世界のディープラーニングニューラルネットワーク(DNN)市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
52.30 Billion
USD
349.40 Billion
2024
2032
| 2025 –2032 | |
| USD 52.30 Billion | |
| USD 349.40 Billion | |
|
|
|
|
グローバルディープラーニングニューラルネットワーク(DNN)市場セグメンテーション、コンポーネント(ハードウェア、ソフトウェア、サービス)、アプリケーション(画像認識、自然言語処理、音声認識、データマイニング)、エンドユーザー(銀行、金融サービスおよび保険(BFSI)、ITおよび通信、ヘルスケア、小売、自動車、製造、航空宇宙および防衛、セキュリティ、その他) - 2032年までの業界動向と予測
ディープラーニングニューラルネットワーク(DNN)市場規模
- 世界のディープラーニングニューラルネットワーク(DNN)市場規模は2024年に523億米ドルと評価され、予測期間中に31.2%のCAGRで成長し、2032年には3,494億米ドル に達すると予想されています。
- 市場の成長は、主に技術革新、データ可用性の向上、そして産業用途の拡大によって牽引されています。人工知能(AI)が医療、自動車、金融、製造業などの分野にますます浸透するにつれ、DNNは膨大なデータセットを処理し、複雑なパターンを抽出する能力において際立っています。
- さらに、クラウドコンピューティングとエッジAIの進歩により、DNNはよりアクセスしやすく、拡張性も向上しています。世界中の政府や企業はAIの研究開発への投資を増やしており、DNNベースのソリューションの導入をさらに推進しています。
ディープラーニングニューラルネットワーク(DNN)市場分析
- 世界のディープラーニング ニューラル ネットワーク (DNN) 市場は、AI 専用ハードウェアにおける強力な技術的進歩によって推進されており、より高速で効率的なモデルのトレーニングと展開が可能になっています。
- 自動運転車やサービスロボットなどの自律システムの急増と、NLP や画像認識におけるディープラーニングの役割の拡大が相まって、さまざまな分野での導入が促進されています。
- 北米は、自律走行車やスマートロボットへの採用の増加を特徴とし、2024年に39.01%という最大の収益シェアでディープラーニングニューラルネットワーク(DNN)市場を支配します。
- アジア太平洋地域は、自然言語処理 (NLP) とコンピューター ビジョンのアプリケーションの拡大により、予測期間中にディープラーニング ニューラル ネットワーク (DNN) 市場で最も急速に成長する地域になると予想されています。
- ソフトウェアセグメントは、ビッグデータの急増とデータの複雑性の増大により、2024年にはディープラーニングニューラルネットワーク(DNN)市場において45.2%の市場シェアを獲得し、市場を支配します。
レポートの範囲とディープラーニングニューラルネットワーク(DNN)市場のセグメンテーション
|
属性 |
ディープラーニングニューラルネットワーク(DNN)市場分析 |
|
対象セグメント |
|
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジマーケットリサーチがまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、専門家による詳細な分析、価格設定分析、ブランドシェア分析、消費者調査、人口統計分析、サプライチェーン分析、バリューチェーン分析、原材料/消耗品の概要、ベンダー選択基準、PESTLE分析、ポーター分析、規制の枠組みも含まれています。 |
ディープラーニングニューラルネットワーク(DNN)市場動向
「業界を超えたアプリケーションの拡大」
- 世界のディープラーニング・ニューラルネットワーク(DNN)市場における主要なトレンドの一つは、医療、自動車、金融、製造業など、多様な分野におけるDNNアプリケーションの急速な拡大です。これらのネットワークは、医療診断、不正検出、自動運転、予知保全といった分野における画期的な進歩を可能にしています。
- 例えば、医療分野では、DNNは放射線スキャンにおける腫瘍検出など、画像ベースの診断にますます利用されています。AidocやZebra Medical Visionといった企業は、DNNを活用して放射線科医の診断をより迅速かつ正確に支援しています。
