創薬における人工知能(AI)の世界市場規模、シェア、トレンド分析レポート – 業界概要と2032年までの予測

Request for TOC TOC のリクエスト Speak to Analyst アナリストに相談する Free Sample Report 無料サンプルレポート Inquire Before Buying 事前に問い合わせる Buy Now今すぐ購入

創薬における人工知能(AI)の世界市場規模、シェア、トレンド分析レポート – 業界概要と2032年までの予測

  • Healthcare
  • Upcoming Report
  • Mar 2025
  • Global
  • 350 ページ
  • テーブル数: 220
  • 図の数: 60
  • Author : Sachin Pawar

アジャイルなサプライチェーンコンサルティングで関税の課題を回避

サプライチェーンエコシステム分析は、現在DBMRレポートの一部です

創薬における人工知能(AI)の世界市場規模、シェア、トレンド分析レポート

Market Size in USD Billion

CAGR :  % Diagram

Chart Image USD 981.64 Million USD 1,483.82 Million 2024 2032
Diagram 予測期間
2025 –2032
Diagram 市場規模(基準年)
USD 981.64 Million
Diagram Market Size (Forecast Year)
USD 1,483.82 Million
Diagram CAGR
%
Diagram 主要市場プレーヤー
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

創薬市場における人工知能(AI)のグローバルセグメント:用途別(新規医薬品候補、医薬品の最適化と転用、前臨床試験と承認、医薬品モニタリング、新規疾患関連ターゲットとパスウェイの発見、疾患メカニズムの理解、情報の集約と統合、仮説の形成と検証、新規医薬品設計、既存薬の医薬品ターゲットの発見など)、技術別(機械学習、ディープラーニング、自然言語処理など)、医薬品タイプ別(低分子および高分子)、提供内容別(ソフトウェアおよびサービス)、適応症別(免疫腫瘍学、神経変性疾患、心血管疾患、代謝性疾患など)、最終用途別(開発業務受託機関(CRO)、製薬企業およびバイオテクノロジー企業、研究センターおよび学術機関など) - 2032年までの業界動向と予測

創薬市場における人工知能(AI)

創薬市場における人工知能(AI)の規模

  • 創薬市場における世界の人工知能(AI)は2024年に9億8,164万米ドルと評価され、2032年までに14億8,382万米ドルに達すると予想されています。
  • 2025年から2032年の予測期間中、市場は主に医療データの利用可能性の増加により、5.30%のCAGRで成長すると予想されます。
  • この成長は、慢性疾患の罹患率の上昇や、創薬プロセスを強化するAI技術の進歩などの要因によって推進されている。

創薬市場分析における人工知能(AI)

  • 機械学習やディープラーニングなどの AI テクノロジーの進歩により、医薬品の発見プロセスが合理化され、コストが削減され、市場は急速な成長を遂げています。
  • AIは、医薬品の最適化、再利用、前臨床試験、臨床試験の設計に広く採用されており、医薬品開発のタイムラインを大幅に加速しています。
  • 北米は強力な医薬品セクターにより市場をリードしており、アジア太平洋地域は研究開発への投資増加により急速な成長が見込まれている。

たとえば、機械学習やディープラーニングなどのAI テクノロジーは、臨床試験での成功率の予測、薬剤候補の最適化、新しい治療ターゲットの特定に使用されており、医薬品開発の時間とコストを大幅に削減しています。

  • 医薬品の発見における AI の導入は、従来の医薬品開発プロセスにおける高コスト、長期にわたる期間、低い成功率などの課題に対処し、製薬業界に革命をもたらしています。

創薬市場におけるレポートの範囲と人工知能(AI)のセグメンテーション

属性

創薬における人工知能(AI)の主要市場洞察

対象セグメント

  • 用途別:新規医薬品候補、医薬品の最適化と再利用、前臨床試験と承認、医薬品モニタリング、新規疾患関連ターゲットと経路の発見、疾患メカニズムの理解、情報の集約と統合、仮説の形成と検証、新規医薬品設計、既存薬の医薬品ターゲットの発見など
  • 技術別:  機械学習、ディープラーニング、自然言語処理、その他
  • 薬物の種類別: 低分子と高分子
  • 提供内容: ソフトウェアとサービス
  • 適応症別:免疫腫瘍学、神経変性疾患、心血管疾患、代謝性疾患、その他
  • 最終用途:開発業務受託機関(CRO)、製薬・バイオテクノロジー企業、研究センター・学術機関、その他

対象国

北米

  • 私たち
  • カナダ
  • メキシコ

ヨーロッパ

  • ドイツ
  • フランス
  • 英国
  • オランダ
  • スイス
  • ベルギー
  • ロシア
  • イタリア
  • スペイン
  • 七面鳥
  • その他のヨーロッパ

アジア太平洋

  • 中国
  • 日本
  • インド
  • 韓国
  • シンガポール
  • マレーシア
  • オーストラリア
  • タイ
  • インドネシア
  • フィリピン
  • その他のアジア太平洋地域

