世界のモノの人工知能(AIoT)市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
27.72 Billion
USD
157.46 Billion
2024
2032
| 2025 –2032 | |
| USD 27.72 Billion | |
| USD 157.46 Billion | |
|
|
|
|
世界のモノの人工知能(AIoT)市場のセグメンテーション、展開別(クラウドベースおよびエッジAIoT)、アプリケーション別(ビデオ監視、堅牢な資産管理、在庫管理、エネルギー消費管理、予測メンテナンス、リアルタイムの機械状態監視およびサプライチェーン管理)、業界別(ヘルスケア、製造、小売、農業、物流、BFSI、その他) - 2032年までの業界動向と予測
モノの人工知能(AIoT)市場規模
- 世界のAIoT(モノの人工知能)市場規模は2024年に277.2億米ドルと評価され、予測期間中に24.25%のCAGRで成長し、2032年には1574.6億米ドル に達すると予想されています。
- 市場の成長は主に、人工知能とIoTデバイスの統合の増加によって推進され、さまざまな業界でデータ処理、自動化、意思決定能力が強化されています。
- リアルタイム分析の需要の高まり、運用効率の向上、産業用および消費者向けアプリケーションの両方におけるスマートデバイスの採用の増加は、AIoT市場を前進させる重要な要因です。
モノの人工知能(AIoT)市場分析
- AIoTは、人工知能とIoTインフラストラクチャを組み合わせて、ローカルまたはクラウドでデータを処理できるインテリジェントな接続デバイスを実現し、高度な分析、自動化、リアルタイムの意思決定を提供します。
- AIoTソリューションの需要の急増は、製造、医療、小売などの業界全体での運用効率の向上、予測メンテナンス、スマートオートメーションのニーズによって促進されています。
- 北米は、先進技術の早期導入、堅牢なデジタルインフラ、そして大手AIoTソリューションプロバイダーの存在により、2024年には38.5%という最大の収益シェアでAIoT市場を席巻しました。
- アジア太平洋地域は、急速な都市化、スマートインフラへの投資の増加、中国、日本、インドなどの国におけるAIoTの導入の増加により、予測期間中に最も急速に成長する地域になると予想されています。
- クラウドベースのセグメントは、拡張性、費用対効果、AIoTアプリケーション向けの大規模データ処理とストレージを処理する能力により、2024年に52.3%という最大の市場収益シェアを占めました。
レポートの範囲とモノの人工知能(AIoT)市場のセグメンテーション
|
属性 |
モノの人工知能(AIoT)の主要市場洞察 |
|
対象セグメント |
|
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジ市場調査チームがまとめた市場レポートには、市場価値、成長率、市場セグメント、地理的範囲、市場プレーヤー、市場シナリオなどの市場洞察に加えて、専門家による詳細な分析、輸入/輸出分析、価格分析、生産消費分析、乳棒分析が含まれています。 |
モノの人工知能(AIoT)市場動向
「AIとIoT技術の統合の拡大」
- 世界のAIoT(モノの人工知能)市場は、人工知能(AI)とモノのインターネット(IoT)技術の深い統合により、変革のトレンドを経験しています。
- この統合により、ビデオ監視、予知保全、サプライチェーン管理などのさまざまなアプリケーションにわたって、強化されたデータ処理、リアルタイム分析、実用的な洞察が可能になります。
- AIoTソリューションは、AIアルゴリズムを活用してIoTデバイスから収集されたデータを処理し、機器の故障を事前に特定したり、エネルギー消費をリアルタイムで最適化するなど、プロアクティブな意思決定を可能にします。
- 例えば、企業は、製造業のダウンタイムを削減するためにリアルタイムの機械状態監視を使用したり、小売環境のセキュリティを強化するためにビデオ監視分析を採用したりするAIoTプラットフォームを開発しています。
- この傾向により、AIoTシステムの価値が大幅に高まり、医療、製造、小売、農業、物流、BFSIなどの業界にとってますます魅力的なものとなっています。
- AIアルゴリズムは、センサーの読み取り値、環境条件、運用パターンなどの多様なIoTデータストリームを分析し、最適化された在庫管理や予測メンテナンススケジュールなどのカスタマイズされたソリューションを提供します。
モノの人工知能(AIoT)市場の動向
ドライバ
「スマートでコネクテッドなエコシステムへの需要の高まり」
