グローバルベイズ最適化ツール市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
44.55 Billion
USD
167.00 Billion
2025
2033
| 2026 –2033 | |
| USD 44.55 Billion | |
| USD 167.00 Billion | |
|
|
|
|
グローバルベイジアン最適化ツール市場セグメンテーション、タイプ別(クラウドベース、オンプレミス、ハイブリッド)、導入モデル別(スタンドアロン、統合型、その他)、アプリケーション別(自動車、ヘルスケア、BFSI、IT・通信、製造業、その他) - 2033年までの業界動向と予測
ベイズ最適化ツール市場規模
- 世界のベイジアン最適化ツール市場規模は2025年に445.5億米ドルと評価され、予測期間中に17.96%のCAGRで成長し、2033年までに1670億米ドル に達すると予想されています。
- 市場の成長は、組織が複雑なモデルのより迅速かつ正確な最適化を求める中で、医療、金融、製造、自律システムなどの業界で高度な機械学習、AI駆動型モデリング、自動ハイパーパラメータ調整の採用が増加していることに大きく起因しています。
- さらに、スケーラブルで使いやすく、高性能な最適化フレームワークへの需要の高まりにより、ベイズ最適化ツールは、研究開発ワークフローの加速、計算コストの削減、意思決定の精度向上を実現する最適なソリューションとして位置付けられています。これらの要因が相まって、ベイズ最適化ツールソリューションの普及が著しく促進され、業界の大幅な成長が促進されています。
ベイズ最適化ツール市場分析
- ベイズ最適化ツールは、機械学習モデルにおける複雑な関数やハイパーパラメータの最適化を自動化するように設計されており、モデルの精度向上、計算コストの削減、意思決定プロセスの合理化といった機能により、業界全体で現代のAIやデータサイエンスのワークフローのますます重要なコンポーネントになりつつあります。
- ベイズ最適化ツールの需要の高まりは、主にAI/ML技術の急速な導入、モデルアーキテクチャの複雑性の増大、そして従来の試行錯誤やグリッドサーチベースの手法を上回る自動化された正確で効率的な最適化手法の需要の高まりによって促進されています。
- 北米は、2025年にはベイジアン最適化ツール市場において最大の収益シェア35%を占め、市場を席巻しました。これは、AIの早期導入、強力な研究開発投資、そして大手テクノロジー企業の集中的な存在を特徴としています。米国では、既存のAI企業と最適化に特化した新興スタートアップ企業の両方によるイノベーションによって、特に自律システム、ヘルスケア分析、フィンテック、クラウドベースの機械学習プラットフォームなどの分野で、ベイジアン最適化の導入が大幅に増加しました。
- アジア太平洋地域は、デジタルトランスフォーメーションイニシアチブの拡大、AI研究への投資の増加、クラウドコンピューティングの急速な成長、中国、日本、インド、韓国などの国における自動モデル最適化の需要の高まりに支えられ、予測期間中にベイジアン最適化ツール市場で最も急速に成長する地域になると予想されています。
- クラウドベースのセグメントは、拡張性、初期費用の低さ、既存のAI/MLパイプラインとの容易な統合により、2025年には54.6%という最大の市場収益シェアを占めました。
レポートの範囲とベイズ最適化ツールの市場セグメンテーション
|
属性 |
ベイズ最適化ツールの主要市場インサイト |
|
対象セグメント |
|
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
|
主要な市場プレーヤー |
• IBM (米国) |
|
市場機会 |
|
|
付加価値データ情報セット |
Data Bridge Market Research がまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、専門家による詳細な分析、患者の疫学、パイプライン分析、価格分析、規制の枠組みも含まれています。 |