中東およびアフリカ

  • サウジアラビア
  • アラブ首長国連邦
  • 南アフリカ
  • エジプト
  • イスラエル
  • その他の中東およびアフリカ

南アメリカ

  • ブラジル
  • アルゼンチン
  • 南アメリカのその他の地域

主要な市場プレーヤー

  • NVIDIAコーポレーション(米国)
  • IBM社(米国)
  • アトムワイズ社(米国)
  • マイクロソフト(米国)
  • 慈悲深いAI(英国)
  • アリア・ファーマシューティカルズ社(米国)
  • ディープ・ゲノミクス(カナダ)
  • エクセンシア(英国)
  • インシリコ・メディシン(香港)
  • サイクリカ(カナダ)
  • NuMedii, Inc.(米国)
  • エンヴィザジェニクス(米国)
  • Owkin Inc.(米国)
  • BERG LLC(米国)
  • シュレディンガー社(米国)
  • XtalPi Inc.(中国)
  • バイオエイジ社(米国)

市場機会

  • 製薬業界における研究開発投資の増加
  • 臨床試験のための強化された予測モデリング

付加価値データ情報セット

データブリッジマーケットリサーチがまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、輸出入分析、生産能力の概要、生産消費分析、価格動向分析、気候変動シナリオ、サプライチェーン分析、バリューチェーン分析、原材料/消耗品の概要、ベンダー選択基準、PESTLE分析、ポーター分析、規制枠組みも含まれています。

創薬市場における人工知能(AI)の動向

「AI主導のイノベーションが創薬に革命を起こす」

  • 医薬品発見市場における AI の顕著な傾向の 1 つは、医薬品開発プロセスを合理化するために機械学習とディープラーニング技術の採用が増えていることです。
  • これらの高度なテクノロジーは、膨大なデータセットを分析し、分子の結合特性を予測し、潜在的な薬剤候補を特定することで、創薬の効率と精度を高めます。
  • たとえば、AI を活用したプラットフォームは既存の医薬品を新しい治療領域に転用するために使用されており、従来の医薬品発見方法に関連する時間とコストを大幅に削減しています。
  • AI を統合すると、成功率を予測し、患者集団を特定することで臨床試験の設計を改善し、医薬品開発の全体的な成功率を向上させることもできます。
  • この傾向は製薬業界に変革をもたらし、革新的な治療法の開発を加速し、満たされていない医療ニーズに対応し、市場における AI 主導のソリューションの需要を促進しています。

創薬市場における人工知能(AI)の動向

ドライバ

「製薬業界における研究開発投資の増加」

  • 製薬会社は、競争力を維持し、変化する患者のニーズを満たすために、新しい医薬品や治療法を開発するために研究開発予算を増額しています。
  • AI ツールは研究開発プロセスに統合され、創薬を強化し、薬剤候補の特定を迅速化し、成功率を向上させ、初期段階の研究を最適化します。
  • AI はハイスループットスクリーニングを可能にし、化合物のテストプロセスとさらなる開発のための有望な候補の特定を大幅に高速化します。
  • AI は、ゲノミクス、臨床試験、患者の人口統計からの大規模なデータセットを処理して隠れたパターンを発見し、新しい治療ターゲットの特定を加速できます。
  • AI アルゴリズムが患者の募集と試験設計を最適化することで、製薬会社はより効率的な臨床試験を実施し、時間とコストを削減できます。

例えば、

  • サノフィはエクセンシアと提携し、AIを活用して新薬候補を設計することで、臨床試験への道のりを加速させました。ある共同研究において、従来の方法に比べてはるかに短い時間で、自己免疫疾患の治療薬として有望な候補化合物を特定しました。
  • グラクソ・スミスクライン(GSK)24Mは、新たな医薬品ターゲットの特定や希少疾患などの新たな治療法の開発の加速など、研究開発プロセスを最適化すべくAIの適用に協力しています。
  • 研究開発への投資の増加と AI の力により、製薬業界はより迅速に、よりコスト効率よく、より高い精度で新薬を発見する能力が大幅に向上しています。

機会

「臨床試験のための強化された予測モデリング」

  • AI は、サンプル サイズ、エンドポイント、治療計画などの最適な試験パラメータを特定することで臨床試験の設計を最適化し、より効率的で効果的な研究につながります。
  • AI は電子健康記録やその他のデータを分析することで、特定の包含/除外基準に基づいて臨床試験に適した患者を特定し、募集のスピードと精度を向上させることができます。
  • AI モデルは、履歴データとリアルタイムの洞察に基づいて臨床試験の成功または失敗の可能性を予測できるため、試験プロトコルを早期に調整して成功の可能性を高めることができます。
  • AI は予測分析を使用することで、試験を中止するリスクのある患者を特定し、試験を継続させるための介入を提案できるため、不完全な試験の数を減らすことができます。
  • AI は、参加者の選択から結果の予測まで、臨床試験のプロセスを合理化する能力があり、従来の試験方法に関連するコストを大幅に削減できます。

