用の増加、そして公共部門と民間部門の両方によるAI研究開発への投資の増加によって主に推進されています。
- ニューロモルフィックおよび量子コンピューティング要素の統合を含むチップアーキテクチャの進歩により、新たなパフォーマンスベンチマークが実現し、複雑でリアルタイムなシナリオでのAI導入が加速すると期待されています。
人工知能(AI)チップセット市場分析
- AIチップセット市場は、データ中心の技術の普及と、業界全体での機械学習やディープラーニングモデルの導入の増加により、力強い拡大を見せています。
- エッジコンピューティングは大きな注目を集めており、リアルタイムのデータ処理が可能なエネルギー効率の高いAIチップの需要が高まっています。
- 北米は、AI開発への強力な投資、確立されたデータセンターインフラストラクチャ、および業界全体にわたるAI搭載ソリューションの広範な導入により、2024年に人工知能(AI)チップセット市場で最大の収益シェア44.3%を獲得して市場を支配しました。
- アジア太平洋地域は、新興国におけるAI搭載技術の採用増加、スマートシティや産業オートメーションプロジェクトへの投資増加、中国、台湾、韓国などの国における低コストの半導体製造拠点の存在により、世界の人工知能(AI)チップセット市場で最も高い成長率を示すことが予想されています。
- プロセッサセグメントは、ディープラーニングやニューラルネットワークトレーニングなどのAIワークロード全体における高性能コンピューティングの需要の高まりを背景に、2024年には61.5%という最大の収益シェアで市場を席巻しました。グラフィックス・プロセッシング・ユニット(GPU)と特定用途向け集積回路(ASIC)は、その並列処理能力とAIタスクに最適化された設計により、特に需要が高まっています。このセグメントは、技術の進歩とクラウド環境とエッジ環境の両方における導入の増加の恩恵を受け続けています。
レポートの範囲と人工知能(AI)チップセット市場のセグメンテーション
|
属性 |
人工知能(AI)チップセットの主要市場分析 |
|
対象セグメント |
|
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジ市場調査チームがまとめた市場レポートには、市場価値、成長率、市場セグメント、地理的範囲、市場プレーヤー、市場シナリオなどの市場洞察に加えて、専門家による詳細な分析、輸入/輸出分析、価格分析、生産消費分析、乳棒分析が含まれています。 |
人工知能(AI)チップセット市場の動向
「エッジデバイスへのAIチップセットの統合拡大」
- リアルタイム処理と低レイテンシの意思決定に対するニーズの高まりにより、エッジデバイスにおけるAIチップセットの採用が進んでいます。これらのチップセットは、局所的な処理を可能にすることで、クラウドインフラへの依存を軽減します。この変化は、自動運転、産業オートメーション、ビデオ監視などのアプリケーションにおいて特に重要です。
- 民生用電子機器に組み込まれたAIチップセットは、デバイスのインテリジェンスとパーソナライゼーションを強化しています。スマートフォン、スマートスピーカー、ウェアラブル端末には、複雑なAIタスクをデバイス上で処理するニューラルプロセッシングユニットが搭載されています。この開発により、応答時間、バッテリー寿命、そしてユーザーエクスペリエンスが大幅に向上しています。
- エッジAIチップセットは、小型デバイス向けに、より小さなフットプリントと優れた電力効率を実現するよう設計されています。これらのチップは、電力資源を浪費することなく、継続的なAI機能を可能にします。ドローン、医療機器、IoTセンサーなどへの導入が拡大しています。
- 例えば、GoogleのEdge TPUチップは、製造業や小売業でデバイス上での画像分類と分析に利用されているCoralデバイスに搭載されています。これらのチップはデータをローカルで処理することで、帯域幅の使用量を削減し、リアルタイムの意思決定を可能にします。Coralの成功は、エッジAIが様々な業界でどのように普及しているかを示しています。