ベイズ最適化ツール市場動向
AIによる最適化とワークフロー自動化による利便性の向上
- 世界的なベイズ最適化ツール市場における重要かつ加速的なトレンドとして、高度なAIベースの最適化エンジンが、より広範なデータサイエンス、機械学習、そしてエンタープライズ自動化ワークフローに統合されつつあります。あらゆる業界の企業がベイズ最適化ツールを導入し、ハイパーパラメータのチューニングを効率化し、実験サイクルを加速し、最小限の手動介入でモデルのパフォーマンスを向上させています。
- 例えば、2024年3月、Google Cloudは強化されたベイズ最適化アルゴリズムを統合することでVertex AIのハイパーパラメータ調整サービスを拡張し、企業がモデルのトレーニング時間を短縮し、大規模なデータセット全体での実験効率を向上させることを可能にしました。
- ベイズ最適化ツールは、確率モデル、代理関数、インテリジェントなサンプリング戦略(ガウス過程、ツリーベースモデル、多目的最適化など)をますます活用するようになっています。これらの革新により、企業は数千ものパラメータの組み合わせを効率的に評価し、計算コストを削減し、導入期間を短縮することができます。特にディープラーニング、金融モデリング、ロボティクス、材料設計、医薬品研究の分野で顕著です。
- ベイズ最適化とMLOps、ワークフローオーケストレーションプラットフォーム、クラウドネイティブ環境とのシームレスな統合により、企業は実験の自動化、大規模な試験の管理、そして統合インターフェースからの複雑なシステムの最適化が可能になります。これにより、ユーザーの期待は、個別のモデルチューニングではなく、エンドツーエンドの最適化へと変化しています。
- 組織がよりインテリジェントでスケーラブルで自動化された最適化機能を求めるにつれて、ソフトウェアプロバイダーは、マルチフィデリティ最適化、分散サンプリング、適応型実験、強化学習駆動型チューニングなどの機能を備えた次世代ベイジアン最適化フレームワークを開発しています。
- 企業が精度の向上、コンピューティングコストの削減、開発サイクルの高速化を優先するにつれ、R&D、AI/MLエンジニアリング、バイオテクノロジー、材料科学、金融、自動意思決定環境全体で、高度なベイジアン最適化ツールの需要が急速に高まっています。
ベイズ最適化ツールの市場動向
ドライバ
効率的なハイパーパラメータ調整と自動モデル最適化の必要性の高まり
- 機械学習モデル、特にディープラーニングアーキテクチャの複雑さが増すにつれ、徹底的な実験をすることなく最適なモデルパラメータを特定するための体系的、効率的、かつ自動化された方法を提供するベイズ最適化ツールへの需要が高まっています。
- 例えば、2023年7月、Amazon Web Servicesは、Amazon SageMakerの自動モデルチューニングモジュールに高度なベイズ最適化技術を統合し、開発者がチューニング時間を大幅に短縮しながらモデルの精度を最大40%向上できるようにしました。
- 組織が精度、パフォーマンス、トレーニング時間の短縮を優先するにつれて、ベイズ最適化は確率モデルを通じて強化されたモデルチューニングを可能にし、グリッド検索やランダム検索に比べて計算コストを削減します。
- さらに、AIシステムの導入が拡大し、医療、自動車、金融、化学などの業界ではスケーラブルな実験プラットフォームの必要性が高まっているため、ベイズ最適化は企業のAIエコシステムの不可欠な要素となっている。
- 自動チューニングの利便性、実行時間の短縮、リソース効率の高い探索空間の探索、クラウドベースの機械学習パイプラインとの統合は、世界中の企業でベイズ最適化ツールの採用を推進する重要な要因です。
抑制/挑戦
計算の複雑さと熟練労働力の不足
- ベイズ最適化は、その利点にもかかわらず、高次元または極めて動的なパラメータ空間をモデル化する場合、特にガウス過程に基づくアプローチを用いる場合、スケーラビリティの課題に直面することがあります。こうした計算上の制約は、非常に大規模なモデルや急速に変化する客観的なランドスケープへの適用を制限する可能性があります。