例えば、

  • ファイザーはIBM Watson Healthと提携し、AIを活用して臨床試験の参加者募集を強化し、希少疾患治療薬開発のための試験設計を最適化しました。AI主導のアプローチは、参加者募集の迅速化と試験結果の改善に役立ちました。
  • ノバルティスは、AIを活用して患者の反応を予測し、遺伝子治療の試験設計を最適化しました。このAIを活用したアプローチにより、より的確な治療とより効率的な臨床試験が実現しました。
  • 臨床試験における予測モデリングを強化する AI の能力は、より効率的な試験設計、より迅速な患者募集、コストの削減、試験結果の改善など、大きな利点をもたらし、最終的には新しい治療法の開発を加速します。

抑制/挑戦

「初期投資コストが高い」

  • AI 駆動型ツールには、強力なコンピューティング システム、データ ストレージ ソリューション、特殊なソフトウェアなどの高価なテクノロジ インフラストラクチャが必要なため、初期投資が高額になります。
  • データ サイエンティスト、AI エキスパート、AI と創薬の両方の知識を持つバイオ医薬品研究者などの熟練した専門家を採用するにはコストがかかり、R&D に AI を実装する際の経済的負担が増加します。
  • AI ツールを既存の創薬ワークフロー、特にレガシー システムに統合するには、適応、トレーニング、最適化のために多額の資金が必要です。
  • AI テクノロジーでは、機械学習とデータ分析の進歩に対応するために継続的なメンテナンス、ソフトウェアの更新、ハードウェアのアップグレードが必要であり、長期的な運用コストの増加につながります。
  • 創薬における AI システムは膨大で高品質なデータセットに依存しており、そのようなデータセットの取得やライセンス供与は中小企業やスタートアップ企業にとって高額になる可能性があり、AI 実装のコストがさらに上昇します。

例えば、

  • BenevolentAIは、腫瘍学分野に重点を置き、AI駆動型創薬プラットフォームと専門知識に多額の投資を行い、医薬品開発プロセスを効率化しました。当初の多額の投資にもかかわらず、同社のアプローチにより、創薬の迅速化と成功率の向上が実現しました。
  • AIを医薬品の発見に活用するスタートアップ企業Insilico Medicineは、線維症やがんなどの疾患に対する医薬品の開発を加速できるAI主導のプラットフォームを構築するために多額の先行投資を必要としたが、コストが高く、小規模な競合他社がこれに匹敵するのは困難だった。
  • 創薬におけるAIへの初期投資コストの高さは、中小企業やスタートアップ企業にとって障壁となり、これらの技術を利用できる大企業との競争を阻害しています。この課題を克服するには、革新的な資金調達モデルや、製薬業界のより幅広いプレーヤーがAIを利用できるようなパートナーシップの構築が必要になるかもしれません。

創薬市場における人工知能(AI)の展望

市場は、アプリケーション、製品タイプ、テクノロジー、拡大タイプ、エンドユーザー、流通チャネルに基づいてセグメント化されています。

セグメンテーション

サブセグメンテーション

アプリケーション別

  • 新薬候補
  • 医薬品の最適化と再利用
  • 前臨床試験と承認
  • 薬物モニタリング
  • 新たな疾患関連標的と経路の発見
  • 病気のメカニズムを理解する
  • 情報の集約と統合
  • 仮説の形成と検証
  • デノボ医薬品設計
  • 古い薬の創薬ターゲットを見つける
  • その他

テクノロジー別

  • 機械学習
  • ディープラーニング
  • 自然言語処理
  • その他

薬剤の種類別

  • 小分子
  • 巨大分子

提供することで

  • ソフトウェア
  • サービス

適応症別

  • 免疫腫瘍学
  • 神経変性疾患
  • 心血管疾患
  • 代謝性疾患
  • その他

最終用途別

 

  • 契約研究機関(CRO)
  • 製薬およびバイオテクノロジー企業
  • 研究センターおよび学術機関
  • その他

創薬市場における人工知能(AI)の地域分析

「創薬市場における人工知能(AI)は北米が主要地域」

  • 北米は、高度な医療インフラ、最先端の医療技術の採用率の高さ、主要な市場プレーヤーの強力な存在に牽引され、創薬市場における人工知能(AI)を支配しています。
  • 米国には、ファイザージョンソン・エンド・ジョンソンメルクイーライリリーといった大手製薬会社が数多く存在し、創薬におけるAI導入の最前線に立っています。これらの企業は、医薬品開発プロセスの効率化と成果の向上を目指し、AIに多額の投資を行っています。
  • 北米には確立されたテクノロジーエコシステムがあり、IBM Watson HealthGoogle DeepMindといった大手AI企業が創薬におけるイノベーションを推進しています。これらの企業はAI研究をリードし、医薬品研究開発に強力なAIツールを提供しています。
  • 北米はGDPの相当部分を研究開発(R&D)に継続的に投資しています。この資金投入は、企業が新薬や治療法の発見を迅速化する方法を探る中で、創薬における高度なAI技術の導入を促進しています。
  • 北米では、製薬会社とAIスタートアップ企業やテクノロジー企業との提携が数多く見られます。例えば、ノバルティスがマイクロソフトと提携し、AIを創薬に活用するといった取り組みは、AIを活用した医薬品開発におけるイノベーションにおいて、この地域がリーダーシップを発揮していることを浮き彫りにしています。