- エッジベースのAI処理への移行は、コンシューマー向けアプリケーションと産業用アプリケーションの両方に変革をもたらしています。局所的で効率的な計算向けにカスタマイズされたAIチップセットは、パフォーマンスとイノベーションの新たなベンチマークを確立しています。インテリジェントで応答性の高いシステムへの需要が高まるにつれて、この傾向は加速すると予想されます。
人工知能(AI)チップセット市場の動向
ドライバ
「業界全体でAI活用が急増」
- 医療、金融、自動車、製造業といった分野におけるAIの導入拡大は、高性能チップセットの需要を牽引しています。これらの分野では、診断、不正検知、予知保全、スマートオートメーションなどにAIが活用されています。AIチップセットの汎用性は、現代のインフラに不可欠なツールとしての地位を確立しています。
- 企業はAI開発に多額の投資を行っており、複雑な機械学習やディープラーニングモデルをサポートする専用ハードウェアの需要が高まっています。AIチップセットは、こうしたモデルを効果的に学習・展開するために必要な計算能力を提供します。企業がAI機能を拡張するにつれて、強力なプロセッサに対する需要は高まり続けています。
- AIチップセットは、自動運転車や精密医療といった次世代アプリケーションにおいて高度な機能を実現します。これらのシステムは、高速で信頼性が高く、エネルギー効率の高い処理を必要とします。AIチップは、リアルタイムデータを実用的な洞察に変換し、様々な分野で成果を向上させるのに役立ちます。
- 例えば、テスラのカスタムメイドの完全自動運転(FSD)チップは、複数のセンサーからのデータを処理し、外部接続なしで自動運転を可能にします。このチップの性能と速度により、テスラは運転支援機能を大幅に進化させることができました。この例は、AI導入におけるチップセットのイノベーションの重要性を浮き彫りにしています。
- AI技術の業界横断的な導入は、AIチップセット市場の長期的な成長を牽引しています。これらのプロセッサは、よりスマートなシステムとより効率的な意思決定を実現するために不可欠です。AIが日常業務に深く浸透するにつれて、高度なチップセットの需要は今後も高まり続けるでしょう。
抑制/挑戦
「開発コストの高さと技術的な複雑さ」
- AIチップセットの設計には、複雑なアーキテクチャ、高度な製造技術、そして専門的なスキルセットが必要となり、開発コストが高額になります。従来のプロセッサとは異なり、AIチップは並列コンピューティングと適応型学習モデルをサポートする必要があります。この複雑さは新規参入の障壁となり、製品開発のタイムラインを長期化させます。
- AIソフトウェアの急速な進歩は、互換性と性能を維持するために、ハードウェアの継続的なアップグレードを必要とします。チップメーカーは迅速なイノベーションのプレッシャーに直面しており、研究開発費と運用費が増加しています。この状況は、競争の激しい環境で事業を展開する企業にとって、持続可能性に関する課題を生み出しています。
- 中小企業やスタートアップ企業は、AIハードウェア分野で競争するために必要な資金と技術リソースを欠いていることが多い。大手企業の優位性は多様性を制限し、AIチップセットの普及を遅らせている。協力的な取り組みがなければ、こうしたギャップが市場へのより広範な参加を阻害する可能性がある。
- 例えば、インテルはAIに特化したNervanaとHabana Labsのチップの生産に支障をきたし、NVIDIAなどの競合他社に対する競争力に影響を与えました。製品投入の遅れと統合の課題により、主要セグメントにおける市場シェアが制限されました。これは、既存の企業でさえAIチップのイノベーションにおいて困難に直面していることを示しています。
- AIチップセット開発のコストと複雑さは、市場拡大における依然として大きな課題です。これらの障壁を克服するには、モジュール設計戦略、エコシステム連携、そしてスケーラブルな生産技術が必要となります。これらの問題への対処は、広範な普及と市場の成熟化を実現するために不可欠です。
人工知能(AI)チップセット市場の展望
市場は、ハードウェア、テクノロジー、機能、エンドユーザーに基づいてセグメント化されています。
• ハードウェア別