- 例えば、2022年2月にアラン・チューリング研究所が行った研究では、従来のガウス過程に基づくベイズ最適化手法は、高次元AI研究環境では計算速度が大幅に低下し、複雑な深層学習タスクの効率的な実験が制限されることが強調されました。
- さらに、多くの組織では、確率モデル、サロゲートベースの最適化、高度なAIワークフローの専門知識を持つ人材が不足しており、よりシンプルなチューニング手法と比較して実装が複雑になっています。このスキルギャップは、導入を遅らせ、市場への浸透を阻害する可能性があります。
- これらの課題に対処するには、信頼領域法、高次元サンプリング戦略、ハイブリッドサロゲートモデルなどのスケーラブルなベイズ最適化技術の継続的な進歩が必要です。
- もう一つの課題は、高度な最適化フレームワークをエンタープライズレベルのAIインフラに統合する際の初期コストが比較的高いことです。企業は、専用のソフトウェア、計算リソース、技術チームのトレーニングに投資する必要があるかもしれません。
- コストは徐々に減少しているものの、ベイズ最適化の複雑さとリソース要件は、技術的能力が限られている組織や小規模なAIチームでは、導入を妨げる可能性があります。
- スケーラブルなアルゴリズム、簡素化されたインターフェース、クラウドネイティブAPI、そして従業員のスキルアップを通じてこれらの障壁を克服することは、ベイジアン最適化ツール業界の持続的な市場成長に不可欠です。
ベイズ最適化ツール市場の範囲
市場は、タイプ、展開モデル、およびアプリケーションに基づいてセグメント化されています。
- タイプ別
ベイジアン最適化ツール市場は、タイプ別にクラウドベース、オンプレミス、ハイブリッドに分類されます。クラウドベースセグメントは、拡張性、初期費用の低さ、既存のAI/MLパイプラインとの容易な統合により、2025年には54.6%という最大の市場収益シェアを占めました。クラウドプラットフォームは、リアルタイムの最適化と迅速な実験を可能にし、業界を問わずデータサイエンスチームをサポートします。企業は、シームレスなコラボレーションと自動更新のため、クラウドベースのベイジアンツールを好んでいます。BFSI、ヘルスケア、自動車業界におけるデジタルトランスフォーメーションへの移行が、クラウド導入を促進しています。クラウドネイティブMLフレームワークへの依存度の高まりが、このセグメントを強化しています。クラウドベースのベンダーは、サブスクリプションモデルの恩恵を受け、経常収益を向上させています。分散コンピューティングと大規模なハイパーパラメータチューニングへの高い需要も、この市場シェア拡大に貢献しています。クラウドツールはAPIベースの導入をサポートし、より迅速な導入を可能にします。データガバナンス機能は、企業のセキュリティを安心させます。クラウドプラットフォームは、AutoMLシステムとの相性も抜群です。この強力なユーティリティが、トップシェアを確保しています。
ハイブリッドセグメントは、クラウドの効率性とオンプレミスのセキュリティを組み合わせた柔軟なアーキテクチャへの需要の高まりに支えられ、2026年から2033年にかけて15.8%のCAGRという最も高い成長率を達成すると予想されています。ハイブリッド環境は、特に医療やBFSIなどの規制対象セクターにおいて、機密性の高いワークロードをサポートします。組織は、クラウドのスケーラビリティを活用しながらローカルデータの制御を維持するためにハイブリッドソリューションを導入しています。コンプライアンスフレームワークの重要性の高まりが、ハイブリッドの導入を促進しています。ベンダーが提供する製品は、MLワークフローのハイブリッドオーケストレーションのサポートをますます強化しています。ハイブリッドツールにより、企業はローカルで実験を実行し、チューニングタスクをクラウドに拡張できます。統合ミドルウェアの改善が成長を加速しています。レガシーシステムから移行する大企業はハイブリッドモデルを好みます。環境間の最適化が導入を促進します。IT近代化の取り組みもこのセグメントをさらに支えています。AIの導入が成熟するにつれて、ハイブリッド展開はコストとパフォーマンスのバランスを実現します。