「アジア太平洋地域は最も高い成長率を記録すると予測される」

  • アジア太平洋地域では、医療インフラの急速な拡大、眼の健康に関する意識の高まり、手術件数の増加により、創薬における人工知能 (AI)が最も高い成長率を示すことが予想されています。
  • 中国インド日本などの国々は、製薬業界の強化と医療ニーズの増大への対応を目的として、AIとバイオテクノロジーに多額の投資を行っています。これらの投資は、創薬におけるAIの導入を加速させています。
  • アジア太平洋地域の政府は、様々な取り組みを通じてデジタルヘルスケアとAIの統合を積極的に推進しています。例えば、中国はヘルスケアへのAIの導入を国家戦略として推進し、創薬分野におけるAIの発展を促進しています。
  • アジア太平洋諸国は人口が多く、AIを活用した創薬に活用できる膨大な健康データを保有しています。この地域の強固なデジタルインフラは、医薬品開発におけるAI技術の統合を支えています。
  • アジア太平洋 (APAC)地域は、投資の増加、政府の支援政策、膨大なデータ、AI 技術を活用するバイオテクノロジー企業の拡大に牽引され、医薬品発見における AI 市場が最も急速に成長しています。

創薬市場における人工知能(AI)のシェア

市場競争環境は、競合他社ごとに詳細な情報を提供します。企業概要、財務状況、収益、市場ポテンシャル、研究開発投資、新規市場への取り組み、グローバルプレゼンス、生産拠点・設備、生産能力、強みと弱み、製品投入、製品群の幅広さ、アプリケーションにおける優位性などの詳細が含まれます。上記のデータは、各社の市場への注力分野にのみ関連しています。

市場で活動している主要なマーケットリーダーは次のとおりです。

  • NVIDIAコーポレーション(米国)
  • IBM社(米国)
  • アトムワイズ社(米国)
  • マイクロソフト(米国)
  • 慈悲深いAI(英国)
  • アリア・ファーマシューティカルズ社(米国)
  • ディープ・ゲノミクス(カナダ)
  • エクセンシア(英国)
  • インシリコ・メディシン(香港)
  • サイクリカ(カナダ)
  • NuMedii, Inc.(米国)
  • エンヴィザジェニクス(米国)
  • Owkin Inc.(米国)
  • BERG LLC(米国)
  • シュレディンガー社(米国)
  • XtalPi Inc.(中国)
  • バイオエイジ社(米国)

創薬市場における世界の人工知能(AI)の最新動向

  • 2024年5月、Google DeepMindは、医薬品開発の強化と疾患ターゲティングの改善を目的として設計されたAlphaFold AIモデルの3番目のバージョンを発表しました。この高度なバージョンにより、DeepMindとIsomorphic Labsの研究者は、ヒトDNAを含むあらゆる分子の挙動を分析できるようになります。
  • 2024年4月、AIを活用した創薬・開発に特化した革新的な企業であるXaira Therapeuticsは、ARCH Venture PartnersおよびForesite Labsとの共同資金調達ラウンドで100万米ドル以上を調達しました。同社は機械学習、データ生成モデル、治療薬開発を活用し、従来は難しかった創薬標的の解明に注力しています。
  • 2023年12月、メルクのライフサイエンス部門であるミリポアシグマは、最先端の創薬ソフトウェアであるAIDDISONを発表しました。このプラットフォームは、Synthia逆合成ソフトウェアAPIを統合することで、仮想的な分子設計と現実世界での製造可能性の間のギャップを埋めます。生成AI、機械学習、コンピュータ支援医薬品設計を組み合わせることで、医薬品開発プロセスを効率化します。
  • 2023年5月、Googleはバイオテクノロジー企業と製薬企業による創薬の加速と精密医療の改良を支援することを目的とした、革新的なAI活用ツールを2つリリースしました。これらのソリューションは、米国市場への新薬導入にかかる時間と費用を削減することを目的としています。これらのツールの早期導入企業には、Cerevel Therapeutics、Pfizer、Colossal Biosciencesなどが挙げられます