- 自動車分野では、北米と欧州がDNNを活用した先進運転支援システム(ADAS)と自動運転車の導入をリードしています。Tesla、NVIDIA、Waymoは、ディープラーニングを活用し、道路における意思決定とリアルタイム画像認識の精度向上に取り組んでいます。
- 金融業界も、異常検知や市場動向の高精度予測のためにDNNを活用しています。JPモルガン・チェースとゴールドマン・サックスは、DNNベースの取引およびリスク評価システムの構築に注力するAIチームに多額の投資を行っています。
- 製造業において、DNNは目視検査、欠陥検出、設備の予測保守の自動化を通じてスマートファクトリーを実現します。シーメンスやGEなどの企業は、ダウンタイムの削減と運用効率の向上を目指し、こうしたインテリジェントシステムの先駆的な導入を進めています。
- アジア太平洋地域は、中国、韓国、インドなどの国々による強力なAI戦略により、最も急速に成長している地域として台頭しています。政府主導の取り組みとAI研究開発への多額の資金提供により、DNNの大規模な導入が推進されています。
ディープラーニングニューラルネットワーク(DNN)市場の動向
ドライバ
「ビッグデータの急増とコンピューティング能力の向上」
- IoT デバイス、ソーシャル メディア、エンタープライズ システムなどのソースから生成されるデータ量の急激な増加により、画像認識、自然言語処理、予測分析などのタスクにディープラーニング ニューラル ネットワークが採用されるようになっています。
- たとえば、2025 年 3 月、NVIDIA は Blackwell GPU アーキテクチャを発表し、ディープラーニングのトレーニングと推論のワークロードのパフォーマンスが 4 倍以上向上し、ヘルスケア、自動車、金融サービスにおけるリアルタイム アプリケーションを実現しました。
- AWS や Google Cloud などのクラウド サービス プロバイダーは、最適化された DNN フレームワークをマネージド サービスとして提供し、導入とスケーリングを簡素化するケースが増えています。
- IDC によれば、2025 年第 1 四半期時点で、世界中の企業の 70% 以上が少なくとも 1 つのビジネス機能に DNN ベースのソリューションを統合しており、市場の勢いが強いことを反映しています。
抑制/挑戦
「モデルトレーニングにおける高いリソース消費と複雑性」
- ディープラーニング ニューラル ネットワークのトレーニングには、多くの場合、膨大な計算リソース、特殊なハードウェア (GPU、TPU など)、およびエネルギー消費が必要となり、コストが高額になる可能性があります。
- たとえば、OpenAI の GPT-4 には、数千ペタフロップス/秒の計算能力と、米国の数百世帯が年間に使用する電力に相当するエネルギーが必要でした。
- さらに、ハイパーパラメータの調整、オーバーフィッティングの処理、モデルの解釈可能性の実現の複雑さは、特に金融や医療などの規制の厳しい分野では、開発者にとって依然として課題となっています。
- これらの障壁は、高性能コンピューティング インフラストラクチャや豊富な AI 人材プールにアクセスできない中小企業にとって特に顕著です。
ディープラーニングニューラルネットワーク(DNN)市場の範囲
市場は、コンポーネント、アプリケーション、エンドユーザーに基づいてセグメント化されています。
- コンポーネント別
ディープラーニング・ニューラルネットワーク(DNN)市場は、コンポーネントベースで、ハードウェア、ソフトウェア、サービスに分類されます。ソフトウェアセグメントは、AI専用ハードウェアにおける堅調な技術進歩により、より迅速かつ効率的なモデルのトレーニングと展開が可能になり、2024年には48.2%という最大の市場収益シェアを占める見込みです。
ソフトウェア分野は、自動運転車やサービスロボットなどの自律システムの急増と、NLPおよび画像認識におけるディープラーニングの役割の拡大により、2025年から2032年にかけて21.7%という最も高い成長率を記録すると予想されており、セクター全体での採用が促進されています。
- アプリケーション別
ディープラーニング・ニューラルネットワーク(DNN)市場は、用途別に画像認識、自然言語処理、音声認識、データマイニングに分類されます。画像認識分野は、ビッグデータの急激な成長によってこれらのモデルに豊富なインプットが提供され、特に医療分野においてDNNが診断と治療のパーソナライゼーションに革命をもたらしていることから、2024年には最大の市場収益シェアを獲得しました。