- 展開モデル別
導入モデルに基づいて、ベイジアン最適化ツール市場は、スタンドアロン、統合型、その他に分類されます。統合型セグメントは、より広範なMLプラットフォームとエンタープライズ分析システムにベイジアン最適化を組み込む機能が牽引し、2025年には48.3%という最大の市場収益シェアを占めました。統合型ソリューションは、データサイエンティストのワークフローの摩擦を軽減します。組織は、モデル開発、チューニング、監視を組み合わせた統合プラットフォームを好みます。統合により、AutoML、ディープラーニングフレームワーク、MLOpsパイプラインとのシームレスな接続が可能になります。ベンダーはますますAIスイート内にベイジアンツールをパッケージ化し、採用を促進しています。企業は運用の複雑さの軽減を重視しています。統合システムにより、複数チームのコラボレーションが可能になります。また、実験のトレーサビリティとガバナンスも向上します。エンドツーエンドのAIプラットフォームへの移行の増加により、このセグメントが強化されています。統合機能により、導入時間が短縮されます。クラウドおよびハイブリッドワークフローにプラグインできる柔軟性が魅力を高めます。この強力なエコシステムサポートが優位性を確立しています。
スタンドアロンセグメントは、軽量でカスタマイズ可能なベイズ最適化エンジンの需要の高まりに牽引され、2026年から2033年にかけて14.9%という最速のCAGRを達成すると予想されています。新興企業や研究機関は、柔軟性と実験制御のためにスタンドアロンツールを好みます。スタンドアロンシステムは、エンタープライズアーキテクチャに大きく依存することなく、より迅速な導入を提供します。オープンソースイノベーションがこのセグメントの成長を加速させます。開発者は、ディープラーニングや強化学習環境でのハイパーパラメータチューニングにスタンドアロンパッケージを好みます。このセグメントは、低コストと高い適応性の恩恵を受けています。スタンドアロンツールは、APIを介したオンデマンドの統合を可能にします。そのシンプルさは中小企業を魅了します。学術界における実験ワークロードの増加が導入を後押ししています。スタンドアロン最適化ツールは最先端の研究と相性が良く、LLMと生成モデルの微調整への関心の高まりが需要を増幅させます。この組み合わせが最高のCAGRを推進します。
- アプリケーション別
アプリケーションに基づいて、ベイジアン最適化ツール市場は、自動車、ヘルスケア、BFSI、ITおよび通信、製造、その他に分類されます。ITおよび通信セグメントは、ネットワーク最適化、不正検出、予測分析に使用される複雑なMLモデルのハイパーパラメータチューニングに対する高い需要に支えられ、2025年に32.7%という最大の市場収益シェアを占めました。IT企業は、実験を自動化し、モデル開発サイクルを加速するためにベイジアンツールに依存しています。通信プロバイダーは、リソース割り当て、ネットワーク計画、信号パフォーマンスの改善にベイジアン最適化を使用しています。AI主導の自動化のニーズの高まりは、セグメントの優位性を強化します。クラウドネイティブAIアプリケーションの急増は、採用を促進します。ITチームは、高価な計算を処理する際の効率性が高いため、ベイジアンツールを好みます。LLM導入の増加は、最適化のワークロードを増加させます。企業はより速い反復速度を重視します。リアルタイムのMLモデル管理のニーズは、優位性をさらに支えています。デジタルインフラストラクチャが拡大するにつれて、このセグメントはリードを維持します。