ハードウェアベースで、人工知能(AI)チップセット市場は、プロセッサ、メモリ、ネットワークの3つに分類されます。プロセッサセグメントは、ディープラーニングやニューラルネットワークトレーニングといったAIワークロード全体における高性能コンピューティングの需要の高まりを背景に、2024年には61.5%という最大の収益シェアで市場を席巻しました。グラフィックス・プロセッシング・ユニット(GPU)と特定用途向け集積回路(ASIC)は、その並列処理能力とAIタスクに最適化された設計により、特に需要が高まっています。このセグメントは、技術の進歩とクラウド環境とエッジ環境の両方における導入の増加の恩恵を受け続けています。
ネットワークセグメントは、複雑なシステムにおけるAIコンポーネント間の効率的なデータ転送に対する需要の高まりを背景に、2025年から2032年にかけて最も高い成長率を達成すると予想されています。データセンターやエッジコンピューティングにおいては、リアルタイム処理とAIモデル推論においてレイテンシの削減と帯域幅の最適化が不可欠であり、高速インターコネクトとAIに最適化されたネットワークソリューションが不可欠です。
• テクノロジー別
人工知能(AI)チップセット市場は、技術に基づいて、機械学習、自然言語処理、コンテキストアウェアコンピューティング、コンピュータービジョン、予測分析の4つに分類されます。機械学習セグメントは、不正検出、レコメンデーションエンジン、顧客行動分析といったアプリケーションへの幅広い導入により、2024年には最大の市場収益シェアを獲得しました。あらゆる業界の企業がデータドリブンな意思決定を優先するにつれ、機械学習ベースのAIチップセットは、コンシューマーエレクトロニクス、クラウドプラットフォーム、エンタープライズシステムへの統合が進んでいます。
コンピュータービジョン分野は、画像・動画分析におけるAIの活用拡大に牽引され、2025年から2032年にかけて最も高い成長率を達成すると予想されています。顔認識、自律走行車、スマート監視システムといったアプリケーションは、コンピュータービジョン技術に大きく依存しており、高解像度の映像データをリアルタイムで処理できる、強力なビジョン専用チップセットが求められます。
• 機能別
機能に基づいて、人工知能(AI)チップセット市場はトレーニング用と推論用の2つに分類されます。トレーニング用セグメントは、膨大なデータセットと複雑なニューラルネットワークモデルを処理できる強力なプロセッサユニットの需要の高まりを背景に、2024年には市場を牽引し、最大の収益シェアを獲得しました。AIモデルのトレーニングには、特に大規模な学習アプリケーションをサポートするクラウドベースのインフラストラクチャにおいて、高負荷に対応できるよう設計された高度なGPUとASICが一般的に必要です。
推論分野は、エッジにおけるリアルタイム意思決定の需要の高まりにより、2025年から2032年にかけて最も高い成長率を示すと予想されています。推論に特化したAIチップセットは、電力効率と高速処理に最適化されており、即時の応答が不可欠なモバイルデバイス、産業オートメーション、自律システムなどのアプリケーションに最適です。
• エンドユーザーによる
エンドユーザー別に見ると、人工知能(AI)チップセット市場は、コンシューマーエレクトロニクス、ヘルスケア、製造、自動車、農業、小売、サイバーセキュリティ、人材、マーケティング、法律、フィンテック、政府機関に分類されます。コンシューマーエレクトロニクス分野は、スマートフォン、スマートテレビ、ウェアラブルデバイスへのAI機能の広範な搭載に支えられ、2024年には最大の市場収益シェアを占めました。AI機能を搭載したチップセットは、音声アシスタント、顔認識、パーソナライズされたコンテンツ推奨などを可能にし、ユーザーエクスペリエンスを向上させます。
ヘルスケア分野は、医療診断、創薬、ロボット手術におけるAI導入の増加に牽引され、2025年から2032年にかけて最も高い成長率を達成すると予想されています。AIチップセットは、ヘルスケアシステムにおけるリアルタイムデータ分析と予測モデリングを可能にし、診断精度と運用効率を向上させる上で重要な役割を果たします。