SKU-

世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする

  • インタラクティブなデータ分析ダッシュボード
  • 成長の可能性が高い機会のための企業分析ダッシュボード
  • カスタマイズとクエリのためのリサーチアナリストアクセス
  • インタラクティブなダッシュボードによる競合分析
  • 最新ニュース、更新情報、トレンド分析
  • 包括的な競合追跡のためのベンチマーク分析のパワーを活用
デモのリクエスト

目次

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 MARKETS COVERED

2.5 GEOGRAPHIC SCOPE

2.6 YEARS CONSIDERED FOR THE STUDY

2.7 RESEARCH METHODOLOGY

2.8 TECHNOLOGY LIFE LINE CURVE

2.9 MULTIVARIATE MODELLING

2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.11 DBMR MARKET POSITION GRID

2.12 MARKET APPLICATION COVERAGE GRID

2.13 DBMR MARKET CHALLENGE MATRIX

2.14 SECONDARY SOURCES

2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT

2.16 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

5.1 PESTEL ANALYSIS

5.2 PORTER’S FIVE FORCES MODEL

6 INDUSTRY INSIGHTS

6.1 MICRO AND MACRO ECONOMIC FACTORS

6.2 PENETRATION AND GROWTH PROSPECT MAPPING

6.3 KEY PRICING STRATEGIES

6.4 INTERVIEWS WITH SPECIALIST

6.5 ANALYIS AND RECOMMENDATION

7 INTELLECTUAL PROPERTY (IP) PORTFOLIO

7.1 PATENT QUALITY AND STRENGTH

7.2 PATENT FAMILIES

7.3 LICENSING AND COLLABORATIONS

7.4 COMPETITIVE LANDSCAPE

7.5 IP STRATEGY AND MANAGEMENT

7.6 OTHER

8 COST ANALYSIS BREAKDOWN

9 TECHNONLOGY ROADMAP

10 INNOVATION TRACKER AND STRATEGIC ANALYSIS

10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS

10.1.1 JOINT VENTURES

10.1.2 MERGERS AND ACQUISITIONS

10.1.3 LICENSING AND PARTNERSHIP

10.1.4 TECHNOLOGY COLLABORATIONS

10.1.5 STRATEGIC DIVESTMENTS

10.2 NUMBER OF PRODUCTS IN DEVELOPMENT

10.3 STAGE OF DEVELOPMENT

10.4 TIMELINES AND MILESTONES

10.5 INNOVATION STRATEGIES AND METHODOLOGIES

10.6 RISK ASSESSMENT AND MITIGATION

10.7 FUTURE OUTLOOK

11 REGULATORY COMPLIANCE

11.1 REGULATORY AUTHORITIES

11.2 REGULATORY CLASSIFICATIONS

11.2.1 CLASS I

11.2.2 CLASS II

11.2.3 CLASS III

11.3 REGULATORY SUBMISSIONS

11.4 INTERNATIONAL HARMONIZATION

11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS

11.6 REGULATORY CHALLENGES AND STRATEGIES

12 REIMBURSEMENT FRAMEWORK

13 OPPUTUNITY MAP ANALYSIS

14 VALUE CHAIN ANALYSIS

15 HEALTHCARE ECONOMY

15.1 HEALTHCARE EXPENDITURE

15.2 CAPITAL EXPENDITURE

15.3 CAPEX TRENDS

15.4 CAPEX ALLOCATION

15.5 FUNDING SOURCES

15.6 INDUSTRY BENCHMARKS

15.7 GDP RATION IN OVERALL GDP

15.8 HEALTHCARE SYSTEM STRUCTURE

15.9 GOVERNMENT POLICIES

15.1 ECONOMIC DEVELOPMENT

16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING

16.1 OVERVIEW

16.2 SOFTWARE

16.2.1 INTEGRATED

16.2.2 STANDALONE

16.3 SERVICES

17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY

17.1 OVERVIEW

17.2 MACHINE LEARNING (ML)

17.2.1 SUPERVISED LEARNING

17.2.2 UNSUPERVISED LEARNING

17.2.3 REINFORCEMENT LEARNING

17.3 DEEP LEARNING

17.4 NATURAL LANGUAGE PROCESSING (NLP)

17.5 OTHERS

18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE

18.1 OVERVIEW

18.2 SMALL MOLECULE

18.3 LARGE MOLECULE

19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION

19.1 OVERVIEW

19.2 NOVEL DRUG CANDIDATES

19.2.1 IDENTIFY BIOLOGICS TARGET

19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE

19.2.3 OTHERS

19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL

19.4 DRUG MONITORING

19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS

19.6 UNDERSTANDING DISEASE MECHANISMS

19.7 AGGREGATING AND SYNTHESIZING INFORMATION

19.8 FORM ATION & QUALIFICATION OF HYPOTHESES

19.9 DE NOVO DRUG DESIGN

19.1 FINDING DRUG TARGETS OF AN OLD DRUG

19.11 OTHERS

20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION

20.1 OVERVIEW

20.2 IMMUNO-ONCOLOGY

20.2.1 PROSTATE CANCER

20.2.2 BREAST CANCER

20.2.3 BRAIN CANCER

20.2.4 LUNG CANCER

20.2.5 PANCREATIC CANCER

20.2.6 COLORECTAL CANCER

20.2.7 LEUKEMIA

20.2.8 OTHERS

20.3 NEURODEGENERATIVE DISEASES

20.4 CARDIOVASCULAR DISEASES

20.5 METABOLIC DISEASES

20.6 OTHERS

21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER

21.1 OVERVIEW

21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES

21.3 CONTRACT RESEARCH ORGANIZATIONS

21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES

21.5 OTHERS

22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)

GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

22.1 OVERVIEW

22.2 NORTH AMERICA

22.2.1 U.S.

22.2.2 CANADA

22.2.3 MEXICO

22.3 EUROPE

22.3.1 GERMANY

22.3.2 U.K.

22.3.3 ITALY

22.3.4 FRANCE

22.3.5 SPAIN

22.3.6 SWITZERLAND

22.3.7 RUSSIA

22.3.8 TURKEY

22.3.9 BELGIUM

22.3.10 NETHERLANDS

22.3.11 REST OF EUROPE

22.4 ASIA-PACIFIC

22.4.1 JAPAN

22.4.2 CHINA

22.4.3 SOUTH KOREA

22.4.4 INDIA

22.4.5 AUSTRALIA & NEW ZEALAND

22.4.6 SINGAPORE

22.4.7 THAILAND

22.4.8 INDONESIA

22.4.9 MALAYSIA

22.4.10 PHILIPPINES

22.4.11 REST OF ASIA-PACIFIC

22.5 SOUTH AMERICA

22.5.1 BRAZIL

22.5.2 ARGENTINA

22.5.3 REST OF SOUTH AMERICA

22.6 MIDDLE EAST AND AFRICA

22.6.1 SOUTH AFRICA

22.6.2 EGYPT

22.6.3 SAUDI ARABIA

22.6.4 UNITED ARAB EMIRATES

22.6.5 ISRAEL

22.6.6 REST OF MIDDLE EAST AND AFRICA

23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE

23.1 COMPANY SHARE ANALYSIS: GLOBAL

23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

23.3 COMPANY SHARE ANALYSIS: EUROPE

23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

23.5 MERGERS & ACQUISITIONS

23.6 NEW PRODUCT DEVELOPMENT & APPROVALS

23.7 EXPANSIONS

23.8 REGULATORY CHANGES

23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES

24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS

25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE

25.1 MICROSOFT

25.1.1 COMPANY OVERVIEW

25.1.2 REVENUE ANALYSIS

25.1.3 PRODUCT PORTFOLIO

25.1.4 RECENT DEVELOPMENTS

25.2 SHANGHAI MEDICILON INC.

25.2.1 COMPANY OVERVIEW

25.2.2 REVENUE ANALYSIS

25.2.3 PRODUCT PORTFOLIO

25.2.4 RECENT DEVELOPMENTS

25.3 NVIDIA CORPORATION + ASTRAZENECA

25.3.1 COMPANY OVERVIEW

25.3.2 REVENUE ANALYSIS

25.3.3 PRODUCT PORTFOLIO

25.3.4 RECENT DEVELOPMENTS

25.4 ATOMWISE INC.

25.4.1 COMPANY OVERVIEW

25.4.2 REVENUE ANALYSIS

25.4.3 PRODUCT PORTFOLIO

25.4.4 RECENT DEVELOPMENTS

25.5 DEEP GENOMICS

25.5.1 COMPANY OVERVIEW

25.5.2 REVENUE ANALYSIS

25.5.3 PRODUCT PORTFOLIO

25.5.4 RECENT DEVELOPMENTS

25.6 CLOUD PHARMACEUTICALS INC.

25.6.1 COMPANY OVERVIEW

25.6.2 REVENUE ANALYSIS

25.6.3 PRODUCT PORTFOLIO

25.6.4 RECENT DEVELOPMENTS

25.7 INSILICO MEDICINE

25.7.1 COMPANY OVERVIEW

25.7.2 REVENUE ANALYSIS

25.7.3 PRODUCT PORTFOLIO

25.7.4 RECENT DEVELOPMENTS

25.8 BENEVOLENTAI

25.8.1 COMPANY OVERVIEW

25.8.2 REVENUE ANALYSIS

25.8.3 PRODUCT PORTFOLIO

25.8.4 RECENT DEVELOPMENTS

25.9 EXSCIENTIA

25.9.1 COMPANY OVERVIEW

25.9.2 REVENUE ANALYSIS

25.9.3 PRODUCT PORTFOLIO

25.9.4 RECENT DEVELOPMENTS

25.1 CYCLICA