ヘルスケア分野は、診断モデルの調整、個別化治療モデリング、創薬シミュレーションにおけるベイズ最適化の利用増加に牽引され、2026年から2033年にかけて16.4%という最速のCAGRを達成すると予想されています。病院や研究機関は、AIパイプラインの効率性を向上させるためにベイズツールを採用しています。ベイズ法は、複雑な医用画像処理アルゴリズムの最適化に役立ちます。精密医療の成長が需要を押し上げています。ヘルスケアAI開発者は、予測モデルのための効率的なハイパーパラメータ調整を必要としています。臨床AIへの投資の増加は、導入を加速させています。製薬会社は、ベイズ最適化を統合して、研究開発ワークフローを高速化しています。コンプライアンスに配慮した最適化システムが普及しつつあります。ヘルスケアデータセットは、サンプル効率の高いベイズ法の恩恵を受けています。デジタル治療の成長が拡大を支えています。AI対応の診断ツールは最適化アルゴリズムに大きく依存しており、この分野で最も速い成長を牽引しています。
ベイズ最適化ツール市場の地域分析
- 北米は、2025年に35%の最大の収益シェアでベイジアン最適化ツール市場を支配し、AIの早期導入、強力な研究開発投資、大手テクノロジー企業の集中的な存在を特徴としています。
- 市場は、特に自律システム、ヘルスケア分析、フィンテック、クラウドベースの機械学習プラットフォームなどの分野で、ベイジアン最適化の導入において大幅な成長を経験しました。
- 既存のAI企業と最適化に特化した新興スタートアップ企業の両方からのイノベーションによって推進されている
米国ベイズ最適化ツール市場インサイト
米国のベイジアン最適化ツール市場は、クラウドプラットフォーム、エンタープライズソフトウェア、自律システム、ヘルスケア分析におけるAI主導型最適化の導入加速に支えられ、2025年には北米で最大の収益シェアとなる38%を獲得しました。組織は、ハイパーパラメータのチューニング、モデル選択の自動化、アルゴリズムの効率向上のためにベイジアン最適化ツールを活用するケースが増えており、市場の成長をさらに加速させています。
ヨーロッパのベイズ最適化ツール市場インサイト
欧州のベイズ最適化ツール市場は、AI導入の増加、企業全体のデジタル化、そして技術開発を支援する政府の取り組みに牽引され、予測期間を通じて大幅なCAGRで拡大すると予測されています。この地域では、自動車、製造業、BFSIセクターにおいて、ベイズ最適化ツールの導入が急速に進んでおり、企業は効率性の向上と予測分析を重視しています。
英国ベイズ最適化ツール市場インサイト
英国のベイズ最適化ツール市場は、強力なAI研究エコシステム、クラウドベースプラットフォームの導入拡大、そしてテクノロジーサービスプロバイダーの強力なプレゼンスに支えられ、予測期間中に注目すべきCAGRで成長すると予想されています。特にフィンテック、ヘルスケア分析、自律システムにおける需要が高く、市場拡大を牽引しています。
ドイツにおけるベイズ最適化ツール市場の洞察
ドイツのベイズ最適化ツール市場は、AIの広範な導入、強力な産業オートメーションへの取り組み、そして予測モデリングと高度な分析のための研究開発への投資を背景に、予測期間中に大幅なCAGRで拡大すると予想されています。製造業、自動車産業、ヘルスケア業界の企業は、業務効率の向上を目指してベイズ最適化ツールを急速に導入しています。
アジア太平洋地域のベイズ最適化ツール市場インサイト
アジア太平洋地域のベイズ最適化ツール市場は、デジタル化の進展、政府主導のAIイニシアチブ、クラウドインフラの拡大、そして自動化・インテリジェントな最適化ソリューションへの需要の高まりを背景に、2026年から2033年の予測期間中に最も高いCAGRで成長する見込みです。中国、日本、インド、韓国などの国々は、テクノロジーエコシステムの拡大とAI駆動型分析プラットフォームへの投資増加に支えられ、導入をリードしています。
日本におけるベイズ最適化ツール市場調査
日本のベイジアン最適化ツール市場は、先進技術の導入、高い研究開発費、そして製造、自動車、ヘルスケアといった分野における自動化ニーズの高まりにより、勢いを増しています。企業は、AIモデルの効率性、予知保全、そして運用パフォーマンスの向上を目指し、ベイジアン最適化ツールを活用するケースが増えています。
中国ベイズ最適化ツール市場インサイト