人工知能(AI)チップセット市場の地域分析
- 北米は、AI開発への強力な投資、確立されたデータセンターインフラストラクチャ、および業界全体にわたるAI搭載ソリューションの広範な導入により、2024年に人工知能(AI)チップセット市場で最大の収益シェア44.3%を獲得して市場を支配しました。
- この地域は、高度に発達した技術エコシステム、大手半導体メーカー、医療、自動車、金融などの分野における高いAI導入率の恩恵を受けています。
- 政府の好ましい取り組み、企業による機械学習およびディープラーニングツールの導入増加、消費者向けおよび産業用アプリケーションの両方におけるAIの需要増加の組み合わせが、この地域の市場拡大を支え続けています。
米国の人工知能(AI)チップセット市場の洞察
米国のAIチップセット市場は、強力な研究開発能力、最先端AIアプリケーションの早期導入、そしてNVIDIA、Intel、AMDといった主要企業の優位性により、2024年には北米で最大の収益シェアを獲得しました。米国はAI研究とイノベーションにおける世界的なリーダーであり、チップセットはクラウドプラットフォーム、自律システム、医療診断において広く利用されています。AI対応の民生用電子機器の導入拡大に加え、高度な製造業やサイバーセキュリティへの対応も、全米における需要をさらに押し上げています。
欧州人工知能(AI)チップセット市場に関する洞察
欧州のAIチップセット市場は、スマートモビリティ、製造業、公共部門におけるAI導入への関心の高まりを背景に、2025年から2032年にかけて最も高い成長率を達成すると予想されています。この地域の各国は、特にインダストリー4.0やスマートシティといった分野において、デジタルトランスフォーメーションへの投資を進めています。データプライバシー、倫理的なAI開発、そして持続可能性への重点が、エネルギー効率の高いAIチップセットの導入を促進しています。また、地域におけるテクノロジーハブの存在や、国境を越えた連携の増加も、市場拡大に貢献しています。
ドイツの人工知能(AI)チップセット市場の洞察
ドイツのAIチップセット市場は、自動車イノベーションと産業オートメーションにおける同国のリーダーシップに牽引され、2025年から2032年にかけて最も高い成長率を達成すると予想されています。AIチップセットは、予知保全、ロボット工学、自動運転アプリケーションへの採用が拡大しています。ドイツはデータセキュリティと精密エンジニアリングを重視しており、特にスマートファクトリーや研究施設において、カスタムAIハードウェアの活用を後押ししています。デジタル主権の推進と半導体イノベーションへの支援も、成長をさらに後押しするでしょう。
英国の人工知能(AI)チップセット市場の洞察
英国のAIチップセット市場は、AIセクターディールなどの政府主導の取り組みや、医療、金融、法務サービス分野におけるAI導入の増加に支えられ、2025年から2032年にかけて最も高い成長率を達成すると予想されています。英国はAIスタートアップ企業や大学主導の研究に積極的に投資しており、欧州のAIエコシステムにおける地位を強化しています。サイバーセキュリティ、創薬、金融モデリング分野におけるAIへの関心の高まりは、高い計算効率と拡張性を実現する専用チップセットの需要を促進しています。
アジア太平洋地域の人工知能(AI)チップセット市場に関する洞察
アジア太平洋地域のAIチップセット市場は、急速なデジタル化、強力な政府支援、そして中国、日本、韓国、インドなどの国々におけるAIイノベーションへの投資増加を背景に、2025年から2032年にかけて最も高い成長率を達成すると予想されています。この地域は、大規模な製造能力、AIスタートアップ・エコシステムの拡大、そしてeコマース、運輸、農業といった分野におけるAI活用の拡大といった恩恵を受けています。AIチップセットの現地生産と費用対効果の高いソリューションへの需要の高まりは、新興国におけるAIへのアクセス拡大につながっています。
中国人工知能(AI)チップセット市場に関する洞察