- リアルタイムの資産追跡、インテリジェントなサプライチェーン管理、自動化されたエネルギー管理など、スマートで接続されたエコシステムに対する消費者と企業の需要の高まりは、AIoT市場の重要な推進力となっています。
- AIoTシステムは、予測メンテナンス、リアルタイムの機械状態監視、脅威検出のためのインテリジェントなビデオ監視などの機能を提供することで、運用効率と安全性を向上させます。
- 特にAIoT市場を支配している北米では、政府の取り組みや規制により、医療や物流などの分野で効率性と安全性を向上させるスマートテクノロジーの導入が促進されている。
- 5G技術の普及とエッジコンピューティングの進歩により、リアルタイムサービスの高速データ処理と低遅延化が可能になり、AIoTアプリケーションがさらに加速しています。
- 業界では、進化する需要に対応し、アプリケーション全体の運用価値を高めるために、AIoTソリューションを標準またはオプション機能として統合するケースが増えています。
抑制/挑戦
「導入コストの高さとデータプライバシーの懸念」
- ハードウェア、ソフトウェア、統合を含むAIoTソリューションの導入に伴う初期コストの高さは、特にAIoTが最も急速に成長している市場であるアジア太平洋地域の新興市場において大きな障壁となっている。
- AIoTシステムを既存のインフラに統合することは複雑でリソースを大量に消費する可能性があり、専門的な専門知識と投資が必要となる。
- AIoTシステムはIoTデバイスから膨大な量の機密データを収集・処理するため、データセキュリティとプライバシーに関する懸念が大きな課題となり、侵害、不正アクセス、データ保護規制違反のリスクが高まっています。
- 地域間で規制環境が断片化しており、データの収集、保管、使用に関する基準が異なるため、世界中のメーカーやサービスプロバイダーの業務が複雑化しています。
- これらの課題は、特にデータプライバシーが重要な医療やBFSIなどの業界、またはコストに敏感な地域での導入を阻み、市場の成長を制限する可能性があります。
モノの人工知能(AIoT)市場の展望
市場は、展開、アプリケーション、および業界垂直に基づいてセグメント化されています。
- 展開別
導入ベースで見ると、世界のAIoT(モノの人工知能)市場はクラウドベースとエッジベースのAIoTに区分されます。クラウドベースセグメントは、拡張性、費用対効果、そしてAIoTアプリケーション向けの大規模データ処理とストレージへの対応能力に牽引され、2024年には52.3%という最大の市場収益シェアを占めました。クラウドプラットフォームはIoTデバイスとのシームレスな統合を可能にし、業界全体におけるリアルタイム分析と機械学習をサポートします。
エッジAIoTセグメントは、2025年から2032年にかけて32.1%という最も高い成長率を記録すると予想されています。エッジベースのシステムは、データをローカルで処理することでリアルタイムの応答を提供し、レイテンシとクラウド接続への依存を低減します。これは、自動運転車や予知保全など、迅速な意思決定が不可欠なアプリケーションにとって非常に重要です。
- アプリケーション別
世界のモノの人工知能(AIoT)市場は、アプリケーション別に見ると、ビデオ監視、堅牢な資産管理、在庫管理、エネルギー消費管理、予知保全、リアルタイムの機械状態監視、サプライチェーン管理に分類されます。ビデオ監視セグメントは、小売、運輸、スマートシティにおけるセキュリティ強化と分析機能の普及により、2024年には市場収益シェアの31.2%を占め、市場を牽引するでしょう。
予知保全分野は、AIを活用した分析によって機器の故障を予測し、ダウンタイムとコストを削減する能力によって、2025年から2032年にかけて最も急速な成長を遂げると予想されています。これは、予防保全によって運用効率が向上する製造業、エネルギー業、輸送業において特に大きな効果を発揮します。
- 業界別
世界のAIoT(モノの人工知能)市場は、業界別に見ると、ヘルスケア、製造業、小売業、農業、物流、BFSI(ビジネス・ファイナンス・サービス)などの分野に分類されます。製造業セグメントは、スマートファクトリーにおける予知保全、プロセス自動化、サプライチェーン最適化のためのAIoT導入の拡大により、2024年には24.2%と最大の市場収益シェアを獲得しました。
ヘルスケア分野は、2025年から2032年にかけて最も高い成長率(CAGR 23.2%)を記録すると予想されています。この成長は、AIoTを活用した遠隔患者モニタリング、予測診断、そしてウェアラブルデバイスや医療センサーからのデータを活用したパーソナライズされたケアによって促進され、患者の転帰とアクセス性の向上につながります。
人工知能(AIoT)市場の地域分析