中国のベイジアン最適化ツール市場は、2025年にアジア太平洋地域最大の市場収益シェア28%を占めました。これは、急速なAI導入、デジタルトランスフォーメーションの取り組み、そしてAIとクラウドコンピューティングインフラに対する政府の強力な支援によるものです。フィンテック、自律システム、ヘルスケア分野の企業は、高度な分析、ハイパーパラメータ調整、そしてスケーラブルなAI導入のためにベイジアン最適化ツールを導入しています。
ベイズ最適化ツールの市場シェア
ベイズ最適化ツール業界は、主に次のような定評ある企業によって牽引されています。
• IBM (米国)
• Google LLC (米国)
• Microsoft Corporation (米国)
• MathWorks (米国)
• Oracle Corporation (米国)
• Hyperopt (米国)
• Optuna (日本)
• SigOpt (米国)
• BayesOpt (スペイン)
• Scikit-Optimize – Skopt (フランス)
• Emukit (英国)
• Ax – Meta (米国)
• Weights & Biases (米国)
• Databricks (米国)
• Neptune.ai (ポーランド)
• DataRobot (米国)
• Altair Engineering (米国)
世界のベイズ最適化ツール市場の最新動向
- 2022年5月、オープンソースのハイパーパラメータ最適化フレームワークのリーダーであるOptunaは、v2.0のドキュメントとサポート資料を公開しました。これは、産業界や研究で広く使用されているHPOツールの成熟度と安定性における大きな一歩です。v2.xシリーズでは、プロダクショングレードの機能(分散最適化のサポート、改善されたプルーニングとサンプラー)が正式に導入され、プロダクションMLパイプラインでのベイジアン/TPEスタイルの最適化の採用が加速されました。
- 2022年9月、アマゾン ウェブ サービスは、Amazon SageMaker Automatic Model TuningにHyperbandによるマルチフィデリティチューニングと、大規模なハイパーパラメータ検索の高速化とコスト削減のためのその他の改善点が追加されたことを発表しました。これらの改善点は、SageMakerのベイジアン最適化エンジン上に構築され、ベイジアンHPOを現実世界の計算集約型モデルでより高速かつ実用的にすることを目指しています。
- 2023年8月、GoogleはGoogle Cloud NextでVertex AIの機能強化(Vizier/ハイパーパラメータチューニングとAutoMLワークフローに関する改善を含む)を発表し、自動化された本番環境対応のハイパーパラメータチューニングと実験管理を必要とする企業向けのクラウド規模のベイジアン/ブラックボックスオプティマイザーとしてのVertex AI Vizierの役割を強化しました。
- 2023年7月には、Vizier/ベイジアンワークフローがコストのかかる繰り返しトレーニング実行をどのように削減するかを解説した実践ガイドとブログ記事(およびVertex AIの事例)シリーズを公開しました。大規模ワークロードにおける手動/グリッド検索からベイジアン最適化への企業移行を実証し、本番環境MLにおける具体的なコスト/時間削減を実証しました。これらのコミュニティとベンダーの事例研究は、業界全体での導入を加速させるのに役立ちました。
- 2024年10月、査読済みおよび技術文献はベイズ最適化手法の発展を継続しました(スケーラビリティ、マルチフィデリティアプローチ、ニューラルアーキテクチャおよびHPO問題に対するBOに焦点を当てた論文および技術レポートが発表されました)。これは、ベイズツールを高次元問題に対処し、AutoMLおよびMLOpsツールチェーンと統合するための活発な研究開発を反映しています。この一連の研究は、オープンソースプロジェクト(Optuna、BoTorch、Nevergrad)とクラウドサービスの両方に直接影響を与えています。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