25.10.1 COMPANY OVERVIEW

25.10.2 REVENUE ANALYSIS

25.10.3 PRODUCT PORTFOLIO

25.10.4 RECENT DEVELOPMENTS

25.11 OWKIN, INC

25.11.1 COMPANY OVERVIEW

25.11.2 REVENUE ANALYSIS

25.11.3 PRODUCT PORTFOLIO

25.11.4 RECENT DEVELOPMENTS

25.12 ENVISAGENICS

25.12.1 COMPANY OVERVIEW

25.12.2 REVENUE ANALYSIS

25.12.3 PRODUCT PORTFOLIO

25.12.4 RECENT DEVELOPMENTS

25.13 NUMEDII, INC.

25.13.1 COMPANY OVERVIEW

25.13.2 REVENUE ANALYSIS

25.13.3 PRODUCT PORTFOLIO

25.13.4 RECENT DEVELOPMENTS

25.14 BIOSYNTAGMA

25.14.1 COMPANY OVERVIEW

25.14.2 REVENUE ANALYSIS

25.14.3 PRODUCT PORTFOLIO

25.14.4 RECENT DEVELOPMENTS

25.15 COLLABORATIONS PHARMACEUTICALS, INC.

25.15.1 COMPANY OVERVIEW

25.15.2 REVENUE ANALYSIS

25.15.3 PRODUCT PORTFOLIO

25.15.4 RECENT DEVELOPMENTS

25.16 INVENIAI LLC

25.16.1 COMPANY OVERVIEW

25.16.2 REVENUE ANALYSIS

25.16.3 PRODUCT PORTFOLIO

25.16.4 RECENT DEVELOPMENTS

25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION

25.17.1 COMPANY OVERVIEW

25.17.2 REVENUE ANALYSIS

25.17.3 PRODUCT PORTFOLIO

25.17.4 RECENT DEVELOPMENTS

25.18 VALO HEALTH

25.18.1 COMPANY OVERVIEW

25.18.2 REVENUE ANALYSIS

25.18.3 PRODUCT PORTFOLIO

25.18.4 RECENT DEVELOPMENTS

25.19 AIFORIA

25.19.1 COMPANY OVERVIEW

25.19.2 REVENUE ANALYSIS

25.19.3 PRODUCT PORTFOLIO

25.19.4 RECENT DEVELOPMENTS

25.2 CHEMALIVE

25.20.1 COMPANY OVERVIEW

25.20.2 REVENUE ANALYSIS

25.20.3 PRODUCT PORTFOLIO

25.20.4 RECENT DEVELOPMENTS

25.21 DEEPMATTER GROUP LIMITED

25.21.1 COMPANY OVERVIEW

25.21.2 REVENUE ANALYSIS

25.21.3 PRODUCT PORTFOLIO

25.21.4 RECENT DEVELOPMENTS

25.22 MABSILICO.

25.22.1 COMPANY OVERVIEW

25.22.2 REVENUE ANALYSIS

25.22.3 PRODUCT PORTFOLIO

25.22.4 RECENT DEVELOPMENTS

25.23 OPTIBRIUM, LTD.

25.23.1 COMPANY OVERVIEW

25.23.2 REVENUE ANALYSIS

25.23.3 PRODUCT PORTFOLIO

25.23.4 RECENT DEVELOPMENTS

25.24 ABBVIE AND BIGHAT BIOSCIENCES

25.24.1 COMPANY OVERVIEW

25.24.2 REVENUE ANALYSIS

25.24.3 PRODUCT PORTFOLIO

25.24.4 RECENT DEVELOPMENTS

25.25 ADAGENE

25.25.1 COMPANY OVERVIEW

25.25.2 REVENUE ANALYSIS

25.25.3 PRODUCT PORTFOLIO

25.25.4 RECENT DEVELOPMENTS

25.26 PEPTICOM LTD.

25.26.1 COMPANY OVERVIEW

25.26.2 REVENUE ANALYSIS

25.26.3 PRODUCT PORTFOLIO

25.26.4 RECENT DEVELOPMENTS

25.27 DEARGEN INC.

25.27.1 COMPANY OVERVIEW

25.27.2 REVENUE ANALYSIS

25.27.3 PRODUCT PORTFOLIO

25.27.4 RECENT DEVELOPMENTS

25.28 GERO.AI

25.28.1 COMPANY OVERVIEW

25.28.2 REVENUE ANALYSIS

25.28.3 PRODUCT PORTFOLIO

25.28.4 RECENT DEVELOPMENTS

25.29 3BIGS CO. LTD.