- 北米は、先進技術の早期導入、堅牢なデジタルインフラ、そして大手AIoTソリューションプロバイダーの存在により、2024年には38.5%という最大の収益シェアでAIoT市場を席巻しました。
- 企業は、特に高度なデジタルインフラを備えた地域において、業務効率、リアルタイムの意思決定、予測分析を強化するためにAIoTソリューションを優先しています。
- 成長は、クラウドとエッジコンピューティングの進歩と、産業用アプリケーションと消費者向けアプリケーションの統合の増加によって支えられています。
米国におけるモノの人工知能(AIoT)市場インサイト
米国のモノの人工知能(AIoT)市場は、ビデオ監視、予知保全、サプライチェーン管理といったスマートソリューションへの旺盛な需要に支えられ、2024年には北米最大の収益シェアとなる74.8%を獲得しました。IoTインフラへの投資増加とAI主導の分析によるメリットへの認知度の高まりが市場拡大を牽引しています。スマートシティやインダストリー4.0への取り組みへのトレンドは、製造業および物流セクター全体での導入をさらに加速させています。
欧州におけるモノの人工知能(AIoT)市場インサイト
欧州のAIoT市場は、デジタルトランスフォーメーションとサステナビリティへの規制の重点化に支えられ、大幅な成長が見込まれています。企業は、エネルギー消費管理やリアルタイムの機械監視によるオペレーションの最適化を実現するAIoTソリューションを求めています。産業オートメーションとスマートリテールの両分野で成長が顕著で、ドイツやフランスなどの国では、環境問題への関心の高まりと技術の進歩により、AIoTの導入が急速に進んでいます。
英国のモノの人工知能(AIoT)市場インサイト
英国のAIoT市場は、小売・物流業界における堅牢な資産管理と在庫管理への需要に牽引され、急速な成長が見込まれています。業務効率への注目度の高まりと、AIoTの予測機能への認知度の高まりが、導入を後押ししています。データプライバシーとスマートインフラを推進する規制の進化は、企業の選択に影響を与え、イノベーションとコンプライアンスのバランスをとっています。
ドイツのAIoT(人工知能)市場インサイト
ドイツは、先進的な製造業とインダストリー4.0への高い関心により、AIoTの急速な成長が見込まれています。ドイツ企業は、コスト削減と生産性向上のため、予知保全やエネルギー効率向上のためのAIoTソリューションを重視しています。高級製造機器やスマート物流へのAIoTの統合は、持続的な市場成長を支えています。
アジア太平洋地域のAIoT(モノの人工知能)市場インサイト
アジア太平洋地域は、中国、インド、日本などの国々におけるIoT導入の拡大とAI技術への投資増加に牽引され、最も高い成長率を達成すると予想されています。リアルタイム監視、サプライチェーン最適化、スマート農業への意識の高まりが需要を押し上げています。デジタル経済とスマートシティを推進する政府の取り組みも、AIoTソリューションの活用をさらに促進しています。
日本におけるAIoT(人工知能)市場インサイト
日本のAIoT市場は、業務効率と安全性を向上させる高品質なAI活用ソリューションに対する消費者と企業の強い関心により、急速な成長が見込まれています。大手テクノロジーメーカーの存在と、スマート製造におけるAIoTの統合が市場浸透を加速させています。アフターマーケットにおけるIoTカスタマイズへの関心の高まりも、成長に貢献しています。
中国におけるモノの人工知能(AIoT)市場洞察
中国は、急速な都市化、IoTデバイスの普及率向上、そしてビデオ監視とサプライチェーン管理ソリューションへの需要増加に支えられ、アジア太平洋地域のAIoT市場で最大のシェアを占めています。同国では、中間層の拡大とスマートシティへの注目がAIoTの普及を後押ししています。また、強力な国内製造能力と競争力のある価格設定により、市場へのアクセスも容易になっています。
モノの人工知能(AIoT)市場シェア
モノの人工知能 (AIoT) 業界は、主に次のような定評のある企業によって主導されています。
- NVIDIA(米国)
- インテル(米国)
- マイクロソフト(米国)
- Amazon Web Services(AWS)(米国)
- Google(米国)
- IBM(米国)
- シスコシステムズ(米国)
- クアルコム(米国)
- シーメンス(ドイツ)
- SAP(ドイツ)
- ファーウェイ(中国)
- アリババクラウド(中国)
- テンセント(中国)
- サムスン電子(韓国)
- ボッシュ(ドイツ)
- ゼネラル・エレクトリック(米国)
- ハネウェル(米国)
- オラクル(米国)
- アーム(英国)
- PTC(米国)
世界のモノの人工知能 (AIoT) 市場の最近の動向は何ですか?