自然言語処理セグメントは、ディープラーニングと量子コンピューティングやニューロモルフィックチップなどの最先端技術の融合によって、2025年から2032年にかけて最も速いCAGRを達成すると予想されており、パフォーマンスの上限を再定義し、新たな商業的および科学的フロンティアを切り開くことが期待されています。
- エンドユーザー別
エンドユーザー別に見ると、ディープラーニング・ニューラルネットワーク(DNN)市場は、銀行、金融サービス・保険(BFSI)、IT・通信、ヘルスケア、小売、自動車、製造、航空宇宙・防衛、セキュリティ、その他に分類されます。 2024年には、銀行分野が最大の市場収益シェアを占めました。これは、GPUやTPUといった専用AIチップの開発といったハードウェアの革新がディープラーニングプロセスの効率性を高めていることが要因です。
ヘルスケア分野は、IoT デバイス、ソーシャル メディア、エンタープライズ システムなどのソースから生成されるデータ量の急激な増加により、画像認識、自然言語処理、予測分析などのタスクにディープラーニング ニューラル ネットワークが導入され、2025 年から 2032 年にかけて最も急速な CAGR を達成すると予想されています。
ディープラーニングニューラルネットワーク(DNN)市場の地域分析
- 北米は、技術革新、データ可用性の向上、そして産業用途の拡大に牽引され、2024年にはディープラーニング・ニューラルネットワーク(DNN)市場において39.01%という最大の収益シェアを獲得し、市場を牽引しています。人工知能(AI)が医療、自動車、金融、製造業などの分野にますます浸透するにつれ、DNNは膨大なデータセットを処理し、複雑なパターンを抽出する能力において際立った存在となっています。
- これにより、数多くの成長要因と機会が創出されました。中でも特に、パーソナライズされたサービス、高度な自動化、予測分析への需要の高まりが挙げられます。さらに、クラウドコンピューティングとエッジAIの進歩により、DNNはよりアクセスしやすく、拡張性も向上しています。
- 世界中の政府や企業はAI研究開発への投資を増やしており、DNNベースのソリューションの導入をさらに推進しています。もう一つの重要な推進力は、スマートデバイスやIoTセンサーの普及であり、DNNの学習に必要なリアルタイムデータを提供しています。
米国ディープラーニング・ニューラルネットワーク(DNN)市場インサイト
米国のディープラーニング・ニューラルネットワーク(DNN)市場は、2024年に北米で最大の収益シェア81%を獲得しました。これは、特に防衛、医療、教育分野におけるAI研究への政府および機関による資金提供に支えられています。ディープラーニングは、様々な業界でますます活用されています。医療分野では、予測分析や早期疾患発見に活用されています。自動車業界では、自動運転車の進化にDNNを活用しており、小売業界では画像認識や顧客行動分析にDNNが活用されています。
欧州ディープラーニング・ニューラルネットワーク(DNN)市場インサイト
欧州のディープラーニング・ニューラルネットワーク(DNN)市場は、予測期間を通じて大幅なCAGRで拡大すると予測されています。その主な牽引役は、GPUやTPUといった専用AIチップの開発といったハードウェアのイノベーションです。これらのイノベーションはディープラーニングプロセスの効率性を高めています。さらに、ディープラーニング・アズ・ア・サービス(DLaaS)プラットフォームの登場により、インフラへの多額の先行投資の必要性が軽減され、企業がこれらのテクノロジーをより容易に利用できるようになっています。
英国のディープラーニングニューラルネットワーク(DNN)市場インサイト
英国のディープラーニング・ニューラルネットワーク(DNN)市場は、AI専用ハードウェアにおける力強い技術進歩により、より迅速かつ効率的なモデルのトレーニングと展開が可能になり、予測期間中に注目すべきCAGRで成長すると予想されています。自動運転車やサービスロボットなどの自律システムの急増と、自然言語処理(NLP)や画像認識におけるディープラーニングの役割拡大が相まって、様々な分野での導入が加速しています。ビッグデータの急激な成長は、これらのモデルに豊富なインプットを提供し、特に医療分野ではDNNが診断と治療のパーソナライゼーションに革命をもたらしています。
ドイツのディープラーニングニューラルネットワーク(DNN)市場インサイト