25.29.1 COMPANY OVERVIEW

25.29.2 REVENUE ANALYSIS

25.29.3 PRODUCT PORTFOLIO

25.29.4 RECENT DEVELOPMENTS

25.3 BPGBIO INC.

25.30.1 COMPANY OVERVIEW

25.30.2 REVENUE ANALYSIS

25.30.3 PRODUCT PORTFOLIO

25.30.4 RECENT DEVELOPMENTS

25.31 SCHRÖDINGER, INC.

25.31.1 COMPANY OVERVIEW

25.31.2 REVENUE ANALYSIS

25.31.3 PRODUCT PORTFOLIO

25.31.4 RECENT DEVELOPMENTS

25.32 XTALPI INC.

25.32.1 COMPANY OVERVIEW

25.32.2 REVENUE ANALYSIS

25.32.3 PRODUCT PORTFOLIO

25.32.4 RECENT DEVELOPMENTS

25.33 BIOAGE INC.

25.33.1 COMPANY OVERVIEW

25.33.2 REVENUE ANALYSIS

25.33.3 PRODUCT PORTFOLIO

25.33.4 RECENT DEVELOPMENTS

26 RELATED REPORTS

27 QUESTIONNAIRE

28 CONCLUSION

29 ABOUT DATA BRIDGE MARKET RESEARCH

詳細情報を見る Right Arrow

調査方法

データ収集と基準年分析は、大規模なサンプル サイズのデータ​​収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。

DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。

カスタマイズ可能

Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

Frequently Asked Questions

The global artificial intelligence (ai) in drug discovery market size was valued at USD 981.64 million in 2024.
The global artificial intelligence (ai) in drug discovery market is to grow at a CAGR of 5.30 % during the forecast period of 2025 to 2032.
The artificial intelligence (ai) in drug discovery market is segmented on the basis of application, technology, drug type, offering, indication, and end use. On the basis of application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation and qualification of hypotheses, de novo drug design, finding drug targets of an old drug and others. On the basis of technology, the market is segmented into machine learning, deep learning, natural language processing, and others. On the basis of drug type, the market is segmented into small molecule and large molecule. On the basis of offering, the market is segmented into software and services. On the basis of indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others. On the basis of end use, the market is segmented into direct contract research organizations (CROS), pharmaceutical and biotechnology companies, research centers and academic institutes, and others.
Companies such as NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.) are the major companies in the artificial intelligence (ai) in drug discovery market.
In January 2025, Bausch + Lomb Corporation, a global leader in eye health, has announced the commercial launch of its enVista Aspire monofocal and toric intraocular lenses (IOLs) in the European Union, following the receipt of a CE Mark. In September 2024, Haag-Streit announced the launch of METIS, its cutting-edge ophthalmic microscope system, which brings superior optical performance into the operating room with exceptional clarity, a brilliant coaxial red reflex, and optimized optics for precise color reproduction, high light transmission, and an expansive depth of field, making it ideal for delicate ophthalmic procedures. It will be officially launched in Q1 2025
The countries covered in the artificial intelligence (ai) in drug discovery market are U.S., Canada, Mexico, Germany, France, U.K., Italy, Spain, Russia, Turkey, Netherlands, Switzerland, Austria, Poland, Norway, Ireland, Hungary, Lithuania, rest of Europe, China, Japan, India, South Korea, Australia, Taiwan, Philippines, Thailand, Malaysia, Vietnam, Indonesia, Singapore, rest of Asia-Pacific, Brazil, Argentina, Chili, Colombia, Peru, Venezuela, Ecuador, Uruguay, Paraguay ,Bolivia, Trinidad And Tobago, Curaçao, rest Of South America, South Africa, Saudi Arabia, U.A.E, Egypt, Israel, Kuwait, rest of Middle East and Africa, Guatemala, Costa Rica, Honduras, EL Salvador, Nicaragua, and rest of Central America.
The Asia-Pacific (APAC) region is projected to be the fastest-growing market for artificial intelligence (AI) in drug discovery, with a notable compound annual growth rate (CAGR) expected in the coming years. This growth is driven by increasing investments in healthcare infrastructure, rising adoption of AI technologies, and a growing focus on drug discovery and development in the region.
U.S. is expected to dominate the artificial intelligence (AI) in drug discovery market. This is due to its well-established pharmaceutical and biotechnology sectors, significant investments in AI research, and strong collaborations between tech companies and healthcare organizations.
North America holds the largest share in the global artificial intelligence (AI) in drug discovery market. This dominance is attributed to its well-established pharmaceutical industry, significant investments in AI research, and the presence of leading pharmaceutical and biotechnology companies.
China, is expected to witness the highest compound annual growth rate (CAGR) in the artificial intelligence (AI) in drug discovery market. This growth is driven by increasing investments in AI technologies, expanding pharmaceutical industries, and government initiatives supporting innovation in healthcare.
AI-Driven innovations revolutionizing drug discovery, is emerging as a pivotal trend driving the global artificial intelligence (AI) in drug discovery market.
The major factors driving the growth of the artificial intelligence (ai) in drug discovery market is rising R&D investments in pharmaceutical industry.
The primary challenges include high initial investment costs.
The oncology segment is currently dominating the artificial intelligence (AI) in drug discovery market.
Testimonial