中国のAIチップセット市場は、2024年にアジア太平洋地域最大の収益シェアを占めました。これは、「次世代人工知能開発計画」などの政府主導の取り組みや、スマートインフラへの積極的な投資に支えられています。中国は半導体およびAI技術のリーディングカンパニーの本拠地であり、顔認識、監視、コンシューマーエレクトロニクスといった分野でAIチップセットの需要が急増しています。中国がチップ製造の自立化に注力していること、そして都市部および産業環境におけるAIの急速な導入が、主要な成長要因となっています。
日本人工知能(AI)チップセット市場インサイト
日本のAIチップセット市場は、ロボット工学、高齢者介護、先進交通システムへのAIの統合により、2025年から2032年にかけて最も高い成長率を達成すると予想されています。日本の技術的リーダーシップと確固たるエレクトロニクス部門は、民生用アプリケーションと産業用アプリケーションの両方でAIハードウェアの広範な導入を可能にしています。日本が人手不足への取り組みと業務効率の向上を目指す中で、スマートシティ、ヘルスケア、自律走行モビリティにおける推論に最適化されたチップセットの活用が加速すると予想されます。
人工知能(AI)チップセット市場シェア
人工知能 (AI) チップセット業界は、主に次のような定評のある企業によって主導されています。
- NVIDIAコーポレーション(米国)
- インテルコーポレーション(米国)
- ザイリンクス社(米国)
- サムスン電子株式会社(韓国)
- マイクロンテクノロジー社(米国)
- クアルコム・テクノロジーズ(米国)
- IBM社(米国)
- Google Inc.(米国)
- マイクロソフト(米国)
- Amazon Web Services, Inc.(米国)
- アドバンスト・マイクロ・デバイセズ社(米国)
- ジェネラルビジョン社(米国)
- ミシック(米国)
- 百度(バイドゥ)(中国)
世界の人工知能(AI)チップセット市場の最新動向
- NXPセミコンダクターズは2023年1月、i.MX 9シリーズの一部としてi.MX 95ファミリーを発表しました。この高性能プロセッサは、Arm Maliベースの3Dグラフィックス、自社製機械学習アクセラレータ、そして高度なデータ処理機能を統合しています。これにより、車載、産業、HMIアプリケーション全体の機能強化が可能になり、エッジコンピューティングとAI主導の市場におけるNXPの地位が強化されます。
- 2022年9月、KinaraはNXP Semiconductorsと提携し、NXPのAI対応ポートフォリオに加え、Ara-1 Edge AIプロセッサを提供する予定です。この提携は、AIアクセラレーションの拡張とエッジにおけるディープラーニング推論の精度向上を目指しており、両社の多様なアプリケーション向け統合AIソリューション提供能力の拡大を目指しています。
- 2022年9月、インテルは第4世代インテル Xeon AIチップ、Sapphire Rapidsスケーラブル・プロセッサー、データセンターGPUを発表しました。また、AI向けに最適化された第13世代インテル Coreプロセッサーも発表しました。これらの開発は、ゲーム、コンテンツ制作、エンタープライズAIワークロードのパフォーマンスを向上させ、インテルのAIエコシステムを強化することを目的としています。
- 2022年8月、インテルはAibleと提携し、クラウドベースのソリューションを通じて企業顧客のAIパフォーマンスを最適化しました。この協業は、高度なベンチマークとエンジニアリングの最適化を活用した迅速な導入と測定可能な効果に重点を置き、企業が業務領域全体にわたってAIをより効率的に導入できるようにします。
- NXPセミコンダクターズは2021年11月、車載、スマートホーム、産業オートメーション向けに設計されたi.MX 93アプリケーションプロセッサファミリーを発表しました。エッジ機械学習機能を搭載したこれらのプロセッサは、ユーザーのニーズを予測して適応し、コネクテッド環境におけるインテリジェントで応答性の高いデバイスへの高まる需要に対応します。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