ドイツのディープラーニング・ニューラルネットワーク(DNN)市場は、予測期間中、エッジAIアプリケーションにおける豊富なビジネスチャンスに支えられ、大幅なCAGRで拡大すると予想されています。エッジAIアプリケーションでは、DNNをスマートデバイスに統合することで、低レイテンシーでリアルタイムの洞察を得ることができます。さらに、ディープラーニングと量子コンピューティングやニューロモルフィックチップといった最先端技術の融合は、パフォーマンスの限界を再定義し、新たな商業的および科学的フロンティアを切り開くことが期待されます。
アジア太平洋地域のディープラーニング・ニューラルネットワーク(DNN)市場インサイト
アジア太平洋地域のディープラーニング ニューラル ネットワーク (DNN) 市場は、GPU/TPU ハードウェアと量子コンピューティングの急速な進歩により、より効率的で高速な DNN 処理が可能になり、2025 年から 2032 年の予測期間中に 24% という最速の CAGR で成長する見込みです。
日本におけるディープラーニング・ニューラルネットワーク(DNN)市場分析
日本のディープラーニング・ニューラルネットワーク(DNN)市場は、ハイテク文化、急速な都市化、そして利便性への需要により、勢いを増しています。日本市場はセキュリティを重視しており、スマートロックの普及は、ディープラーニング・アルゴリズムを多用する自律システム(自動運転車、ドローン、ロボットなど)の拡大によって牽引されています。
中国ディープラーニング・ニューラルネットワーク(DNN)市場分析
中国のディープラーニングニューラルネットワーク(DNN)市場は、倫理的で説明可能なAIが懸念されるようになり、2024年にアジア太平洋地域で最大の市場収益シェアを占め、解釈可能なニューラルネットワークモデルを開発する機会も新たな成長チャネルを生み出しています。
ディープラーニングニューラルネットワーク(DNN)の市場シェア
ディープラーニング ニューラル ネットワーク (DNN) 市場は、主に次のような定評のある企業によって主導されています。
- アルユーダリサーチLLC
- グーグル
- IBM
- マイクロンテクノロジーズ株式会社
- ニューラルテクノロジーズリミテッド
- ニューロディメンション株式会社
- ニューラルウェア
- NVIDIAコーポレーション
- スカイマインド株式会社
- サムスン
- クアルコムテクノロジーズ株式会社
- インテルコーポレーション
- Amazon Web Services, Inc.
- マイクロソフト
- GMDHLLC 株式会社
- センサリー株式会社
- ワードシステムズグループ株式会社
- ザイリンクス株式会社
- スターマインド
世界のディープラーニングニューラルネットワーク(DNN)市場の最新動向
- 2025年4月、Google DeepMindはAI研究のリーダーとして、言語と視覚タスクに重点を置いたGemmaやPaliGemma 2といった高度なモデルを開発しました。Ithacaをはじめとする同社の革新的な技術は、古代の文献の修復に役立ち、ディープラーニングの応用範囲の広さを示しています。
- 2024年3月、IBMはAIの伝統を基盤に、機械学習をビジネスプロセスに統合し、カスタマーサービスチャットボットなどのソリューションを提供するWatsonプラットフォームを発表しました。IBMのAI研究への取り組みは、様々な業界に影響を与え続けています。
- 2025年3月、インテルはNervanaやMovidiusといった企業の買収を通じてAI機能を拡大し、ディープラーニングソフトウェアの強化と低消費電力デバイスへのAIアプリケーションの導入を実現しました。BingのAIアクセラレーションにおけるMicrosoftとの協業など、市場への影響力は目覚ましいものがあります。
- 2025年2月、マイクロソフトはCortanaアシスタントからAzureの機械学習サービスに至るまで、自社製品全体にAIを統合します。AIスタートアップ企業やツールへの投資は、ディープラーニング技術の進化に向けた確固たるアプローチを示しています。
- 2025年1月、OpenAIは、高度なAIモデルの開発で知られる企業として、人類に有益なAIの創出に注力しています。オープンソースへのアプローチと、MicrosoftやAmazonといった企業との連携は、AIコミュニティにおける同社の影響力を際立たせています。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