- 2024年11月、エンドツーエンドのデジタル製品開発およびエンジニアリングサービスにおける世界的リーダーであるHTECは、ドイツに拠点を置き、組み込みハードウェアおよびソフトウェアエンジニアリングを専門とするeesy-innovationの買収を発表しました。ドイツのミュンヘンとスペインのグラナダにオフィスを構えるeesy-innovationは、IoT技術、AI統合、クラウド接続型組み込みシステムに関する深い専門知識を有しています。この戦略的買収により、HTECはAIoTソリューションの提供能力を強化し、DACH地域における事業展開を拡大します。この買収は、構想から導入まで、業界を問わず包括的でスケーラブルなソリューションを提供することで、顧客にとってより大きな価値を生み出すことを目指しています。
- 2024年8月、SEALSQ社はAIチップ市場への参入を正式に発表し、AIoT(モノのインターネットのための人工知能)への戦略的重点を強化しました。この動きにより、SEALSQ社はAIとIoT技術の融合の最前線に立つこととなり、先進的な半導体、スマートセンサー、そして安全なクラウド接続プラットフォームの提供を目指しています。同社のAIoT戦略は、エッジコンピューティング、ポスト量子セキュリティ、相互運用可能なAPIを統合し、医療、製造、環境モニタリングなどの分野におけるインテリジェントで自律的な意思決定を可能にします。この展開は、次世代のコネクテッドインテリジェントシステムを支える専用ハードウェアの重要性の高まりを浮き彫りにしています。
- 2024年1月、VodafoneとMicrosoftは、ヨーロッパとアフリカの3億以上の企業と消費者に、生成型AI、クラウドサービス、デジタルエンタープライズソリューションを提供するための、10年間の革新的な戦略的パートナーシップを発表しました。この協業には、顧客体験の向上を目的としたMicrosoft Azure OpenAIとCopilotの導入、VodafoneのグローバルデータセンターのAzureクラウドへの移行、VodafoneのIoT接続プラットフォームの独立事業化が含まれます。また、このパートナーシップは、アフリカにおける金融包摂のためのM-Pesaの拡大と、Microsoftのデジタルツールによる中小企業の支援も目指しています。この取り組みは、AI、クラウド、通信の融合が進むことを反映しており、より広範なAIoTエコシステムを推進します。
- 2022年5月、インテルは子会社のHabana Labsを通じて、Intel Vision 2022イベントでGaudi2プロセッサーを発表しました。この第2世代AIトレーニングチップは7nmプロセス技術を採用し、24個のTensorプロセッサーコアを搭載し、メモリ容量は前世代機の3倍の96GB、オンチップSRAM容量は前世代機の2倍の48MBとなっています。Gaudi2は、前世代機Gaudiの最大3倍のトレーニングスループットを実現し、ResNet-50やBERTなどの主要なAIワークロードにおいて、NVIDIAのA100 GPUを上回る性能を発揮します。今回の発表は、高性能エッジコンピューティングを必要とするAIoTアプリケーションにとって不可欠な要素であるAIハードウェアの進化に対するインテルのコミットメントを強調するものです。
- 2022年3月、Cisco MerakiはIoTポートフォリオを拡大し、スマートワークスペースとエンタープライズオートメーション向けにカスタマイズされた3つの革新的なソリューションを発表しました。これらには、押すだけでカスタムワークフローを可能にするMT30スマートオートメーションボタン、湿度、温度、TVOC、PM2.5、騒音レベルを監視して室内の快適性と安全性を高めるMT14室内空気質センサー、そしてスマートカメラのカスタムコンピュータビジョンモデルをサポートする強化されたMV分析機能が含まれます。これらの進歩は、現代のハイブリッドワーク環境における運用効率、安全性、持続可能性を向上させるAIoT対応ソリューションを提供するというCisco Merakiのコミットメントを反映しています。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

